Enamel Microstructure in Eocene Cetaceans from Antarctica (Archaeoceti and Mysticeti)

Total Page:16

File Type:pdf, Size:1020Kb

Enamel Microstructure in Eocene Cetaceans from Antarctica (Archaeoceti and Mysticeti) Journal of Mammalian Evolution https://doi.org/10.1007/s10914-018-09456-3 ORIGINAL PAPER Enamel Microstructure in Eocene Cetaceans from Antarctica (Archaeoceti and Mysticeti) Carolina Loch1 & Monica R. Buono2 & Daniela C. Kalthoff3 & Thomas Mörs4 & Marta S. Fernández5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Modern baleen whales have no adult teeth, whereas dolphins and porpoises have a homodont and polydont dentition, with simplified enamel microstructure. However, archaic cetaceans (archaeocetes and early mysticetes and odontocetes) had a com- plex and ornamented dentition, with complex enamel microstructure as in terrestrial mammals. This study describes the mor- phology of teeth and enamel microstructure in two fossil cetaceans from Antarctica: a basilosaurid archaeocete from the La Meseta Formation (middle Eocene); and Llanocetus sp. from the Submeseta Formation (late Eocene), one of the oldest mysticetes known. The two teeth analyzed were lower premolars, with transversely compressed triangular crowns composed of a main cusp and accessory denticles. The enamel microstructure of the basilosaurid and Llanocetus sp. is prismatic with Hunter-Schreger bands (HSB) and an outer zone of radial enamel. In the basilosaurid, the enamel is relatively thin and measures 150–180 μm, whereas in Llanocetus sp. it is considerably thicker, measuring 830–890 μm in the cusp area and 350–380 μm near the crown base. This is one of the thickest enamel layers among cetaceans, extinct and living. Structures resembling enamel tufts and lamellae were observed in both fossils at the enamel-dentine junction (EDJ) and extending along the thickness of the enamel layer, respectively. The presence of HSB and biomechanical reinforcing structures such as tufts and lamellae suggests prominent occlusal loads during feeding, consistent with raptorial feeding habits. Despite the simplification or absence of teeth in modern cetaceans, their ancestors had complex posterior teeth typical of most mammals, with a moderately thick enamel layer with prominent HSB. Keywords Archaeocetes . Hunter-Schreger bands . La Meseta formation . Mysticetes . Teeth Abbreviations PLEX Prismless enamel EDJ Enamel-dentine junction RE Radial enamel HSB Hunter-Schreger bands SEM Scanning electron microscopy IPM Interprismatic matrix OES Outer enamel surface Introduction * Carolina Loch [email protected] The evolutionary history of cetaceans - whales, dolphins, and porpoises - started with the rise of Archaeoceti, a paraphyletic 1 Sir John Walsh Research Institute, Faculty of Dentistry, University of group of stem cetaceans, in the ancient Tethys seaway during Otago, Dunedin 9054, New Zealand the early Eocene more than 50 million years ago (Bajpai and 2 Instituto Patagónico de Geología y Paleontología, CONICET, Gingerich 1998). The earliest archaeocetes - pakicetids, U9120ACD Puerto Madryn, Chubut, Argentina ambulocetids, remingtonocetids - were amphibious species 3 Department of Zoology, Swedish Museum of Natural History, from Eocene sediments of fluvial, brackish, and fully marine SE-104 05 Stockholm, Sweden origin (Thewissen et al. 2001;Marxetal.2016b). By the late 4 Department of Paleobiology, Swedish Museum of Natural History, Eocene (35–36 Ma), pelagic archaeocetes (Basilosauridae) SE-104 05 Stockholm, Sweden were widespread across the world’s oceans and gave rise to 5 Facultad de Ciencias Naturales y Museo, Universidad Nacional de La modern cetaceans (Neoceti: Odontoceti and Mysticeti) Plata, CONICET, La Plata, 1900 Buenos Aires, Argentina (Fordyce and Muizon 2001;Uhen2008;Fordyce2009). J Mammal Evol Archaeocetes had elongated rostra with a heterodont den- species (Bergqvist 2003;Ungar2010). Of particular impor- tition that was diphyodont. Although the anterior teeth were tance is the microstructure of enamel, the highly mineralized conical, with high crowns separated by prominent diastemata, cover of tooth crowns made of hydroxyapatite crystals the posterior teeth had lower crowns, were more-heavily built, (Koenigswald 1997). The pattern of organization of hydroxy- and often had multiple denticles on the mesial and distal keels apatite crystals into prisms, and the 3-dimensional organiza- (Uhen 2000, 2009). Archaeocetes had a maximum of 13 teeth tion of enamel prisms, is influenced by biomechanical/ per quadrant. Based on the