Numerical Analysis, Modelling and Simulation

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Analysis, Modelling and Simulation Numerical Analysis, Modelling and Simulation Griffin Cook Numerical Analysis, Modelling and Simulation Numerical Analysis, Modelling and Simulation Edited by Griffin Cook Numerical Analysis, Modelling and Simulation Edited by Griffin Cook ISBN: 978-1-9789-1530-5 © 2018 Library Press Published by Library Press, 5 Penn Plaza, 19th Floor, New York, NY 10001, USA Cataloging-in-Publication Data Numerical analysis, modelling and simulation / edited by Griffin Cook. p. cm. Includes bibliographical references and index. ISBN 978-1-9789-1530-5 1. Numerical analysis. 2. Mathematical models. 3. Simulation methods. I. Cook, Griffin. QA297 .N86 2018 518--dc23 This book contains information obtained from authentic and highly regarded sources. All chapters are published with permission under the Creative Commons Attribution Share Alike License or equivalent. A wide variety of references are listed. Permissions and sources are indicated; for detailed attributions, please refer to the permissions page. Reasonable efforts have been made to publish reliable data and information, but the authors, editors and publisher cannot assume any responsibility for the validity of all materials or the consequences of their use. Copyright of this ebook is with Library Press, rights acquired from the original print publisher, Larsen and Keller Education. Trademark Notice: All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy. Furthermore, the publisher ensures that the text paper and cover boards used have met acceptable environmental accreditation standards. Table of Contents Preface VII Chapter 1 Introduction to Numerical Analysis 1 Chapter 2 Understanding Simulation 11 • Simulation 11 • Computer Simulation 13 • Dynamic Simulation 43 • Discrete Event Simulation 44 • List of Computer Simulation Software 47 Chapter 3 Modeling: An Overview 62 • Mathematical Model 62 • Conceptual Model 85 • Conceptual Model (Computer Science) 94 • Multiscale Modeling 94 • Ontology (Information Science) 97 • Statistical Model 104 Chapter 4 Theorems in Approximation Theory 108 • Approximation Theory 108 • Stone–Weierstrass Theorem 112 • Fejér’s Theorem 116 • Bernstein’s Theorem (Approximation Theory) 117 • Favard’s Theorem 118 • Müntz–Szász Theorem 118 Chapter 5 Methods and Techniques of Numerical Analysis 120 • Numerical Methods for Ordinary Differential Equations 120 • Series Acceleration 128 • Minimum Polynomial Extrapolation 130 • Richardson Extrapolation 131 • Shanks Transformation 136 • Interpolation 139 • Van Wijngaarden Transformation 145 • Matrix Splitting 146 • Gaussian Elimination 151 • Convex Optimization 158 Chapter 6 Essential Aspects of Numerical Analysis 164 • Numerical Integration 164 • Monte Carlo Method 172 • Monte Carlo Integration 183 • Mathematical Optimization 190 • Optimization Problem 203 ________________________ WORLD TECHNOLOGIES VI Contents • Multi-objective Optimization 205 • Eigendecomposition of A Matrix 217 • Singular Value Decomposition 226 • System of Linear Equations 243 Chapter 7 Various Numerical Analysis Softwares 256 • List of Numerical Analysis Software 256 • TK Solver 262 • LAPACK 264 • DataMelt 266 • Analytica (Software) 272 • GNU Octave 275 • Julia (Programming Language) 281 Chapter 8 Applications of Simulation 285 • Flight Simulator 285 • Robotics Suite 291 • Reservoir Simulation 291 • UrbanSim 296 • Traffic Simulation 297 • Stochastic Simulation 302 Permissions Index ________________________ WORLD TECHNOLOGIES Preface Numerical analysis, modeling and simulation are very complex and intricate subjects, which play a crucial role in the visual (2D and 3D) representation of concepts and objects that are otherwise not visible at a phenomenal level. They are used in the fields like systems theory, science education, knowledge visualization and even in philosophy of science. The text presents these difficult subjects in the most comprehensible and easy to understand language. It includes topics, which are important for the holistic understanding of the subject matter. It studies, analyses and upholds the pillars of the subject and its utmost significance in modern times. Coherent flow of topics, student-friendly language and extensive use of examples make this textbook an invaluable source of knowledge. Given below is the chapter wise description of the book: Chapter 1- Numerical analysis is a topic in mathematics that concerns itself with the study of algorithms. Numerical analysis has applications in all fields of engineering; recently it