Logical Relational Data Modeling Standards

Total Page:16

File Type:pdf, Size:1020Kb

Logical Relational Data Modeling Standards Property and Casualty Insurance Working Group Logical Relational Data Modeling Standards Versio n 1.0 Property and Casualty Insurance Working Group Jun e 16, 2008 Table of Contents Introduction . 4 Purpose . 4 Document Maintenance . 4 Scope . 4 Logical Relational Data Model Definition . 4 ER Diagramming Conventions . 6 Logical Relational Data Modeling Standard Page 2 Property and Casualty Insurance Working Group Modeling Syntax . 6 Diagramming Layout Guidelines . 7 Normal Forms . 8 Writing Definitions of Logical Objects . 9 Logical Object Definition Guidelines: . 9 Entity Definition Guidelines: . 9 Attribute Definition Guidelines : . 9 Naming Logical Objects . 10 Logical Object Naming Guidelines . 10 Entity Naming Guidelines . 11 Attribute Naming Guidelines . 11 Relationship Naming Guidelines . 13 Relationship Standards . 14 Super- types and Sub- types . 15 Entity Keys . 17 Dimensional Data Modeling . 18 Appendix . 19 Class Words . 19 Logical Relational Data Modeling Standard Page 3 Property and Casualty Insurance Working Group Introduction Purpose This document provides standards and guidance for the naming and use of objects in logical relational data models. Logical objects are created and maintained to meet business requirements. Accurate naming clarifies the specific nature of each logical object. Consistency allows the logical names to have persistent value in differentiating data items. Name formation and the use of logical modeling objects are independent of any particular data modeling tool or relational database management system (RDBMS) platform. These logical relational data modeling guidelines are independent of specific CASE tools. The intention of this standard is to establish an agreed- upon basis for developing logical relational data models in order to promote greater quality and consistency across data models and enable objective model reviews. Document Maintenance To suggest improvements, changes or additions to this standard, contact: Gail Austin or Harsh Sharma [email protected] [email protected] Scope These standards apply to all logical relational data models that are developed by OMG submission teams. Logical Relational Data Model Definition The relational model for database management is a database model based on predicate logic and set theory. It was first formulated and proposed in 1969 by Edgar Codd with aims that included avoiding, without loss of completeness, the need to write computer programs to express database queries and enforce database integrity constraints. “Relation” is a mathematical term for “table”, Logical Relational Data Modeling Standard Page 4 Property and Casualty Insurance Working Group and thus “relations” roughly means “based on tables”. It does not refer to the links or “keys” between tables, contrary to popular belief.1 A logical relational data model defines what an organization knows about things of interest to the business and graphically shows how they relate to each other in an entity relationship (ER) diagram. An entity relationship diagram is an abstract conceptual representation of structured data. It uses standard symbols to denote the things of interest to the business (entities), the relationships between entities and the cardinality and optionality of those relationships. The Logical Relational Data Model, in contrast to the more abstract Conceptual Relational Data Model, contains detailed characteristics of the entities (attributes) and their definitions. It generates the structure of a physical data model which in turn generates a database following Model Driven Architecture principles. It is a result of detailed analysis of the business requirements. The following illustration shows how the logical model fits into the overall data modeling process: 1 Wikipedia – relational model Logical Relational Data Modeling Standard Page 5 Property and Casualty Insurance Working Group Ultimately, the logical relational data model helps to solidify and validate business requirements and delivers stable, flexible data structures that are easily navigated and can answer unanticipated questions. ER Diagramming Conventions Modeling Syntax The recommended notation for models is Information Engineering (IE) – “Crow’s Feet” - because it is easier for users to interpret than the Integration Definition for Information Modeling (IDEF1X) notation.2 2 The choice of IE notation will be revisited when the Barker notation becomes more widely available in the modeling tools. Logical Relational Data Modeling Standard Page 6 Property and Casualty Insurance Working Group Diagramming Layout Guidelines Orient entities so that the “toes” of a relationship’s crow’s foot always point down. This puts fundamental entities in the top area of the diagram, and positions associative and subtype entities in the lower area of the diagram. Recommended crow’s feet down convention Avoid dead crows! CONTACT PROFILE PERSON Person Identifier (FK) Person Identifier (FK) Contact Point Identifier (FK) First