morphology of the feeding appa- functional adaptation and phylogeny (Koenigswald 1997). ratus and teeth, it has been suggest that most archaeocetes Previous investigations have described details of the enamel were capable of shearing and snapping prey items (O’Leary organization in Eocene basal archaeocetes from India and and Uhen 1999; Fahlke et al. 2013). Pakistan (Maas and Thewissen 1995; Sahni and Modern mysticetes have no functional teeth, although rudi- Koenigswald 1997), Eocene and Oligocene archaeocetes and mentary teeth are produced during embryonic development odontocetes from the Southern Hemisphere (Fostowicz-Frelik (Karlsen 1962). Instead, keratinized baleen plates of epithelial 2003; Loch et al. 2015), and living odontocetes (Ishiyama origin are present in the maxillae of baleen whales, which are 1987;Lochetal.2013). So far, details on the enamel micro- used to filter marine organisms such as copepods, crustaceans, structure and its relationship with inferred feeding habits of andfish(Karlsen1962;Werth2001). Archaic mysticetes, how- early radiating toothed mysticetes are unknown. This could ever, were heterodont (e.g., Llanocetidae, Mammalodontidae, shed light on the evolution of feeding strategies in mysticetes, and Aetiocetidae) (Uhen 2009). The cheek teeth of archaic from raptorial to filter feeding (e.g., Deméré et al. 2008;Marx mysticetes were usually separated by wide diastemata, had et al. 2016a;Peredoetal.2017). prominent denticles, and were covered by ornamented enamel This study aims to describe the microstructural arrange- (Uhen 2009). The teeth of the late Eocene mysticete Llanocetus ment of the enamel layer in two Eocene whales from denticrenatus had a peculiar and distinctive morphology. The Antarctica, an undetermined basilosaurid and the toothed anterior teeth were conical and pointed, whereas the posterior mysticete Llanocetus sp. We discuss the functional and bio- cheek teeth had a palmate crown, composed of a main cusp and mechanical implications of the enamel organization in these widely-spaced denticles anteroposteriorly splayed out in the early clades, and also the potential phylogenetic signals of the dorsal surface of the crown (Mitchell 1989;Fordyceand enamel characters observed. Marx 2018). The analysis of tooth morphology and key cranial and mandibular characters suggests that toothed mysticetes employed a variety of feeding strategies prior to the origin of Materials and Methods the baleen-assisted filter feeding. These were suction feeding (e.g., mammalodontids; Fitzgerald 2010) and suction-assisted Materials Analyzed raptorial feeding (e.g., llanocetids and aetiocetids; Marx et al. 2015; Fordyce and Marx 2018). Teeth of Eocene Pelagiceti (Basilosauridae + Neoceti, sensu Teeth make up a prominent part of the fossil record of Uhen 2008) from Marambio (=Seymour) Island, Antarctic mammals due to the high mineral content of enamel and den- Peninsula, were analyzed. The sample consisted of a fragment tine (Bergqvist 2003). The study of the morphology and mi- of the crown of a p2 tooth (in situ) of a Basilosauridae indet. crostructure of mammalian teeth can elucidate the feeding (MLP 11-II-21-3; Buono et al. 2016), and a fragment of an ecology, functional morphology, and phylogenetic relation- isolated premolar cheek tooth (lower left p3; MLP 12-XI-1- ships of fossil and recent mammal species, shedding light on 10b) of a toothed Mysticeti, Llanocetus sp. (Table 1). MLP 11- the paleobiology of extinct and otherwise poorly known II-21-3 was collected from La Meseta Formation (Cucullaea I Table 1 Specimens analysed in this study Species Collection number Tooth type Geographic location and stratigraphic provenance Basilosauridae indet. MLP 11-II-21-3 Premolar (p2) Marambio (=Seymour) Island, Antarctic Peninsula; (DVP 2/84; 64°13′ 53.58” S; 56°39′ 13.74” W); La Meseta Formation (Cucullaea I Allomember middle Eocene; Lutetian–Bartonian) Llanocetus sp. MLP 12-XI-1-10 Premolar (p3) Marambio (=Seymour) Island, Antarctic Peninsula; (DVP 13/84; 64°14′ 37” S; 56°36′ 01” O); Submeseta Formation (TELM 7; Late Eocene; Priabonian) JMammalEvol Allomember; middle Eocene) and MLP 12-XI-1-10b was col- Japan) operating at 5 kV and 10 μA. The JEOL JSM-6700F lected from Submeseta Formation (Submeseta II SEM is housed at the Otago OCEM, University of Otago, Allomember; late Eocene) (Table 1). Both specimens were New Zealand. Magnifications in the SEM ranged from 25X made available for destructive sampling from the Museo de to 2500X. MLP 11-II-21-3 was also studied using a Hitachi La Plata (MLP) fossil collections (La Plata, Argentina). S-4300 SEM operating at 15 kV and 10 μA and at magni- fications from 200 to × 2,000x. The SEM is located at the Methods Swedish Museum of Natural History in Stockholm (NRM). Preparation followed the proceedures described in Kalthoff Sample Preparation and Microscopy Due to the rarity of the (2006). material and the destructive nature of the preparation methods, representative tooth fragments were used for anal- Data availability All data for this study are included in the ysis. Fragments were surface-cleaned with ethanol and em- publication or available upon reasonable