has been adopted by life sciences also. This chapter will provide an integrated understanding of numerical analysis. Chapter 2- The process of re-creating the operations of the processes that occur in the real world over time is referred to as simulation. Simulation can only take place when the model it is imitating has already been fully developed. This section on simulation offers an insightful focus, keeping in mind the subject matter. Chapter 3- Mathematical modeling is the description of systems that uses mathematical concepts. The process of developing this model is known as mathematical modeling. The major elements of mathematical modeling are governing equations, constitutive equations, constraints, kinematics equations etc. The major components are discussed in this section. Chapter 4- Approximation theory concerns itself with how functions can be valued with simpler functions. The other theorems explained in this section are Stone-Weierstrass theorem, Fejér’s theorem, Bernstein’s theorem and Favard’s theorem. The chapter strategically encompasses and incorporated the theorems used in approximation theory, providing a complete understanding. Chapter 5- The methods and techniques of numerical analysis are series acceleration, minimum polynomial extrapolation, Richardson extrapolation, Shanks transformation and interpolation. Series acceleration improves the rate of convergence of a series. It is also used to obtain a variety of identities on special functions. The aspects elucidated in this chapter are of vital importance, and provides a better understanding of numerical analysis. Chapter 6- Numerical integration is a broad family that involves algorithms for calculation. The calculation is done for calculating the numerical value of a definite integral. The aspects of numerical analysis explained in this section are Monte Carlo method, Monte Carlo integration, mathematical optimization, optimization problem, singular value decomposition etc. The topics discussed in the section are of great importance to broaden the existing knowledge on numerical analysis. ________________________ WORLD TECHNOLOGIES VIII Preface Chapter 7- This chapter lists the numerical analysis softwares; some of these softwares are TK Solver, LAPACK, DataMelt, Analytica and GNU Octave. TK Solver is a mathematical modeling software that is based on declarative and rule-based language. Analytica is a software that is developed by Lumia decision systems for creating and analyzing quantitative decision models. The section serves as a source to understand all the numerical analysis softwares. Chapter 8- Simulation has numerous applications; some of these applications are flight simulators, robotics suites, reservoir simulations, UrbanSim and traffic simulation. Flight simulators are devices that artificially re-creates aircraft flight and along with this also re-creates the environment in which it flies. This is used for pilot training. This chapter helps the readers in understanding the applications of simulation in today’s time. At the end, I would like to thank all those who dedicated their time and efforts for the successful completion of this book. I also wish to convey my gratitude towards my friends and family who supported me at every step. Editor ________________________ WORLD TECHNOLOGIES 1 Introduction to Numerical Analysis Numerical analysis is a topic in mathematics that concerns itself with the study of algorithms. Numerical analysis has applications in all fields of engineering; recently it has been adopted by life sciences also. This chapter will provide an integrated understanding of numerical analysis. Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). Babylonian clay tablet YBC 7289 (c. 1800–1600 BC) with annotations. The approximation of the square root of 2 is four sexagesimal figures, which is about six decimal figures. 1 + 24/60 + 51/602 + 10/603 = 1.41421296... One of the earliest mathematical writings is a Babylonian tablet from the Yale Babylonian Col- lection (YBC 7289), which gives a sexagesimal numerical approximation of 2 , the length of the diagonal in a unit square. Being able to compute the sides of a triangle (and hence, being able to compute square roots) is extremely important, for instance, in astronomy, carpentry and construc- tiotn. Numerical analysis continues this long tradition of practical mathematical calculations. Much like the Babylonian approximation of 2, modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in
Recommended publications
  • Sagemath and Sagemathcloud
    Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community.
