Introduction to Data Modeling

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Data Modeling Chapter 2 Introduction to Data Modeling Objectives: to understand • Data modeling reduces complexities of database • Data modeling and why data models are design important • Designers, programmers, and end users see data • The basic data-modeling building blocks in different ways • What business rules are and how they influence • Different views of same data lead to designs that database design do not reflect organization’s operation • How the major data models evolved historically • Various degrees of data abstraction help • How data models can be classified by level of reconcile varying views of same data abstraction CS275 Fall 2010 1 CS275 Fall 2010 2 Data Modeling and Data Models The Importance of Data Models • Model: an abstraction of a real-world object or • Facilitate interaction among the designer, the event applications programmer, and the end user – Useful in understanding complexities of the real- • End users have different views and needs for data world environment • Data model organizes data for various users • Data models • Data model is a conceptual model - an abstraction – Relatively simple representations of complex real- • It’s a graphical collection of logical constructs world data structures representing the data structure and relationships • Often graphical within the database. • Creating a Data model is iterative and progressive – Cannot draw required data out of the data model – An implementation model would represent how the data are represented in the database. CS275 Fall 2010 3 CS275 Fall 2010 4 1 Data Model Basic Building Blocks Business Rules Terminology • Entity : anything about which data are to be • Descriptions of policies or principles within an collected and stored organization • Attribute : a characteristic of an entity • Description of operations or procedures, to • Relationship : describes an association among create/enforce actions within an organization’s entities environment – One-to-many (1:M) relationship – Must be in writing and kept up to date – Many-to-many (M:N or M:M) relationship – Must be easy to understand and widely disseminated – Sometimes externally defined, i.e. government – One-to-one (1:1) relationship regulations. • Constraint : a restriction placed on the data • These describe characteristics of data as viewed by the company CS275 Fall 2010 5 CS275 Fall 2010 6 Discovering Business Rules Importance of Business Rules • Sources of business rules: • Standardize company’s view of data – Company managers • Useful as a communications tool between users – Policy makers and designers – Department managers • Allows the designer to – Written documentation – understand the nature, role, and scope of data • Procedures – understand business processes • Standards – develop appropriate relationship participation • Operations manuals rules and constraints – Direct interviews with end users • Promotes the creation of an accurate data model • Always verify sources of information CS275 Fall 2010 7 CS275 Fall 2010 8 2 Translating Business Rules into Data Naming Conventions Model Components • Naming occurs during translation of business • Generally, nouns translate into entities rules to data model components • Verbs translate into relationships among entities • Names should make the object unique and • Relationships are bidirectional distinguishable from other objects • Two questions to identify the relationship type: • Names should also be descriptive of objects in the – How many instances of B are related to one environment and be familiar to users instance of A? • Proper naming: – How many instances of A are related to one – Facilitates communication between parties instance of B? – Promotes self-documentation CS275 Fall 2010 9 CS275 Fall 2010 10 Evolution of Data The Hierarchical Model Implementation Models • Hierarchical • The hierarchical model was developed in the 1960s – Logically represented by an upside down tree to manage large amounts of data for manufacturing • Each parent can have many children projects • Each child has only one parent • Basic logical structure is represented by an upside- down “tree” • Network • Hierarchical structure contains levels or segments • Relational – Segment analogous to a record type • Object oriented – Set of one-to-many relationships between segments • Hybrid, XML • Example – manufacturing a car from components (a,b,or c), each made of subassemblies (1,2,or3), each having parts (x,y,&z) ....(tree structure) CS275 Fall 2010 11 CS275 Fall 2010 12 3 Hierarchical Structure Hierarchical Structure • Each parent can have many children • Each child has only one parent • Tree is defined by path that traces parent segments to child segments, beginning from the left • Hierarchical path – Ordered sequencing of segments tracing hierarchical structure • Preorder traversal or hierarchic sequence – “Left-list” path CS275 Fall 2010 13 CS275 Fall 2010 14 The Hierarchical Model The Hierarchical Model • GUAM (Generalized Update Access Method) • Advantages • Disadvantages – Based on the recognition that the many smaller – Conceptual simplicity – Complex parts would come together as components of still implementation larger components – Database security – Data independence – Difficult to manage • Information Management System (IMS) – Database integrity – Lacks structural – World’s leading mainframe hierarchical database – Efficiency independence system in the 1970s and early 1980s – Complex applications • TCDMS/ADABAS – jointly developed by IBM and programming and use Lane County – Implementation limitations – Lack of standards CS275 Fall 2010 15 CS275 Fall 2010 16 4 The Network Model The Network Model • The network model was created to represent • Collection of records in 