Name Home Contact Point Indicator Middle Name Work Contact Point Indicator Last Name Legal Name Nickname CONTACT POINT Name Suffix Contact Point Identifier Birth Date Birth Place Name Gender Code PERSON CONTACT POINT Person Identifier (FK) Contact Point Identifier First Name Middle Name Last Name CONTACT PROFILE Legal Name Nickname Person Identifier (FK) Name Suffix Contact Point Identifier (FK) Birth Date Home Contact Point Indicator Birth Place Name Work Contact Point Indicator Gender Code Keep the relationship lines as straight as possible. Avoid unnecessary bends. Too many symbols clutter the diagram and make it confusing to the viewer. Avoid crossing relationship lines. Crossed lines make it difficult to understand which entities are related. Relationship names should be placed on the diagram so that the verbs or verb phrases are read in a clockwise direction from one entity to the related entity. Example: Logical Relational Data Modeling Standard Page 7 Property and Casualty Insurance Working Group POLICY Policy Identifier covers is covered by EXPOSURE Policy Identifier (FK) Insured Object Identifier (FK) Coverage Type Identifier (FK) Normal Forms Normal Forms provide a way to structure data to eliminate undesirable redundancies, inconsistencies and dependencies. Normalization is a formalized technique for creating the most desirable logical model for the given data and business rules. Completed logical models should be in, at least, Boyce/Codd Normal Form (BCNF)3. For a model to be in BCNF, every entity in the model must be in BCNF. The normal forms are summarized below: Firs t Nor ma l For m (1NF) identifies and eliminates repeating groups and establishes a primary key. Secon d Nor ma l For m (2NF) identifies and.
Recommended publications
  • Powerdesigner 16.6 Data Modeling
    SAP® PowerDesigner® Document Version: 16.6 – 2016-02-22 Data Modeling Content 1 Building Data Models ...........................................................8 1.1 Getting Started with Data Modeling...................................................8 Conceptual Data Models........................................................8 Logical Data Models...........................................................9 Physical Data Models..........................................................9 Creating a Data Model.........................................................10 Customizing your Modeling Environment........................................... 15 1.2 Conceptual and Logical Diagrams...................................................26 Supported CDM/LDM Notations.................................................27 Conceptual Diagrams.........................................................31 Logical Diagrams............................................................43 Data Items (CDM)............................................................47 Entities (CDM/LDM)..........................................................49 Attributes (CDM/LDM)........................................................55 Identifiers (CDM/LDM)........................................................58 Relationships (CDM/LDM)..................................................... 59 Associations and Association Links (CDM)..........................................70 Inheritances (CDM/LDM)......................................................77 1.3 Physical Diagrams..............................................................82
    [Show full text]
  • Arcgis Marine Data Model Reference
    ArcGIS Marine Data Model Reference ArcGIS Marine Data Model (June 2003) This document provides an Dawn J. Wright, Oregon State U. overview of the ArcGIS Marine Patrick N. Halpin, Duke U. Data Model. This model focuses on Michael Blongewicz, DHI important features of the ocean realm, both natural and manmade, Steve Grisé, ESRI Redlands with a view towards the many Joe Breman, ESRI Redlands applications of marine GIS data. ArcGIS Data Models TABLE OF CONTENTS Acknowledgements ................................................................................................................... 4 Introduction ............................................................................................................................... 5 Why a Marine Data Model?.................................................................................................... 6 Intended Audience and Scope of the Model............................................................................ 8 The Process of Building a Data Model ..................................................................................... 10 Final Data Model Content, Purpose and Use........................................................................ 14 Data Model Description ........................................................................................................... 16 Overview ............................................................................................................................. 16 Conceptual Framework....................................................................................................
