A Semantic Database Management System: SIM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Warehouse: an Integrated Decision Support Database Whose Content Is Derived from the Various Operational Databases
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATABASE MANAGEMENT Topic Objective: At the end of this topic student will be able to: Understand the Contrasting basic concepts Understand the Database Server and Database Specified Understand the USER Clause Definition/Overview: Data: Stored representations of objects and events that have meaning and importance in the users environment. Information: Data that have been processed in such a way that they can increase the knowledge of the person who uses it. Metadata: Data that describes the properties or characteristics of end-user data and the context of that data. Database application: An application program (or set of related programs) that is used to perform a series of database activities (create, read, update, and delete) on behalf of database users. WWW.BSSVE.IN Data warehouse: An integrated decision support database whose content is derived from the various operational databases. Constraint: A rule that cannot be violated by database users. Database: An organized collection of logically related data. Entity: A person, place, object, event, or concept in the user environment about which the organization wishes to maintain data. Database management system: A software system that is used to create, maintain, and provide controlled access to user databases. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Data dependence; data independence: With data dependence, data descriptions are included with the application programs that use the data, while with data independence the data descriptions are separated from the application programs. Data warehouse; data mining: A data warehouse is an integrated decision support database, while data mining (described in the topic introduction) is the process of extracting useful information from databases. -
Arcgis Marine Data Model Reference
ArcGIS Marine Data Model Reference ArcGIS Marine Data Model (June 2003) This document provides an Dawn J. Wright, Oregon State U. overview of the ArcGIS Marine Patrick N. Halpin, Duke U. Data Model. This model focuses on Michael Blongewicz, DHI important features of the ocean realm, both natural and manmade, Steve Grisé, ESRI Redlands with a view towards the many Joe Breman, ESRI Redlands applications of marine GIS data. ArcGIS Data Models TABLE OF CONTENTS Acknowledgements ................................................................................................................... 4 Introduction ............................................................................................................................... 5 Why a Marine Data Model?.................................................................................................... 6 Intended Audience and Scope of the Model............................................................................ 8 The Process of Building a Data Model ..................................................................................... 10 Final Data Model Content, Purpose and Use........................................................................ 14 Data Model Description ........................................................................................................... 16 Overview ............................................................................................................................. 16 Conceptual Framework.................................................................................................... -
A Model-To-Model Transformation of a Generic Relational Database Schema Into a Form Type Data Model
Proceedings of the Federated Conference on Computer Science DOI: 10.15439/2016F408 and Information Systems pp. 1577–1580 ACSIS, Vol. 8. ISSN 2300-5963 A Model-to-Model Transformation of a Generic Relational Database Schema into a Form Type Data Model Sonja Ristić, Slavica Kordić, Milan Čeliković, Vladimir Dimitrieski, Ivan Luković University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi Sad, Serbia Email: {sdristic, slavica, milancel, dimitrieski, ivan}@uns.ac.rs engineering and review different database meta-models Abstract—An important phase of a data-oriented software (MM) that are used in the database reengineering process system reengineering is a database reengineering process and, applied in IIS*Studio. In [5] we propose an MD approach to in particular, its subprocess – a database reverse engineering data structure conceptualization phase of database reverse process. In this paper we present one of the model-to-model engineering process that is conducted through a chain of transformations from a chain of transformations aimed at transformation of a generic relational database schema into a M2M transformations. In this paper we present the final step form type data model. The transformation is a step of the data of the conceptualization phasethe M2M transformation of structure conceptualization phase of a model-driven database a generic relational database schema into a form type model. reverse engineering process that is implemented in IIS*Studio The form type concept and the IIS*Studio architecture are development environment. given in Section 2. Classifications of form types and relation schemes are described in Section 3. The transformation of a I. -