Recommended publications
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(S): Richard C
    A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(s): Richard C. Hulbert, Jr., Richard M. Petkewich, Gale A. Bishop, David Bukry and David P. Aleshire Source: Journal of Paleontology , Sep., 1998, Vol. 72, No. 5 (Sep., 1998), pp. 907-927 Published by: Paleontological Society Stable URL: https://www.jstor.org/stable/1306667 REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1306667?seq=1&cid=pdf- reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms SEPM Society for Sedimentary Geology and are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology This content downloaded from 131.204.154.192 on Thu, 08 Apr 2021 18:43:05 UTC All use subject to https://about.jstor.org/terms J. Paleont., 72(5), 1998, pp. 907-927 Copyright ? 1998, The Paleontological Society 0022-3360/98/0072-0907$03.00 A NEW MIDDLE EOCENE PROTOCETID WHALE (MAMMALIA: CETACEA: ARCHAEOCETI) AND ASSOCIATED BIOTA FROM GEORGIA RICHARD C. HULBERT, JR.,1 RICHARD M. PETKEWICH,"4 GALE A.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • Whale Evolution: a Whale of a Tale
    Creation Research Society Quarterly 2012. 49:122–134. 122 Creation Research Society Quarterly Whale Evolution: A Whale of a Tale Jerry Bergman* Abstract review of the evolution of whales from terrestrial land animals finds A that the evidence used to support the current theory is either wrong or very questionable. A focus is on the hip bone and fetal teeth evidence because they are commonly used as proof for the land mammal-to-whale evolution theory. The putative fossil evidence for whale evolution from terrestrial animals is also evaluated, concluding that the examples used are likely all extinct mammals and not transitional forms. Introduction be only about 20 feet long, but baleen A major problem has been deter- The term “whale” is a common noun and blue whales can grow up to 100 feet mining which terrestrial animal whales that can refer to all marine mammals long. Toothed whales are, on average, evolved from. Charles Darwin proposed called cetaceans (members of order smaller then baleen whales, ranging one of the first theories of whale evolu- cetacea), including dolphins and por- from 3 to 32 feet long, although most tion, suggesting they evolved from bears. poises. In this paper the term “whales” are from 10 to 30 feet long. Blue whales He wrote, “I can see no difficulty in a excludes both dolphins and porpoises. can weigh up to 150 tons. race of bears being rendered, by natural Classification of whales divides them selection, more and more aquatic in into two groups; toothed whales and their structure and habits, with larger baleen whales, the latter of which use The Origin of Whales and larger mouths, till a creature was large brush-like structures to filter food The evolution of whales is one of the produced as monstrous as a whale” from the ocean.
    [Show full text]
  • Currently Zygorhiza Kochii; Mammalia, Cetacea): Proposed Replacement of the Holotype by a Neotype
    Case 3611Basilosaurus kochii Reichenbach, 1847 (currently Zygorhiza kochii; Mammalia, Cetacea): proposed replacement of the holotype by a neotype Author: Uhen, Mark D. Source: The Bulletin of Zoological Nomenclature, 70(2) : 103-107 Published By: International Commission on Zoological Nomenclature URL: https://doi.org/10.21805/bzn.v70i2.a14 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-Bulletin-of-Zoological-Nomenclature on 08 Apr 2021 Terms of Use: https://bioone.org/terms-of-use Access provided by Auburn University Bulletin of Zoological Nomenclature 70(2) June 2013 103 Case 3611 Basilosaurus kochii Reichenbach, 1847 (currently Zygorhiza kochii; Mammalia, Cetacea): proposed replacement of the holotype by a neotype Mark D. Uhen Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, MS 5F2, Fairfax, VA 22030, U.S.A. (e-mail: [email protected]) Abstract.