    [Show full text]
  • Data Model Standards and Guidelines, Registration Policies And
    Data Model Standards and Guidelines, Registration Policies and Procedures Version 3.2 ● 6/02/2017 Data Model Standards and Guidelines, Registration Policies and Procedures Document Version Control Document Version Control VERSION D ATE AUTHOR DESCRIPTION DRAFT 03/28/07 Venkatesh Kadadasu Baseline Draft Document 0.1 05/04/2007 Venkatesh Kadadasu Sections 1.1, 1.2, 1.3, 1.4 revised 0.2 05/07/2007 Venkatesh Kadadasu Sections 1.4, 2.0, 2.2, 2.2.1, 3.1, 3.2, 3.2.1, 3.2.2 revised 0.3 05/24/07 Venkatesh Kadadasu Incorporated feedback from Uli 0.4 5/31/2007 Venkatesh Kadadasu Incorporated Steve’s feedback: Section 1.5 Issues -Change Decide to Decision Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. (This was discussed previously.) Data Standardization - We have discussed on several occasions the cross-walk table between tabular naming standards and XML. When did it get dropped? Section 2.3.2 Conceptual data model level of detail: changed (S) No foreign key attributes may be entered in the conceptual data model. To (S) No attributes may be entered in the conceptual data model. 0.5 6/4/2007 Steve Horn Move last paragraph of Section 2.0 to section 2.1.4 Data Standardization Added definitions of key terms 0.6 6/5/2007 Ulrike Nasshan Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document.
    [Show full text]
  • Integration Definition for Function Modeling (IDEF0)
    NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance,
    [Show full text]
  • Metamodeling and Method Engineering with Conceptbase”
    This is a pre-print of the book chapter M. Jeusfeld: “Metamodeling and method engineering with ConceptBase” . In Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for Method Engineering, pp. 89-168. The MIT Press., 2009; the original book is available from MIT Press http://mitpress.mit.edu/node/192290 This pre-print may only be used for scholar, non-commercial purposes. Most of the sources for the examples in this chapter are available via http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3782591 for download. They require ConceptBase 7.0 or later available from http://conceptbase.cc. Metamodeling and Method Engineering with ConceptBase Manfred Jeusfeld Abstract. This chapter provides a practical guide on how to use the meta data repository ConceptBase to design information modeling methods by using meta- modeling. After motivating the abstraction principles behind meta-modeling, the language Telos as realized in ConceptBase is presented. First, a standard factual representation of statements at any IRDS abstraction level is defined. Then, the foundation of Telos as a logical theory is elaborated yielding simple fixpoint semantics. The principles for object naming, instantiation, attribution, and specialization are reflected by roughly 30 logical axioms. After the language axiomatization, user-defined rules, constraints and queries are introduced. The first part is concluded by a description of active rules that allows the specification of reactions of ConceptBase to external events. The second part applies the language features of the first part to a full-fledged information modeling method: The Yourdan method for Modern Structured Analysis. The notations of the Yourdan method are designed along the IRDS framework.
    [Show full text]
  • A Model-To-Model Transformation of a Generic Relational Database Schema Into a Form Type Data Model
    Proceedings of the Federated Conference on Computer Science DOI: 10.15439/2016F408 and Information Systems pp. 1577–1580 ACSIS, Vol. 8. ISSN 2300-5963 A Model-to-Model Transformation of a Generic Relational Database Schema into a Form Type Data Model Sonja Ristić, Slavica Kordić, Milan Čeliković, Vladimir Dimitrieski, Ivan Luković University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi Sad, Serbia Email: {sdristic, slavica, milancel, dimitrieski, ivan}@uns.ac.rs ฀ engineering and review different database meta-models Abstract—An important phase of a data-oriented software (MM) that are used in the database reengineering process system reengineering is a database reengineering process and, applied in IIS*Studio. In [5] we propose an MD approach to in particular, its subprocess – a database reverse engineering data structure conceptualization phase of database reverse process. In this paper we present one of the model-to-model engineering process that is conducted through a chain of transformations from a chain of transformations aimed at transformation of a generic relational database schema into a M2M transformations. In this paper we present the final step form type data model. The transformation is a step of the data of the conceptualization phasethe M2M transformation of structure conceptualization phase of a model-driven database a generic relational database schema into a form type model. reverse engineering process that is implemented in IIS*Studio The form type concept and the IIS*Studio architecture are development environment. given in Section 2. Classifications of form types and relation schemes are described in Section 3. The transformation of a I.