Metamodeling the Enhanced Entity-Relationship Model
Metamodeling the Enhanced Entity-Relationship Model Robson N. Fidalgo1, Edson Alves1, Sergio España2, Jaelson Castro1, Oscar Pastor2 1 Center for Informatics, Federal University of Pernambuco, Recife(PE), Brazil {rdnf, eas4, jbc}@cin.ufpe.br 2 Centro de Investigación ProS, Universitat Politècnica de València, València, España {sergio.espana,opastor}@pros.upv.es Abstract. A metamodel provides an abstract syntax to distinguish between valid and invalid models. That is, a metamodel is as useful for a modeling language as a grammar is for a programming language. In this context, although the Enhanced Entity-Relationship (EER) Model is the ”de facto” standard modeling language for database conceptual design, to the best of our knowledge, there are only two proposals of EER metamodels, which do not provide a full support to Chen’s notation. Furthermore, neither a discussion about the engineering used for specifying these metamodels is presented nor a comparative analysis among them is made. With the aim at overcoming these drawbacks, we show a detailed and practical view of how to formalize the EER Model by means of a metamodel that (i) covers all elements of the Chen’s notation, (ii) defines well-formedness rules needed for creating syntactically correct EER schemas, and (iii) can be used as a starting point to create Computer Aided Software Engineering (CASE) tools for EER modeling, interchange metadata among these tools, perform automatic SQL/DDL code generation, and/or extend (or reuse part of) the EER Model. In order to show the feasibility, expressiveness, and usefulness of our metamodel (named EERMM), we have developed a CASE tool (named EERCASE), which has been tested with a practical example that covers all EER constructors, confirming that our metamodel is feasible, useful, more expressive than related ones and correctly defined. -
Enterprise Data Modeling Using the Entity-Relationship Model
Database Systems Session 3 – Main Theme Enterprise Data Modeling Using The Entity/Relationship Model Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Presentation material partially based on textbook slides Fundamentals of Database Systems (6th Edition) by Ramez Elmasri and Shamkant Navathe Slides copyright © 2011 1 Agenda 11 SessionSession OverviewOverview 22 EnterpriseEnterprise DataData ModelingModeling UsingUsing thethe ERER ModelModel 33 UsingUsing thethe EnhancedEnhanced Entity-RelationshipEntity-Relationship ModelModel 44 CaseCase StudyStudy 55 SummarySummary andand ConclusionConclusion 2 Session Agenda Session Overview Enterprise Data Modeling Using the ER Model Using the Extended ER Model Case Study Summary & Conclusion 3 What is the class about? Course description and syllabus: » http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001 » http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/ Textbooks: » Fundamentals of Database Systems (6th Edition) Ramez Elmasri and Shamkant Navathe Addition Wesley ISBN-10: 0-1360-8620-9, ISBN-13: 978-0136086208 6th Edition (04/10) 4 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 55 Agenda 11 SessionSession OverviewOverview 22 EnterpriseEnterprise DataData ModelingModeling UsingUsing thethe ERER ModelModel 33 UsingUsing thethe EnhancedEnhanced Entity-RelationshipEntity-Relationship ModelModel 44 CaseCase StudyStudy 55 SummarySummary andand ConclusionConclusion -
Gis Data Models
GIS DATA MODELS CONCEPTUAL MODEL OF SPATIAL INFORMATION 1. Introduction GIS does not store a map in any conventional sense, nor it stores a particular image or view of geographic area. Instead, a GIS stores the data from which we can draw a desired view to suit a particular purpose known as geographic data. There are two types of data in GIS; spatial data and non-spatial data (Attribute data). Non-spatial data include information about the features. For example, name of roads, schools, forests etc., population or census data for the region concerned etc. Non-spatial or attribute data is that qualifies the spatial data. It describes some aspects of the spatial data, not specified by its geometry alone. A geographical information system essentially integrates the above two types of data and allows user to derive new data for planning. Spatial models are important in that way in which information is represented affects the type of analysis that can be performed and the type of graphic display that can be performed and the type of analysis that can be obtained. In GIS systems there is a major distinction between what are usually referred to as vector GIS and raster GIS. These two approaches to spatial data processing, often to be found in the same GIS package, reflect two different methods of spatial modeling: the former focusing on discrete objects that are to be described, and the latter concerned primarily with recording what is to be found at a predetermined set of locations that may be grid cells or points. -