1:M relationships complex data relationships more effectively than • A Set is a relationship and composed of two the hierarchical model record types: – Improves database performance – Owner: Equialent to the hierarchical model’s – Imposes a database standard parent – Represent complex data relationships more – Member: Equivalent to the hierarchical model’s effectively – such as child w/ multiple parents child • Conference on Data Systems Languages (CODASYL) • American National Standards Institute (ANSI) • Database Task Group (DBTG) CS275 Fall 2010 17 CS275 Fall 2010 18 The Network Model Components The Network Model • Concepts still used today: • Advantages: • Disadvantages of the – Schema: Conceptual organization of entire – Conformance to network model: database as viewed by the database administrator standards – System complexity – Subschema : Database portion “seen” by the – Handled more – Lack of ad hoc query application programs relationship types capability placed – Data management language (DML): Defines the – Data access flexibility burden on environment in which data can be managed programmers to – Data definition language (DDL): Enables the generate code for reports administrator to define the schema components – Structural change in the database could produce havoc in all CS275 Fall 2010 19 CS275 Fall 2010 application programs 20 5 The Relational Model Relational Table • Developed by E.F. Codd (IBM) in 1970 • A Relational table is a purely logical structure • Relational models were considered impractical in – How data are physically stored in the database is the 1970’s. of no concern to the user or the designer. • Model was conceptually simple at expense of • Stores a collection of related entities computer overhead – Resembles a file • Relational table is purely logical structure • Table (relations) – How data are physically stored in the database is – Matrix consisting of a series of row/column of no concern to the user or the designer intersections – This concept is the source of a real database – Each row in a relation is called a tuple revolution – Related to each other by sharing a common entity characteristic CS275 Fall 2010 21 CS275 Fall 2010 22 The Relational Model Components • Relational data management system (RDBMS) – Performs same functions provided by hierarchical model, but hides complexity from the user • Relational schema/diagram – Visual representation of relational database’s entities, attributes within those entities, and relationships between those entities • Relational diagram – Representation of entities, attributes, and relationships • Relational table stores collection of related entities. CS275 Fall 2010 23 CS275 Fall 2010 6 The Relational DBMS Application The Relational Implementation Model • SQL-based relational database application • Advantages • Disadvantages involves three parts: – Structural – Substantial hardware – User interface independence and system software overhead • Allows end user to interact with the data – Improved conceptual simplicity – Can facilitate poor – Set of tables stored in the database – Easier database design, design and • Each table is independent from another implementation, implementation • Rows in different tables are related based on management, and use – May promote “islands common values in common attributes – Ad hoc query of information” problems – SQL “engine” capability (SQL) – Powerful database • Executes all queries management system CS275 Fall 2010 25 CS275 Fall 2010 26 Logical/Conceptual Model The Entity Relationship Model The Entity Relationship Model • Widely accepted standard for data modeling • Entity instance (or occurrence) is row in table • Introduced by Chen in 1976 • Entity set is collection of like entities • Graphical representation of entities and their • Connectivity labels types of relationships
Recommended publications
  • Data Warehouse: an Integrated Decision Support Database Whose Content Is Derived from the Various Operational Databases
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATABASE MANAGEMENT Topic Objective: At the end of this topic student will be able to: Understand the Contrasting basic concepts Understand the Database Server and Database Specified Understand the USER Clause Definition/Overview: Data: Stored representations of objects and events that have meaning and importance in the users environment. Information: Data that have been processed in such a way that they can increase the knowledge of the person who uses it. Metadata: Data that describes the properties or characteristics of end-user data and the context of that data. Database application: An application program (or set of related programs) that is used to perform a series of database activities (create, read, update, and delete) on behalf of database users. WWW.BSSVE.IN Data warehouse: An integrated decision support database whose content is derived from the various operational databases. Constraint: A rule that cannot be violated by database users. Database: An organized collection of logically related data. Entity: A person, place, object, event, or concept in the user environment about which the organization wishes to maintain data. Database management system: A software system that is used to create, maintain, and provide controlled access to user databases. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Data dependence; data independence: With data dependence, data descriptions are included with the application programs that use the data, while with data independence the data descriptions are separated from the application programs. Data warehouse; data mining: A data warehouse is an integrated decision support database, while data mining (described in the topic introduction) is the process of extracting useful information from databases.
