Lichang Wang Assistant Professor Department of Chemistry & Biochemistry Carbondale, IL 62901-4409 Phone: 618-453-6476; FAX: 618-453-6408 E-Mail:
[email protected] http://www.science.siu.edu/chemistry/lwang Theoretical and Computational Chemistry — Method Development and Computation of Phenomena at Nanoscales Research Progress August 2006 Page No. Research Perspective .………………………………………........ 2 Research Team …………………………………………………... 3 A. Method Development …….………………………………....... 4 B. Transition Metal Nanoparticles ……………………………….. 8 C. Hydrogen Bonding Network in SAMs ………………..……….. 17 D. Fluorescence Sensors …..………………………………............ 19 Publications and Presentations …...…………………………......... 20 Support ..…….…………………….…………………………........ 24 Progress Report August 2006 Research Perspective Research in Professor Wang’s group at the Department of Chemistry and Biochemistry, Southern Illinois University Carbondale has been centered on the development of theoretical methods and computation of thermodynamics, dynamics, and kinetics of chemical processes that take place in materials science and biological systems. On the research of method development, our interests focus on developing advanced theories for dynamics simulations that are used to deal with large and complex systems. Particular efforts include finding methods to better describe dynamics of large systems with significant quantum effects and constructing potential energy surfaces (PESs) to describe accurately the interactions among atoms. During the past five years, we have been developing methods to provide a measurement on the accuracy of the mixed quantum/classical dynamics theory in the calculation of critical properties, such as reaction probabilities, for large systems that have a strong quantum character but a full quantum treatment is not feasible. We are also in the process of developing and implementing a Nuclear Density Functional Theory (NDFT) to treat the dynamics of large systems full quantum mechanically.