    [Show full text]
  • Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes
    Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes “The Business Driven Application Lifecycle” Bob Sherman Procter & Gamble Pharmaceuticals [email protected] Michael Sutherland Galactic Solutions Group, LLC [email protected] Prepared for the Telelogic 2005 User Group Conference, Americas & Asia/Pacific http://www.telelogic.com/news/usergroup/us2005/index.cfm 24 October 2005 Abstract: The fact that most Information Technology (IT) projects fail as a result of requirements management problems is common knowledge. What is not commonly recognized is that the widely haled “use case” and Object Oriented Analysis and Design (OOAD) phenomenon have resulted in little (if any) abatement of IT project failures. In fact, ten years after the advent of these methods, every major IT industry research group remains aligned on the fact that these projects are still failing at an alarming rate (less than a 30% success rate). Ironically, the popularity of use case and OOAD (e.g. UML) methods may be doing more harm than good by diverting our attention away from addressing the real root cause of IT project failures (when you have a new hammer, everything looks like a nail). This paper asserts that, the real root cause of IT project failures centers around the failure to map requirements to an accurate, precise, comprehensive, optimized business model. This argument will be supported by a using a brief recap of the history of use case and OOAD methods to identify differences between the problems these methods were intended to address and the challenges of today’s IT projects.
    [Show full text]
  • Principles of the Concept-Oriented Data Model Alexandr Savinov
    Principles of the Concept-Oriented Data Model Alexandr Savinov Institute of Mathematics and Computer Science Academy of Sciences of Moldova Academiei 5, MD-2028 Chisinau, Moldova Fraunhofer Institute for Autonomous Intelligent System Schloss Birlinghoven, 53754 Sankt Augustin, Germany http://www.conceptoriented.com [email protected] Principles of the Concept-Oriented Data Model Alexandr Savinov Institute of Mathematics and Computer Science, Academy of Sciences of Moldova Academiei 5, MD-2028 Chisinau, Moldova Fraunhofer Institute for Autonomous Intelligent System Schloss Birlinghoven, 53754 Sankt Augustin, Germany http://www.conceptoriented.com [email protected] In the paper a new approach to data representation and manipulation is described, which is called the concept-oriented data model (CODM). It is supposed that items represent data units, which are stored in concepts. A concept is a combination of superconcepts, which determine the concept’s dimensionality or properties. An item is a combination of superitems taken by one from all the superconcepts. An item stores a combination of references to its superitems. The references implement inclusion relation or attribute- value relation among items. A concept-oriented database is defined by its concept structure called syntax or schema and its item structure called semantics. The model defines formal transformations of syntax and semantics including the canonical semantics where all concepts are merged and the data semantics is represented by one set of items. The concept-oriented data model treats relations as subconcepts where items are instances of the relations. Multi-valued attributes are defined via subconcepts as a view on the database semantics rather than as a built-in mechanism.
    [Show full text]
  • Metamodeling the Enhanced Entity-Relationship Model
    Metamodeling the Enhanced Entity-Relationship Model Robson N. Fidalgo1, Edson Alves1, Sergio España2, Jaelson Castro1, Oscar Pastor2 1 Center for Informatics, Federal University of Pernambuco, Recife(PE), Brazil {rdnf, eas4, jbc}@cin.ufpe.br 2 Centro de Investigación ProS, Universitat Politècnica de València, València, España {sergio.espana,opastor}@pros.upv.es Abstract. A metamodel provides an abstract syntax to distinguish between valid and invalid models. That is, a metamodel is as useful for a modeling language as a grammar is for a programming language. In this context, although the Enhanced Entity-Relationship (EER) Model is the ”de facto” standard modeling language for database conceptual design, to the best of our knowledge, there are only two proposals of EER metamodels, which do not provide a full support to Chen’s notation. Furthermore, neither a discussion about the engineering used for specifying these metamodels is presented nor a comparative analysis among them is made. With the aim at overcoming these drawbacks, we show a detailed and practical view of how to formalize the EER Model by means of a metamodel that (i) covers all elements of the Chen’s notation, (ii) defines well-formedness rules needed for creating syntactically correct EER schemas, and (iii) can be used as a starting point to create Computer Aided Software Engineering (CASE) tools for EER modeling, interchange metadata among these tools, perform automatic SQL/DDL code generation, and/or extend (or reuse part of) the EER Model. In order to show the feasibility, expressiveness, and usefulness of our metamodel (named EERMM), we have developed a CASE tool (named EERCASE), which has been tested with a practical example that covers all EER constructors, confirming that our metamodel is feasible, useful, more expressive than related ones and correctly defined.