    [Show full text]
  • Multiple-Aspect Analysis of Semantic Trajectories
    Konstantinos Tserpes Chiara Renso Stan Matwin (Eds.) Multiple-Aspect Analysis LNAI 11889 of Semantic Trajectories First International Workshop, MASTER 2019 Held in Conjunction with ECML-PKDD 2019 Würzburg, Germany, September 16, 2019 Proceedings Lecture Notes in Artificial Intelligence 11889 Subseries of Lecture Notes in Computer Science Series Editors Randy Goebel University of Alberta, Edmonton, Canada Yuzuru Tanaka Hokkaido University, Sapporo, Japan Wolfgang Wahlster DFKI and Saarland University, Saarbrücken, Germany Founding Editor Jörg Siekmann DFKI and Saarland University, Saarbrücken, Germany More information about this series at http://www.springer.com/series/1244 Konstantinos Tserpes • Chiara Renso • Stan Matwin (Eds.) Multiple-Aspect Analysis of Semantic Trajectories First International Workshop, MASTER 2019 Held in Conjunction with ECML-PKDD 2019 Würzburg, Germany, September 16, 2019 Proceedings Editors Konstantinos Tserpes Chiara Renso Harokopio University ISTI-CNR Athens, Greece Pisa, Italy Stan Matwin Dalhousie University Halifax, NS, Canada ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Artificial Intelligence ISBN 978-3-030-38080-9 ISBN 978-3-030-38081-6 (eBook) https://doi.org/10.1007/978-3-030-38081-6 LNCS Sublibrary: SL7 – Artificial Intelligence © The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Powerdesigner 16.6 Data Modeling
    SAP® PowerDesigner® Document Version: 16.6 – 2016-02-22 Data Modeling Content 1 Building Data Models ...........................................................8 1.1 Getting Started with Data Modeling...................................................8 Conceptual Data Models........................................................8 Logical Data Models...........................................................9 Physical Data Models..........................................................9 Creating a Data Model.........................................................10 Customizing your Modeling Environment........................................... 15 1.2 Conceptual and Logical Diagrams...................................................26 Supported CDM/LDM Notations.................................................27 Conceptual Diagrams.........................................................31 Logical Diagrams............................................................43 Data Items (CDM)............................................................47 Entities (CDM/LDM)..........................................................49 Attributes (CDM/LDM)........................................................55 Identifiers (CDM/LDM)........................................................58 Relationships (CDM/LDM)..................................................... 59 Associations and Association Links (CDM)..........................................70 Inheritances (CDM/LDM)......................................................77 1.3 Physical Diagrams..............................................................82
    [Show full text]
  • Arcgis Marine Data Model Reference
    ArcGIS Marine Data Model Reference ArcGIS Marine Data Model (June 2003) This document provides an Dawn J. Wright, Oregon State U. overview of the ArcGIS Marine Patrick N. Halpin, Duke U. Data Model. This model focuses on Michael Blongewicz, DHI important features of the ocean realm, both natural and manmade, Steve Grisé, ESRI Redlands with a view towards the many Joe Breman, ESRI Redlands applications of marine GIS data. ArcGIS Data Models TABLE OF CONTENTS Acknowledgements ................................................................................................................... 4 Introduction ............................................................................................................................... 5 Why a Marine Data Model?.................................................................................................... 6 Intended Audience and Scope of the Model............................................................................ 8 The Process of Building a Data Model ..................................................................................... 10 Final Data Model Content, Purpose and Use........................................................................ 14 Data Model Description ........................................................................................................... 16 Overview ............................................................................................................................. 16 Conceptual Framework....................................................................................................
    [Show full text]
  • Conceptual Modelling and Humanities
    Joint Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers Modellierung 2020: Short Papers 13 Conceptual Modelling and Humanities Yannic Ole Kropp,1 Bernhard Thalheim2 Abstract: Humanities are becoming a hyping field of intensive research for computer researchers. It seems that conceptual models may be the basis for development of appropriate solutions of digitalisation problems in social sciences. At the same time, humanities and social sciences can fertilise conceptual modelling. The notion of conceptual models becomes enriched. The approaches to modelling in social sciences thus result in a deeper understanding of modelling. The main aim of this paper is to learn from social sciences for conceptual modelling and to fertilise the field of conceptual modelling. 1 The Value of Conceptual Modelling 1.1 Computer science is IT system-oriented Computer system development is a complex process and needs abstraction, separation of concerns, approaches for handling complexity and mature support for communication within development teams. Models are one of the main artefacts for abstraction and complexity reduction. Computer science uses more than 50 different kinds of modelling languages and modelling approaches. Models have thus been a means for system construction for a long time. Models are widely used as an universal instrument whenever humans are involved and an understanding of computer properties is essential. They are enhanced by commonly accepted concepts and thus become conceptual models. The main deployment scenario for models and conceptual models is still system construction (with description, prescription, and coding sub-scenarios) although other scenarios became popular, e.g. documentation, communication, negotiation, conceptualisation, and learning. 1.2 Learning from Digital Hunanities Digital humanities is becoming a hyping buzzword nowadays due to digitalisation and due to over-applying computer technology.