    [Show full text]
  • America's Number One Fishfinding Brand
    AMERICA’S NUMBER ONE FISHFINDING BRAND. Elite Ti2 12 *Number 1 claim based on more professional anglers using Lowrance than all other brands combined. NOW AVAILABLE ON WWW.LOWRANCE.COM TURNS OUT, FISH REALLY DO GROW ON TREES. UNLOCK EVEN MORE INCREDIBLE DETAIL WITH NEW MEGA IMAGING+™ Those aren’t leaves. They’re crappie—plain as day—thanks to the clarity of MEGA Imaging®. Using this high-frequency sonar, you can easily see fish and structure to find productive water more quickly. And with new MEGA Imaging+™, there’s absolutely no place Now search areas up to 200 ft below and left to hide, thanks to extended range and depth, plus 20% more to either side of your boat. Available on select SOLIX® detail than MEGA Imaging. Visit Humminbird.com to learn more. and HELIX® Series models. © 2019 Johnson Outdoors Marine Electronics, Inc. All Rights Reserved. MEGA-FY YOUR NEXT MINN KOTA® MOTOR WITH BUILT-IN MEGA DOWN IMAGING®. With a transducer built right into the motor, you get crystal clear Humminbird® MEGA Down Imaging® and a clean, protected look. So put a bird in your motor – and more fish on your line. minnkotamotors.com/MEGA ©2019 Johnson Outdoors Marine Electronics, Inc. THE BEST LINE FOR any CONDITIONS NEW Super8Slick V2 is now re-engineered to the next level of toughness. With a new eight-end dense weave construction coated with PowerPro’s Enhanced Body Technology (EBT) process, it now delivers all of the smooth, silent benefits of original Super8Slick, plus providing added slickness for longer casts and added abrasion toughness to rip through the heaviest cover.
    [Show full text]
  • MIDACO on MINLP Space Applications
    MIDACO on MINLP Space Applications Martin Schlueter Division of Large Scale Computing Systems, Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan [email protected] Sven O. Erb European Space Agency (ESA), ESTEC (TEC-ECM), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands [email protected] Matthias Gerdts Institut fuer Mathematik und Rechneranwendung, Universit¨atder Bundeswehr, M¨unchen,D-85577 Neubiberg/M¨unchen,Germany [email protected] Stephen Kemble Astrium Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, United Kingdom [email protected] Jan-J. R¨uckmann School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom [email protected] November 15, 2012 Abstract A numerical study on two challenging MINLP space applications and their optimization with MIDACO, which is a recently developed general purpose optimization software, is pre- sented. The applications are in particular the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using mul- tiple gravity assists. Additionally an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is furthermore discussed and solved. In order to enhance the opti- mization performance of MIDACO a hybridization technique, coupling MIDACO with a SQP algorithm, is presented for two of the three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solutions) in a reasonable time by the here considered approach. As the concept of MINLP is still a novelty in the field of (aero)space engineering, the here demonstrated capabilities are seen as promising.
    [Show full text]
  • Data Warehouse: an Integrated Decision Support Database Whose Content Is Derived from the Various Operational Databases
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATABASE MANAGEMENT Topic Objective: At the end of this topic student will be able to: Understand the Contrasting basic concepts Understand the Database Server and Database Specified Understand the USER Clause Definition/Overview: Data: Stored representations of objects and events that have meaning and importance in the users environment. Information: Data that have been processed in such a way that they can increase the knowledge of the person who uses it. Metadata: Data that describes the properties or characteristics of end-user data and the context of that data. Database application: An application program (or set of related programs) that is used to perform a series of database activities (create, read, update, and delete) on behalf of database users. WWW.BSSVE.IN Data warehouse: An integrated decision support database whose content is derived from the various operational databases. Constraint: A rule that cannot be violated by database users. Database: An organized collection of logically related data. Entity: A person, place, object, event, or concept in the user environment about which the organization wishes to maintain data. Database management system: A software system that is used to create, maintain, and provide controlled access to user databases. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Data dependence; data independence: With data dependence, data descriptions are included with the application programs that use the data, while with data independence the data descriptions are separated from the application programs. Data warehouse; data mining: A data warehouse is an integrated decision support database, while data mining (described in the topic introduction) is the process of extracting useful information from databases.