    [Show full text]
  • The Importance of Data Models in Enterprise Metadata Management
    THE IMPORTANCE OF DATA MODELS IN ENTERPRISE METADATA MANAGEMENT October 19, 2017 © 2016 ASG Technologies Group, Inc. All rights reserved HAPPINESS IS… SOURCE: 10/18/2017 TODAY SHOW – “THE BLUE ZONE OF HAPPINESS” – DAN BUETTNER • 3 Close Friends • Get a Dog • Good Light • Get Religion • Get Married…. Stay Married • Volunteer • “Money will buy you Happiness… well, it’s more about Financial Security” • “Our Data Models are now incorporated within our corporate metadata repository” © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable 2. Data Models can in be incorporated into your corporate metadata repository © 2016 ASG Technologies Group, Inc. All rights reserved 3 POINTS TO REMEMBER SOURCE: 10/19/2017 DAMA NYC – NOONTIME SPEAKER SLOT – MIKE WANYO – ASG TECHNOLOGIES 1. Happiness is individually sought and achievable 2. Data Models can in be incorporated into your corporate metadata repository 3. ASG Technologies can provide an overall solution with services to accomplish #2 above and more for your company. © 2016 ASG Technologies Group, Inc. All rights reserved AGENDA Data model imports to the metadata collection View and search capabilities Traceability of physical and logical
    [Show full text]
  • Towards the Universal Spatial Data Model Based Indexing and Its Implementation in Mysql
    Towards the universal spatial data model based indexing and its implementation in MySQL Evangelos Katsikaros Kongens Lyngby 2012 IMM-M.Sc.-2012-97 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk IMM-M.Sc.: ISSN XXXX-XXXX Summary This thesis deals with spatial indexing and models that are able to abstract the variety of existing spatial index solutions. This research involves a thorough presentation of existing dynamic spatial indexes based on R-trees, investigating abstraction models and implementing such a model in MySQL. To that end, the relevant theory is presented. A thorough study is performed on the recent and seminal works on spatial index trees and we describe their basic properties and the way search, deletion and insertion are performed on them. During this effort, we encountered details that baffled us, did not make the understanding the core concepts smooth or we thought that could be a source of confusion. We took great care in explaining in depth these details so that the current study can be a useful guide for a number of them. A selection of these models were later implemented in MySQL. We investigated the way spatial indexing is currently engineered in MySQL and we reveal how search, deletion and insertion are performed. This paves the path to the un- derstanding of our intervention and additions to MySQL's codebase. All of the code produced throughout this research was included in a patch against the RDBMS MariaDB.
    [Show full text]
  • Enterprise Data Modeling Using the Entity-Relationship Model
    Database Systems Session 3 – Main Theme Enterprise Data Modeling Using The Entity/Relationship Model Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Presentation material partially based on textbook slides Fundamentals of Database Systems (6th Edition) by Ramez Elmasri and Shamkant Navathe Slides copyright © 2011 1 Agenda 11 SessionSession OverviewOverview 22 EnterpriseEnterprise DataData ModelingModeling UsingUsing thethe ERER ModelModel 33 UsingUsing thethe EnhancedEnhanced Entity-RelationshipEntity-Relationship ModelModel 44 CaseCase StudyStudy 55 SummarySummary andand ConclusionConclusion 2 Session Agenda Session Overview Enterprise Data Modeling Using the ER Model Using the Extended ER Model Case Study Summary & Conclusion 3 What is the class about? Course description and syllabus: » http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001 » http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/ Textbooks: » Fundamentals of Database Systems (6th Edition) Ramez Elmasri and Shamkant Navathe Addition Wesley ISBN-10: 0-1360-8620-9, ISBN-13: 978-0136086208 6th Edition (04/10) 4 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 55 Agenda 11 SessionSession OverviewOverview 22 EnterpriseEnterprise DataData ModelingModeling UsingUsing thethe ERER ModelModel 33 UsingUsing thethe EnhancedEnhanced Entity-RelationshipEntity-Relationship ModelModel 44 CaseCase StudyStudy 55 SummarySummary andand ConclusionConclusion
    [Show full text]