Progress in Dynamic Simulation of Thermal Power Plants
Total Page:16
File Type:pdf, Size:1020Kb
Progress in Energy and Combustion Science 59 (2016) 79À162 Contents lists available at ScienceDirect Progress in Energy and Combustion Science journal homepage: www.elsevier.com/locate/pecs Progress in dynamic simulation of thermal power plants FalahTagedPD15XX Alobaid*D16XX, NicolasD17XX Mertens,D18XXRalfD19XX Starkloff,D20XXThomasD21XX Lanz,D2XXChristianD23XX Heinze,D24XXBerndD25XX EppleD26XX TechnischeTagedP Universitat€ Darmstadt, Institute for Energy Systems and Technology, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany ARTICLETAGEDP INFO ABSTRACTTAGEDP Article History: While the conventional design of thermal power plants is mainly focused on high process efficiency, market Received 29 March 2016 requirements increasingly target operating flexibility due to the continuing shift towards renewables. Dynamic Accepted 10 November 2016 simulation is a cost-ef0X3DX ficient tool for improving the flexibility of dispatchable power generation in transient Available online xxx operation1X3DXsuch as load changes and start-up procedures. Specific applications include the optimisation of con- trol structures, stress assessment for critical components and plant safety analysis in malfunction cases. This Keywords:TagedP work is2X3DXa comprehensive review of dynamic simulation, its development and application to various thermal Dynamic simulation power plants. The required mathematical models and various components for description the basic process, Thermal power generation Flexibility automation and electrical systems of thermal power plants are explained with the support of practical example fl Transient operation models. The underlying ow models and their fundamental assumptions are discussed, complemented by an Load changes overview of commonly used simulation codes. Relevant studies are summarised and placed in context for dif- Start-up procedures ferent thermal power plant technologies: combined-cycle power, coal-fired power, nuclear power, concen- Flow models trated solar power, geothermal power, municipal waste incineration and thermal desalination. Particular Combined-cycle power attention is given to those studies that include measurement validation in order to analyse the influence of fi Coal- red power model simplifications on simulation results. In conclusion, the study highlights current research efforts and Nuclear power future development potential of dynamic simulation in the field of thermal power generation. Concentrated solar power © 2016 The Authors. Published by Elsevier Ltd. Geothermal power Municipal waste incineration This is an open access article article under the CC BY-NC-ND license Thermal desalination (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction ......................................................................................................................................................... 4 1.1. Flexible power generation ................................................................................................................................ 4 1.2. Structure...................................................................................................................................................... 5 2. Mathematical modelling .......................................................................................................................................... 5 2.1. Overview..................................................................................................................................................... 6 2.2. Thermal hydraulic models ................................................................................................................................ 6 2.2.1. Mixture flowmodel.............................................................................................................................. 7 2.2.2. Two-fluidmodel.................................................................................................................................. 10 2.2.2.1. Four-equation model................................................................................................................ 11 2.2.2.2. Five-equation model ................................................................................................................ 11 2.2.2.3. Six-equation model.................................................................................................................. 11 2.2.2.4. Seven-equation model .............................................................................................................. 14 2.2.3. Solution method .................................................................................................................................. 15 2.2.4. Comparison........................................................................................................................................ 15 2.3. Process components ....................................................................................................................................... 17 2.3.1. Connection point ................................................................................................................................. 17 2.3.2. Thin-walled tube ................................................................................................................................. 17 2.3.2.1. Pipe ..................................................................................................................................... 18 2.3.2.2. Valve.................................................................................................................................... 18 2.3.2.3. Attemperator/desuperheater ...................................................................................................... 19 * Corresponding author:D27XFalahX Alobaid ([email protected]). Tel.: +49 (0) 6151/16 23004; fax: +49 (0) 6151/16 22690.D29XX E-mail address: [email protected] (F. Alobaid), [email protected] (N. Mertens), [email protected] (R. Starkloff), [email protected] (T. Lanz), [email protected] (C. Heinze), [email protected] (B. Epple). http://dx.doi.org/10.1016/j.pecs.2016.11.001 0360-1285/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 80 F. Alobaid et al. / Progress in Energy and Combustion Science 59 (2016) 79À162 2.3.2.4. Heat exchanger ....................................................................................................................... 19 2.3.3. Thick-walled tube ................................................................................................................................ 19 2.3.3.1. Header.................................................................................................................................. 20 2.3.3.2. Drum ................................................................................................................................... 20 2.3.3.3. Separator............................................................................................................................... 21 2.3.3.4. Feedwater storage tank ............................................................................................................. 21 2.3.4. Turbomachines ................................................................................................................................... 21 2.3.4.1. Compressor............................................................................................................................ 22 2.3.4.2. Fan ...................................................................................................................................... 23 2.3.4.3. Blower.................................................................................................................................. 23 2.3.4.4. Pump ................................................................................................................................... 23 2.3.4.5. Steam turbine......................................................................................................................... 23 2.3.4.6. Gas turbine ............................................................................................................................ 24 2.3.5. Additional components ......................................................................................................................... 24 2.3.5.1. Combustion chamber ............................................................................................................... 25 2.3.5.2. Fluidized bed.......................................................................................................................... 25 2.3.5.3. Fuel cell ................................................................................................................................ 25 2.3.5.4. Weather................................................................................................................................ 25 2.3.5.5. Mill...................................................................................................................................... 26 2.3.5.6. Flue gas control....................................................................................................................... 26 2.3.6. Examples ..........................................................................................................................................