    [Show full text]
  • Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
    RESEARCH ARTICLE Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure Alexandra Houssaye1,2*, Paul Tafforeau3, Christian de Muizon4, Philip D. Gingerich5 1 UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, Paris, France, 2 Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Bonn, Germany, 3 European Synchrotron Radiation Facility, Grenoble, France, 4 Sorbonne Universités, CR2P—CNRS, MNHN, UPMC-Paris 6, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, Paris, France, 5 Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America a11111 * [email protected] Abstract Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during OPEN ACCESS the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees Citation: Houssaye A, Tafforeau P, de Muizon C, of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. Gingerich PD (2015) Transition of Eocene Whales The lifestyle of early cetaceans is investigated by analysis of microanatomical features in from Land to Sea: Evidence from Bone postcranial elements of archaeocetes. We document the internal structure of long bones, Microstructure. PLoS ONE 10(2): e0118409. ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete doi:10.1371/journal.pone.0118409 families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomogra- Academic Editor: Brian Lee Beatty, New York phy and virtual thin-sectioning. This enables us to discuss the osseous specializations ob- Institute of Technology College of Osteopathic Medicine, UNITED STATES served in these taxa and to comment on their possible swimming behavior.
    [Show full text]
  • Vestibular Evidence for the Evolution of Aquatic Behaviour in Early
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows letters to nature .............................................................. cetacean evolution, leading to full independence from life on land. Vestibular evidence for the Early cetacean evolution, marked by the emergence of obligate evolution of aquatic behaviour aquatic behaviour, represents one of the major morphological shifts in the radiation of mammals. Modifications to the postcranial in early cetaceans skeleton during this process are increasingly well-documented3–9. Pakicetids, early Eocene basal cetaceans, were terrestrial quadrupeds 9 F. Spoor*, S. Bajpai†, S. T. Hussain‡, K. Kumar§ & J. G. M. Thewissenk with a long neck and cursorial limb morphology . By the late middle Eocene, obligate aquatic dorudontids approached modern ceta- * Department of Anatomy & Developmental Biology, University College London, ceans in body form, having a tail fluke, a strongly shortened neck, Rockefeller Building, University Street, London WC1E 6JJ, UK and near-absent hindlimbs10. Taxa which represent bridging nodes † Department of Earth Sciences, Indian Institute of Technology, Roorkee 247 667, on the cladogram show intermediate morphologies, which have India been inferred to correspond with otter-like swimming combined ‡ Department of Anatomy, College of Medicine, Howard University, with varying degrees of terrestrial capability4–8,11. Our knowledge of Washington DC 20059, USA § Wadia Institute of Himalayan Geology, Dehradun 248 001, India the behavioural changes that crucially must have driven the post- k Department of Anatomy, Northeastern Ohio Universities College of Medicine, cranial adaptations is based on functional analysis of the affected Rootstown, Ohio 44272, USA morphology itself. This approach is marred by the difficulty of ............................................................................................................................................................................
    [Show full text]
  • The Walking Whales
    The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press The Walking Whales The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. University of California Press Oakland, California © 2014 by The Regents of the University of California Library of Congress Cataloging-in-Publication Data Thewissen, J. G. M., author. The walking whales : from land to water in eight million years / J.G.M. Thewissen ; with illustrations by Jacqueline Dillard. pages cm Includes bibliographical references and index. isbn 978-0-520-27706-9 (cloth : alk. paper)— isbn 978-0-520-95941-5 (e-book) 1. Whales, Fossil—Pakistan. 2. Whales, Fossil—India. 3. Whales—Evolution. 4. Paleontology—Pakistan. 5. Paleontology—India. I. Title. QE882.C5T484 2015 569′.5—dc23 2014003531 Printed in China 23 22 21 20 19 18 17 16 15 14 10 9 8 7 6 5 4 3 2 1 The paper used in this publication meets the minimum requirements of ansi/niso z39.48–1992 (r 2002) (Permanence of Paper). Cover illustration (clockwise from top right): Basilosaurus, Ambulocetus, Indohyus, Pakicetus, and Kutchicetus.
    [Show full text]
  • How Many Species of Mammals Are There?