    [Show full text]
  • A Comparison of Six Numerical Software Packages for Educational Use in the Chemical Engineering Curriculum
    SESSION 2520 A COMPARISON OF SIX NUMERICAL SOFTWARE PACKAGES FOR EDUCATIONAL USE IN THE CHEMICAL ENGINEERING CURRICULUM Mordechai Shacham Department of Chemical Engineering Ben-Gurion University of the Negev P. O. Box 653 Beer Sheva 84105, Israel Tel: (972) 7-6461481 Fax: (972) 7-6472916 E-mail: [email protected] Michael B. Cutlip Department of Chemical Engineering University of Connecticut Box U-222 Storrs, CT 06269-3222 Tel: (860)486-0321 Fax: (860)486-2959 E-mail: [email protected] INTRODUCTION Until the early 1980’s, computer use in Chemical Engineering Education involved mainly FORTRAN and less frequently CSMP programming. A typical com- puter assignment in that era would require the student to carry out the following tasks: 1.) Derive the model equations for the problem at hand, 2.) Find an appropri- ate numerical method to solve the model (mostly NLE’s or ODE’s), 3.) Write and debug a FORTRAN program to solve the problem using the selected numerical algo- rithm, and 4.) Analyze the results for validity and precision. It was soon recognized that the second and third tasks of the solution were minor contributions to the learning of the subject material in most chemical engi- neering courses, but they were actually the most time consuming and frustrating parts of computer assignments. The computer indeed enabled the students to solve realistic problems, but the time spent on technical details which were of minor rele- vance to the subject matter was much too long. In order to solve this difficulty, there was a tendency to provide the students with computer programs that could solve one particular type of a problem.
    [Show full text]
  • Rapid Research with Computer Algebra Systems
    doi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations.
    [Show full text]
  • Running Sagemath (With Or Without Installation)
    Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb.
    [Show full text]
  • Fenics-Shells Release 2018.1.0
    FEniCS-Shells Release 2018.1.0 Aug 02, 2021 Contents 1 Subpackages 1 2 Module contents 13 3 Documented demos 15 4 FEniCS-Shells 61 Bibliography 65 Python Module Index 67 Index 69 i ii CHAPTER 1 Subpackages 1.1 fenics_shells.analytical package 1.1.1 Submodules 1.1.2 fenics_shells.analytical.lovadina_clamped module Analytical solution for clamped Reissner-Mindlin plate problem from Lovadina et al. 1.1.3 fenics_shells.analytical.simply_supported module Analytical solution for simply-supported Reissner-Mindlin square plate under a uniform transverse load. 1.1.4 fenics_shells.analytical.vonkarman_heated module Analytical solution for elliptic orthotropic von Karman plate with lenticular thickness subject to a uniform field of inelastic curvatures. fenics_shells.analytical.vonkarman_heated.analytical_solution(Ai, Di, a_rad, b_rad) 1 FEniCS-Shells, Release 2018.1.0 1.1.5 Module contents 1.2 fenics_shells.common package 1.2.1 Submodules 1.2.2 fenics_shells.common.constitutive_models module fenics_shells.common.constitutive_models.psi_M(k, **kwargs) Returns bending moment energy density calculated from the curvature k using: Isotropic case: .. math:: D = frac{E*t^3}{24(1 - nu^2)} W_m(k, ldots) = D*((1 - nu)*tr(k**2) + nu*(tr(k))**2) Parameters • k – Curvature, typically UFL form with shape (2,2) (tensor). • **kwargs – Isotropic case: E: Young’s modulus, Constant or Expression. nu: Poisson’s ratio, Constant or Expression. t: Thickness, Constant or Expression. Returns UFL form of bending stress tensor with shape (2,2) (tensor). fenics_shells.common.constitutive_models.psi_N(e, **kwargs) Returns membrane energy density calculated from e using: Isotropic case: .. math:: B = frac{E*t}{2(1 - nu^2)} N(e, ldots) = B(1 - nu)e + nu mathrm{tr}(e)I Parameters • e – Membrane strain, typically UFL form with shape (2,2) (tensor).