    [Show full text]
  • Data Model Standards and Guidelines, Registration Policies And
    Data Model Standards and Guidelines, Registration Policies and Procedures Version 3.2 ● 6/02/2017 Data Model Standards and Guidelines, Registration Policies and Procedures Document Version Control Document Version Control VERSION D ATE AUTHOR DESCRIPTION DRAFT 03/28/07 Venkatesh Kadadasu Baseline Draft Document 0.1 05/04/2007 Venkatesh Kadadasu Sections 1.1, 1.2, 1.3, 1.4 revised 0.2 05/07/2007 Venkatesh Kadadasu Sections 1.4, 2.0, 2.2, 2.2.1, 3.1, 3.2, 3.2.1, 3.2.2 revised 0.3 05/24/07 Venkatesh Kadadasu Incorporated feedback from Uli 0.4 5/31/2007 Venkatesh Kadadasu Incorporated Steve’s feedback: Section 1.5 Issues -Change Decide to Decision Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. (This was discussed previously.) Data Standardization - We have discussed on several occasions the cross-walk table between tabular naming standards and XML. When did it get dropped? Section 2.3.2 Conceptual data model level of detail: changed (S) No foreign key attributes may be entered in the conceptual data model. To (S) No attributes may be entered in the conceptual data model. 0.5 6/4/2007 Steve Horn Move last paragraph of Section 2.0 to section 2.1.4 Data Standardization Added definitions of key terms 0.6 6/5/2007 Ulrike Nasshan Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document.
    [Show full text]
  • Integration Definition for Function Modeling (IDEF0)
    NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance,
    [Show full text]
  • Conceptual Model Evaluation. Towards More Paradigmatic Rigor Jan Recker1
    Conceptual Model Evaluation. Towards more Paradigmatic Rigor Jan Recker1 1 Centre for Information Technology Innovation Queensland University of Technology 126 Margaret Street, Brisbane QLD 4000, Australia [email protected] Abstract. Information Systems (IS) research has so far been primarily con- cerned with the development of new modeling languages, techniques, and methods. Also, evaluation approaches have been developed in order to assess the appropriateness of a modeling approach in a given context. Both modeling and evaluation approaches, however, lack epistemological rigor, leading to problems regarding the applicability of a certain modeling language in a given context on the one hand, and regarding the feasibility of certain evaluation ap- proaches towards certain modeling questions on the other hand. We therefore argue for a philosophical-paradigmatic discussion of evaluation methods for conceptual modeling languages in order to assess their applicability in given modeling contexts and present our research in progress towards a framework for paradigmatic discussion on model evaluation. Keywords. Philosophy, modeling methods, information modeling, research evaluation 1 Introduction The importance of information systems (IS) for successful businesses is widely rec- ognized [1]. Their implementation is preceded by their development through design methodologies which utilize information models to specify IS on a conceptual level. Such conceptual models have been successfully employed throughout IS theory and practice. This has led, however, to the proliferation of an enormous amount of avail- able modeling approaches. The “flooding” of the IS discipline with a multiplicity of conceptual modeling approaches consequently leads to an immanent need for com- paring and evaluating existing modeling methods in order to determine which ap- proach is most appropriate for a given modeling task.
    [Show full text]
  • Graph Databases – Are They Really So New
    International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016 GRAPH DATABASES – ARE THEY REALLY SO NEW 1MIRKO MALEKOVIC, 2KORNELIJE RABUZIN, 3MARTINA SESTAK 1,2,3Faculty of Organization and Informatics Varaždin, University of Zagreb, Croatia E-mail: [email protected], [email protected], [email protected] Abstract- Even though relational databases have been (and still are) the most widely used database solutions for many years, there were other database solutions in use before the era of relational databases. One of those solutions were network databases with the underlying network model, whose characteristics will be presented in detail in this paper. The network model will be compared to the graph data model used by graph databases, the relatively new category of NoSQL databases with a growing share in the database market. The similarities and differences will be shown through the implementation of a simple database using network and graph data model. Keywords- Network data model, graph data model, nodes, relationships, records, sets. I. INTRODUCTION ● Hierarchical databases This type of databases is based on the hierarchical The relational databases were introduced by E. G. data model, whose structure can be represented as a Codd in his research papers in 1970s. In those papers layered tree in which one data table represents the he discussed relational model as the underlying data root of that tree (top layer), and the others represent model for the relational databases, which was based tree branches (nodes) emerging from the root of the on relational algebra and first-order predicate logic.