Data Model Transformations: Relational to Dimensional
https://doi.org/10.48009/1_iis_2014_285-291 Issues in Information Systems Volume 15, Issue I, pp. 285-291, 2014 DATA MODEL TRANSFORMATIONS: RELATIONAL TO DIMENSIONAL Vladan Jovanovic, Georgia Southern University, [email protected] James Harris, Georgia Southern University, [email protected] ABSTRACT The paper extends the Conceptual Dimensional Fact Model to support the modeling of data marts by formalizing patterns of graph transformations from a relational data base schema to a data mart schema, and by standardizing all visual representations using the Idef1X standard notation and a single supporting case tool. The proposed modeling and automation approach has the potential to significantly speed up prototyping, improve quality of design documentation, and allow verification by developers and validation by users. Keywords: Dimensional Fact Model, Data Model, Idef1X notation, Relational DB, Graph Transformations, Dimensional Model, and Data Mart. INTRODUCTION Data marts (DM's) are access layers to data warehouses that allow subunits of an organization to efficiently access data in a Data Warehouse. Golfarelli [5] contends that a lack of adequate conceptual modeling and analysis in designing data warehouses and particularly DM's is detrimental to quality, speed and utility. The field of database design not only recognizes the need for separating conceptual design from logical and physical design, but also provides a variety of different models and techniques [2,3,6,7,12]. The review of approaches to conceptual DM design -
The Layman's Guide to Reading Data Models
Data Architecture & Engineering Services The Layman’s Guide to Reading Data Models A data model shows a data asset’s structure, including the relationships and constraints that determine how data will be stored and accessed. 1. Common Types of Data Models Conceptual Data Model A conceptual data model defines high-level relationships between real-world entities in a particular domain. Entities are typically depicted in boxes, while lines or arrows map the relationships between entities (as shown in Figure 1). Figure 1: Conceptual Data Model Logical Data Model A logical data model defines how a data model should be implemented, with as much detail as possible, without regard for its physical implementation in a database. Within a logical data model, an entity’s box contains a list of the entity’s attributes. One or more attributes is designated as a primary key, whose value uniquely specifies an instance of that entity. A primary key may be referred to in another entity as a foreign key. In the Figure 2 example, each Employee works for only one Employer. Each Employer may have zero or more Employees. This is indicated via the model’s line notation (refer to the Describing Relationships section). Figure 2: Logical Data Model Last Updated: 03/30/2021 OIT|EADG|DEA|DAES 1 The Layman’s Guide to Reading Data Models Physical Data Model A physical data model describes the implementation of a data model in a database (as shown in Figure 3). Entities are described as tables, Attributes are translated to table column, and Each column’s data type is specified. -
Object Triple Mapping Bridging Semantic Web and Object- Oriented Programming
Object Triple Mapping Bridging Semantic Web and object- oriented programming The use of Semantic Web and ontologies in creating smart applications has drastically increased during the recent years due to the high potential in allowing machines to reason on provided semantics. Providing powerful tools that can improve the development of applications based on ontologies can accelerate the adoption of Semantic Web. For this purpose, many tools such as ontology editors, ontology reasoners, triple store frameworks and object triple mapping systems have been developed. This article introduces the concept of object triple mapping, which essentially consists of a bridge between RDF/OWL and object-oriented programming. What is object-oriented objects that they want to manipulate as well as the relationships between them (process known as programming? data modelling). Object-oriented programming (OOP) is a paradigm for software development, based on the concept of What Semantic Web and OOP objects, which can contain data, in the form of fields (often known as attributes or properties), have in common? and code, in the form of procedures (often known Semantic Web shares a few major characteristics as methods). with OOP: The fundamental characteristics of OOP are: ▪ Semantic Web has classes for defining data concepts; 1. Inheritance – Parent to child relationships; ▪ Semantic Web has instances for actual data 2. Polymorphism – Overloading and overriding values; class members; ▪ Inheritance among classes is supported; 3. Encapsulation – Hiding data behind ▪ Strongly typed data types are supported operations; (string, integer, etc.); 4. Abstraction – Reveal mechanisms that are ▪ Whole/part relationships are supported. only relevant for the use of other objects. -