    [Show full text]
  • Session Siptool: the 'Signal and Image Processing Tool'
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@CalPoly Session SIPTool: The ‘Signal and Image Processing Tool’ An Engaging Learning Environment Fred DePiero1 Abstract The ‘Signal and Image Processing Tool’ is a With the SIPTool, students create an integrated system multimedia software environment for demonstrating and that includes their processing routine along with developing Signal & Image Processing techniques. It has image/signal acquisition and display. This integrated system been used at CalPoly for three years. A key feature is is a very different result than the ‘haphazard’ line-by-line extensibility via C/C++ programming. The tool has a processing steps that students may or may not successfully minimal learning curve, making it amenable for weekly stumble through in a MatLab environment, as they follow a student projects. The software distribution includes given example. The SIPTool-based implementation is much multimedia demonstrations ready for classroom or more like a complete, commercial product. laboratory use. SIPTool programming assignments strengthen the skills needed for life-long learning by A variety of learning objectives can be readily requiring students to translate mathematical expressions addressed with the SIPTool including: time/frequency into a standard programming language, to create an relationships, 1-D and 2-D Fourier transforms, convolution, integrated processing system (as opposed to simply using correlation, filtering, difference equations, and pole/zero canned processing routines). relationships [1]. Learning objectives associated with image processing can also be presented, such as: gray scale Index Terms Image Processing, Signal Processing, resolution, pixel resolution, histogram equalization, median Software Development Environment, Multimedia Teaching filtering and frequency-domain filtering [2].
    [Show full text]
  • Efficient Software Tools in the Renewable Energy Domain: Maple and Maplesim
    EnviroInfo 2013: Environmental Informatics and Renewable Energies Copyright 2013 Shaker Verlag, Aachen, ISBN: 978-3-8440-1676-5 Efficient software tools in the renewable energy domain: Maple and MapleSim Ji ří H řebí ček 1, Jaroslav Urbánek 1,2 Abstract There are presented efficient software tools Maple and MapleSim for solving technical problems in the renewable energy domain using mathematics-based modelling. MapleSim represents the simulation environment, which has a graphical interface for interconnecting system components. The system models are then processed by the Maple (symbolic computation system) mathematics engine, and finally the differential-algebraic equations describing the solved systems are simulated numerically to produce and 2-D, 3-D visualise output results. Maple allows users to quickly focus and reliably solve problems with easy access to over 5000 algorithms and functions developed over 30 years of cutting-edge research and development. In the paper there are presented two solved problems in the renewa- ble energy domain, which are freely downloadable from the web of the Canadian company Maplesoft developing above software tools. 1. Introduction The Canadian company Maplesoft 3 has developed simple and friendly used software tools Maple® 4 and MapleSim® 5 which reduce the cost and effort of developing high-fidelity models of power generation and energy storage systems, including gas and steam turbine generator sets; wind, wave, and solar energy sys- tems and batteries. Maple information technology has been trusted as a cutting edge mathematical and technical tool for over 30 years. In that time, millions of users from around the world have used and relied on the power of Maple for their research, testing, analysis, design, teaching, and schoolwork (Gander/Hřebí ček 2004), (Lynch 2009), (Borwein/Skerritt 2011), (Fox 2011), (Hřebí ček et al 2011), (Hřebí ček 2012).
    [Show full text]
  • Fenics-HPC: Automated Predictive High-Performance Finite Element
    FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics Johan Hoffman1, Johan Jansson2, and Niclas Jansson3 1 Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden and BCAM - Basque Center for Applied Mathematics, Bilbao, Spain [email protected] 2 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain and Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden [email protected] 3 RIKEN Advanced Institute for Computational Science, Kobe, Japan [email protected] Abstract. Developing multiphysics finite element methods (FEM) and scalable HPC implementations can be very challenging in terms of soft- ware complexity and performance, even more so with the addition of goal-oriented adaptive mesh refinement. To manage the complexity we in this work present general adaptive stabilized methods with automated implementation in the FEniCS-HPC automated open source software framework. This allows taking the weak form of a partial differential equation (PDE) as input in near-mathematical notation and automati- cally generating the low-level implementation source code and auxiliary equations and quantities necessary for the adaptivity. We demonstrate new optimal strong scaling results for the whole adaptive framework applied to turbulent flow on massively parallel architectures down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend and for assembly down to 500 vertices per core with ca. 20000 cores with the PGAS-based JANPACK backend. As a demonstration of the high impact of the combination of the scalability together with the adaptive methodology allowing prediction of gross quantities in turbulent flow we present an application in aerodynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking workshop with good match to experiments.
    [Show full text]
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]