    [Show full text]
  • Metamodeling and Method Engineering with Conceptbase”
    This is a pre-print of the book chapter M. Jeusfeld: “Metamodeling and method engineering with ConceptBase” . In Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for Method Engineering, pp. 89-168. The MIT Press., 2009; the original book is available from MIT Press http://mitpress.mit.edu/node/192290 This pre-print may only be used for scholar, non-commercial purposes. Most of the sources for the examples in this chapter are available via http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3782591 for download. They require ConceptBase 7.0 or later available from http://conceptbase.cc. Metamodeling and Method Engineering with ConceptBase Manfred Jeusfeld Abstract. This chapter provides a practical guide on how to use the meta data repository ConceptBase to design information modeling methods by using meta- modeling. After motivating the abstraction principles behind meta-modeling, the language Telos as realized in ConceptBase is presented. First, a standard factual representation of statements at any IRDS abstraction level is defined. Then, the foundation of Telos as a logical theory is elaborated yielding simple fixpoint semantics. The principles for object naming, instantiation, attribution, and specialization are reflected by roughly 30 logical axioms. After the language axiomatization, user-defined rules, constraints and queries are introduced. The first part is concluded by a description of active rules that allows the specification of reactions of ConceptBase to external events. The second part applies the language features of the first part to a full-fledged information modeling method: The Yourdan method for Modern Structured Analysis. The notations of the Yourdan method are designed along the IRDS framework.
    [Show full text]
  • A Model-To-Model Transformation of a Generic Relational Database Schema Into a Form Type Data Model
    Proceedings of the Federated Conference on Computer Science DOI: 10.15439/2016F408 and Information Systems pp. 1577–1580 ACSIS, Vol. 8. ISSN 2300-5963 A Model-to-Model Transformation of a Generic Relational Database Schema into a Form Type Data Model Sonja Ristić, Slavica Kordić, Milan Čeliković, Vladimir Dimitrieski, Ivan Luković University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi Sad, Serbia Email: {sdristic, slavica, milancel, dimitrieski, ivan}@uns.ac.rs ฀ engineering and review different database meta-models Abstract—An important phase of a data-oriented software (MM) that are used in the database reengineering process system reengineering is a database reengineering process and, applied in IIS*Studio. In [5] we propose an MD approach to in particular, its subprocess – a database reverse engineering data structure conceptualization phase of database reverse process. In this paper we present one of the model-to-model engineering process that is conducted through a chain of transformations from a chain of transformations aimed at transformation of a generic relational database schema into a M2M transformations. In this paper we present the final step form type data model. The transformation is a step of the data of the conceptualization phasethe M2M transformation of structure conceptualization phase of a model-driven database a generic relational database schema into a form type model. reverse engineering process that is implemented in IIS*Studio The form type concept and the IIS*Studio architecture are development environment. given in Section 2. Classifications of form types and relation schemes are described in Section 3. The transformation of a I.
    [Show full text]
  • Chapter 2: Database System Concepts and Architecture Define
    Chapter 2: Database System Concepts and Architecture define: data model - set of concepts that can be used to describe the structure of a database data types, relationships and constraints set of basic operations - retrievals and updates specify behavior - set of valid user-defined operations categories: high-level (conceptual data model) - provides concepts the way a user perceives data - entity - real world object or concept to be represented in db - attribute - some property of the entity - relationship - represents and interaction among entities representational (implementation data model) - hide some details of how data is stored, but can be implemented directly - record-based models like relational are representational low-level (physical data model) - provides details of how data is stored - record formats - record orderings - access path (for efficient search) schemas and instances: database schema - description of the data (meta-data) defined at design time each object in schema is a schema construct EX: look at TOY example - top notation represents schema schema constructs: cust ID; order #; etc. database state - the data in the database at any particular time - also called set of instances an instance of data is filled when database is populated/updated EX: cust name is a schema construct; George Grant is an instance of cust name difference between schema and state - at design time, schema is defined and state is the empty state - state changes each time data is inserted or updated, schema remains the same Three-schema architecture
    [Show full text]