    Journal of Mammalogy, 99(1):1–14, 2018 DOI:10.1093/jmammal/gyx147 INVITED PAPER How many species of mammals are there? CONNOR J. BURGIN,1 JOCELYN P. COLELLA,1 PHILIP L. KAHN, AND NATHAN S. UPHAM* Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA (CJB) Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA (JPC) Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA (PLK) Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA (NSU) Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA (NSU) 1Co-first authors. * Correspondent: [email protected] Accurate taxonomy is central to the study of biological diversity, as it provides the needed evolutionary framework for taxon sampling and interpreting results. While the number of recognized species in the class Mammalia has increased through time, tabulation of those increases has relied on the sporadic release of revisionary compendia like the Mammal Species of the World (MSW) series. Here, we present the Mammal Diversity Database (MDD), a digital, publically accessible, and updateable list of all mammalian species, now available online: https://mammaldiversity.org. The MDD will continue to be updated as manuscripts describing new species and higher taxonomic changes are released. Starting from the baseline of the 3rd edition of MSW (MSW3), we performed a review of taxonomic changes published since 2004 and digitally linked species names to their original descriptions and subsequent revisionary articles in an interactive, hierarchical database. We found 6,495 species of currently recognized mammals (96 recently extinct, 6,399 extant), compared to 5,416 in MSW3 (75 extinct, 5,341 extant)—an increase of 1,079 species in about 13 years, including 11 species newly described as having gone extinct in the last 500 years.
    [Show full text]
  • The Biology of Marine Mammals
    Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al.
    [Show full text]
  • Cetacea: Archaeoceti)
    THE DEPARTMENT OF NATURAL RESOURCES miSSISSippi• • • • geology Bureau of Geology Volume 7, Number 2 2525 North West Street December 1986 • Jackson, Mississippi 39216 FEEDING IN THE ARCHAEOCETE WHALE ZYGORHIZA KOCH/I {CETACEA: ARCHAEOCETI) Kenneth Carpenter 1805 Marine St. # C Boulder, Colorado 80302 David White 729 Chickasaw Drive Jackson, Mississippi 39206 ABSTRACT INTRODUCTION In order to test the various feeding hypotheses Archaeocete whales were the dominant predatory presented for the archaeocete whale, Zygorhiza marine mammals of the Eocene (Barnes, Damning, kochii, the masticatory musculature was restored. and Ray, 1985). Skeletal remains are distributed This restoration indicates that the important muscle globally, indicating just how successful these groups in descending order were Temporatis Group animals were. Their fossil remains are especially - Masseter Group - Pterygofdeus Group. This abundant in upper Eocene sediments and have musculature system is typical of carnivores. Tooth provided a great deal of information about their wear, in conjunction with the restored musculature, systematics, anatomy, and functional morphology suggests Zygorhiza primarily fed on fish, and (e.g. Stromer, 1903, 1908; Kellogg, 1928, 1936; possibly on squids as well. Breathnach, 1955; Edinger, 1955; Fleisher, 1976). Figure 1. Skull of Lophodon carcinophagus, AMNH 2194. The diet of archaeocete whales is frequently Yazoo County, Mississippi. The discovery of this assumed to be fish (e.g. Barnes and Mitchell, 1978), specimen is presented in Dockery (1974), Frazier although no detailed morphological evidence has (1980), and Carpenter and Dockery (1985). The local ever been presented in support of this hypothesis. geology is also presented in Dockery (1974), and a Kellogg (1928) suggested that the long rostrum was photographic record of the mounting of the skeleton used as forceps to catch prey.
    [Show full text]
  • A Brief History of Whale Evolution: As Supported by The
    A Brief History of Whale Evolution As Supported By the Fossil Record BIOB 272 – Genetics and Evolution Presented by Mindy Flanders Presented for Rick Henry December 8, 2017 Cetaceans—whales, dolphins, and porpoises—are so different from other animals that, until recently, scientists were unable to identify their closest relatives. As any elementary student knows, a whale is not a fish. That means that despite the similarities in where they live and how they look, whales are not at all like salmon or even sharks. Carolus Linnaeus, known for classifying plants and animals, noted in the 1750s that “whales breathe air through lungs not gills; are warm blooded; and have many other anatomical differences that distinguish them from fish” (Prothero, 2015). Other characteristics cetaceans share with all other mammals are: they have hair (at some point in their life), they give birth to live young, and they nurse their young with milk. This implies that whales evolved from other mammals and, because ancestral mammals were land animals, that whales had land ancestors (Thewissen & Bajpai, 2001). But before they had land ancestors they had water ancestors. The ancestors of fish lived in water, too. Up until 375 million years ago (mya), everything other than plants and insects lived in water, but it was around that time that fish and land animals began to diverge. A series of fossils represent the fish-to-tetrapod transition that occurred during the Late Devonian Period 359-383 mya (Herron & Freeman, 2014). In search of a new food source, or to escape predators more than twice their size (Prothero, 2015), the first tetrapods pushed themselves out of the swamps and began to live on land (Switek, 2010).
    [Show full text]