KDI EER: the Extended ER Model
KDI EER: The Extended ER Model Fausto Giunchiglia and Mattia Fumagallli University of Trento 0/61 Extended Entity Relationship Model The Extended Entity-Relationship (EER) model is a conceptual (or semantic) data model, capable of describing the data requirements for a new information system in a direct and easy to understand graphical notation. Data requirements for a database are described in terms of a conceptual schema, using the EER model. EER schemata are comparable to UML class diagrams. Actually, what we will be discussing is an extension of Peter Chen’s proposal (hence “extended” ER). 1/61 The Constructs of the EER Model 2/61 Entities These represent classes of objects (facts, things, people,...) that have properties in common and an autonomous existence. City, Department, Employee, Purchase and Sale are examples of entities for a commercial organization. An instance of an entity represents an object in the class represented by the entity. Stockholm, Helsinki, are examples of instances of the entity City, and the employees Peterson and Johanson are examples of instances of the Employee entity. The EER model is very different from the relational model in a number of ways; for example, in EER it is not possible to represent an object without knowing its properties, but in the relational model you need to know its key attributes. 3/61 Example of Entities 4/61 Relationship They represent logical links between two or more entities. Residence is an example of a relationship that can exist between the entities City and Employee; Exam is an example of a relationship that can exist between the entities Student and Course. -
An Object Oriented Shared Data Model for GIS and Distributed Hydrologic Models
An Object Oriented Shared Data Model for GIS and Distributed Hydrologic Models M. Kumar and C. Duffy International Journal of Geographical Information Science, IJGIS-2008-0131 Accepted for publication Sep. 2008 Abstract Distributed physical models for the space-time distribution of water, energy, vegetation, and mass flow require new strategies for data representation, model domain decomposition, a-priori parameterization, and visualization. The Geographic Information System (GIS) has been traditionally used to accomplish these data management functionalities in hydrologic applications. However, the interaction between the data management tools and the physical model are often loosely integrated and nondynamic. This leads to several issues addressed in this paper: a) The data types and formats for the physical model system and the distributed data or parameters may be different, with significant data preprocessing required before they can be shared. b) The management tools may not be accessible or shared by the GIS and physical model. c) The individual systems may be operating-system dependent or are driven by proprietary data structures. The impediment to seamless data flow between the two software components has the effect of increasing the model setup time and analysis time of model output results, and also makes it restrictive to perform sophisticated numerical modeling procedures (sensitivity analysis, real time forecasting, etc.) that utilize extensive GIS data. These limitations can be offset to a large degree by developing an integrated software component that shares data between the (hydrologic) model and the GIS modules. We contend that the pre-requisite for the development of such an integrated software component is a “shared data-model” that is designed using an Object Oriented Strategy. -
Numerical Analysis, Modelling and Simulation
Numerical Analysis, Modelling and Simulation Griffin Cook Numerical Analysis, Modelling and Simulation Numerical Analysis, Modelling and Simulation Edited by Griffin Cook Numerical Analysis, Modelling and Simulation Edited by Griffin Cook ISBN: 978-1-9789-1530-5 © 2018 Library Press Published by Library Press, 5 Penn Plaza, 19th Floor, New York, NY 10001, USA Cataloging-in-Publication Data Numerical analysis, modelling and simulation / edited by Griffin Cook. p. cm. Includes bibliographical references and index. ISBN 978-1-9789-1530-5 1. Numerical analysis. 2. Mathematical models. 3. Simulation methods. I. Cook, Griffin. QA297 .N86 2018 518--dc23 This book contains information obtained from authentic and highly regarded sources. All chapters are published with permission under the Creative Commons Attribution Share Alike License or equivalent. A wide variety of references are listed. Permissions and sources are indicated; for detailed attributions, please refer to the permissions page. Reasonable efforts have been made to publish reliable data and information, but the authors, editors and publisher cannot assume any responsibility for the validity of all materials or the consequences of their use. Copyright of this ebook is with Library Press, rights acquired from the original print publisher, Larsen and Keller Education. Trademark Notice: All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy.