How Chemistry Teachers, Using History of Chemistry, Could Teach Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
References Title: in Search of El Dorado: John Dalton and the Origins of the Atomic Theory. Authors:Rocke, Alan J. Source
References Title: In Search of El Dorado: John Dalton and the Origins of the Atomic Theory. Authors: Rocke, Alan J. Source: Social Research ; Spring2005, Vol. 72 Issue 1, p125-158, 34p Abstract: This article examines how John Dalton formulated his atomic theory of matter. Dalton's work called forth a vigorous international research program that has a continuous history from 1803 t the present-- nanoscience long before the word became vogue. Almost from the start, that research program utterly transformed the science; moreover, it was atomistic theory that enabled chemistry, two generations after Dalton, to become the earliest example of a well-developed science-based theory acquiring the practical power to transform the world of technology and commerce. Dalton knew that water consists of 87.5 oxygen and 12.5 percent hydrogen by weight that is exactly seven times as much as oxygen as hydrogen. If one assumes, with Dalton, that the invisibly small water molecule consists of an atom of hydrogen united to an atom of oxygen, then every oxygen atom must weigh seven times as much as every hydrogen atom, for under these circumstances it is o bvious that the weight ratio of the atoms must match the composition of the compound. In contrast to Dalton, Humphry Davy and Jacob Berzelius assumed (in 1812 and 1814, respectively) that the formula for water was H2O rather than Dalton's HO. ISSN: 0037-783X Accession Number: 16900837 Persistent link to http://proxy.library.upenn.edu:2062/login.aspx?direct=true&db=aph&AN=16900837&site=ehost this record: live Title: Find More Like This J. -
Paracelsus, Helmont, Iatrochemistry, Pharmacology
Basic Sciences of Medicine 2014, 3(3): 60-62 DOI: 10.5923/j.medicine.20140303.03 Paracelsus, the Founder of Chemical Therapeutic Who Initiated the Application of Chemistry to Life Hosein Tajadod Hafiz, an International Journal of Iranian studies, Tehran, Iran Abstract Paracelsus, a German-Swiss physician, alchemist, philosopher, and astrologer who denounced the Galenic system of medicine. The application of chemistry to life was initiated by him. In fact, he stressed the spiritual side of disease but also advocated the use of mineral as drugs, rather than just using plants and animal products. He burned the works of Avicenna, and quarreled with most of his colleagues at Basel and was dismissed in disgrace and resumed his wandering from place to place, teaching chemical therapy (iatrochemistry). Johannes Baptiste van Helmont, Flemish physician was the leading iatrochemist of seventeenth century, but he opposed the dogma of Galen, astrology of Paracelsus and many other established doctrines. Keywords Paracelsus, Helmont, Iatrochemistry, Pharmacology In the Renaissance some Europeans reacted against the 1. Paracelsus, the Creator of anatomy and other medical teachings expounded in medieval Iatrochemistry Islamic text, particularly the “Canon of Medicine” (al-Quanon fil-Tib), written by Avicenna (980-1037), a Iatrochemistry , the study of chemical phenomena in order famous and influential Iranian physician and to obtain results of medical value was founded by Paracelsus. philosopher-scientist. Leonardo da Vinci (1452-1519), Iatrochemists the followers of Paracelsus treated the Italian and the greatest artist and scientist of the Renaissance human body as a chemical system. In iatrochemistry, disease who studied the skeletal movement and muscle structures in was associated with upsets of body chemistry and treatment relation to function, rejected the anatomy, though by was directed toward restoration of the chemical balance. -
Theoretical and Computational Chemistry — Theory/Method/Software Developments and Applications
Lichang Wang Associate Professor Department of Chemistry and Biochemistry Carbondale, IL 62901 Phone: 618-453-6476; FAX: 618-453-6408 E-Mail: [email protected] UT Web: http://www.chem.siu.edu/TUW wang UT Theoretical and Computational Chemistry — Theory/Method/Software Developments and Applications Progress Report No. 2 August 2009 Research Perspective 3 Research Team 5 A. Theory/Method/Software Developments 7 A1. Potential Energy Surface 7 A2. Functional 8 A3. Nuclear Density Functional Theory 8 A4. Advanced Dynamics Simulation 9 B. Transition Metal Clusters and Nanoparticles 11 B1. Structures and Electromagnetic Properties 11 B2. Formation 11 B3. Toxicity 12 C. Fuel Cells 15 C1. Catalysis of Cathode Reaction 15 C2. Catalysis of Hydrogen Production from Natural Gas 16 D. Clean Coal Utilization 17 D1. Catalysis of Hydrogen/Methanol Production from Coal Gasification 17 D2. Catalysis of Petroleum/Liquid-Fuel Production from Direct Coal Liquefaction 17 D3. Solar Cell Materials 17 E. Solar Cells 19 E1. Dye-Sensitized Solar Cells 19 F. Fluorescence Sensors 21 F1. Metal Cation Sensors 21 F2. pH Sensors 21 F3. Organic Molecule Sensors 21 G. MASIS Center 23 G1. Nanoparticle-Enhanced Chiral Recognition of Enantiomers 23 G2. Boron Isotope Separation 23 Publications and Presentations 25 Support 28 Progress Report –August 2009 2 Progress Report –August 2009 Research Perspective Driven by curiosity, passion, and expertise, research in Professor Wang’s group at the Department of Chemistry and Biochemistry, Southern Illinois University Carbondale has been centered on developing theory/method/software and performing Computational Chemistry for studying chemical processes that take place in materials science and biological systems. -
Unit 8 – Alchemy and Chemistry in the Renaissance
Unit 8 – Alchemy and Chemistry in the Renaissance Sapienza University of Rome, Italy This work is licensed under a Creative Commons Attribution - Non-commercial 4.0 International The Roots of Chemistry and alchemy FEW SCIENTIFIC DISCIPLINES DEFINED THE COMPLEXITY OF THE RENAISSANCE AS MUCH AS ALCHEMY, AN AREA WHERE PHILOSOPHY, SCIENCE, OCCULTISM AND THEOLOGY CAME TOGETHER. ALCHEMY, A GENUINE PROTOSCIENCE?, DISPLAYED THE TRANSFORMATION FROM THEORETICAL DOGMA TO THE OBSERVATION AND PRACTICE BASED METHODS THAT GRADUALLY DEVELOPED DURING THIS PERIOD OF THE HISTORY OF SCIENCE This work is licensed under a Creative Commons 2 Attribution - Non-commercial 4.0 International The charm of alchemy The mysterious, occult side of alchemy still captures the imagination of the modern public, with Harry Potter chasing the elusive Philosopher’s Stone and names such as John Dee spawning thousands of occult sites studying the esoteric symbolism behind alchemical symbols Most of the modern interpretations have a basis in historical fact, and writers such as Chaucer, Ben Jonson, and Dante gleefully included alchemists as shady charlatans and figures of parody This work is licensed under a Creative Commons 3 Attribution - Non-commercial 4.0 International The reinaissance alchemist However, this comedic touch should not detract from the idea that Renaissance alchemists were often bona fide scientists, searching for truth and often applying the scientific method to their research In fact, it can be argued that, in terms of the development of science, the alchemists -
Chemoinformatics As a Theoretical Chemistry Discipline
10/26/2016 Chemoinformatics as a theoretical chemistry discipline Alexandre Varnek University of Strasbourg BigChem lecture, 26 October 2016 Chemoinformatics: a new discipline … Chemoinformatics is the mixing of those information resources to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization” Frank Brown, 1998 2 1 10/26/2016 Chemoinformatics: definition Chemoinformatics is a generic term that encompasses the design, creation, organization, management, retrieval, analysis, dissemination, visualization, and use of chemical information G. Paris, 1998 Chemoinformatics is the mixing of those information resources to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization” F.K. Brown, 1998 Chemoinformatics is the application of informatics methods to solve chemical problems J. Gasteiger, 2004 Chemoinformatics is a field based on the representation of molecules as objects (graphs or vectors) in a chemical space A. Varnek & I. Baskin, 2011 Chemoinformatics: new disciline combining several „old“ fields • Chemical databases Michael Lynch Peter Willett • Structure‐Activity modeling (QSAR) Corwin Hansch Johann Gasteiger • Structure‐based drug design Irwin D. Kuntz Hans‐Joachim Böhm • Computer‐aided synthesis design Elias Corey Ivar Ugi 4 2 10/26/2016 Selected books in chemoinformatics Chemoinformatics: -
User:Smallman12q/Articles/Chemistry 1 User:Smallman12q/Articles/Chemistry
User:Smallman12q/articles/Chemistry 1 User:Smallman12q/articles/Chemistry Chemistry (from Egyptian kēme (chem), meaning "earth"[1] ) is the science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions.[2] It is a physical science for studies of various atoms, molecules, crystals and other aggregates of matter whether in isolation or combination, which incorporates the concepts of energy and entropy in relation to the spontaneity of chemical processes. Modern chemistry evolved out of alchemy following the chemical revolution (1773). Disciplines within chemistry are traditionally grouped by the type of matter being studied or the kind of study. These include inorganic chemistry, the study of inorganic matter; organic chemistry, the study Chemistry is the science concerned with the composition, structure, and properties of matter, of organic matter; biochemistry, the study of substances found in as well as the changes it undergoes during biological organisms; physical chemistry, the energy related studies of chemical reactions. chemical systems at macro, molecular and submolecular scales; analytical chemistry, the analysis of material samples to gain an understanding of their chemical composition and structure. Many more specialized disciplines have emerged in recent years, e.g. neurochemistry the chemical study of the nervous system (see subdisciplines). Summary Chemistry is the scientific study of interaction of chemical [3] substances that are constituted of -
Drug Discovery
DRUG DISCOVERY Edited by Hany A. El-Shemy Drug Discovery http://dx.doi.org/10.5772/3388 Edited by Hany A. El-Shemy Contributors Melanie A. Jordan, Lourdes Rodriguez-Fragoso, Irina Piatkov, Elizabeth Hong-Geller, Sonia Lobo-Planey, Pawel Kafarski, Gluza Karolina, Malemud, Jolanta Natalia Latosińska, Magdalena Latosińska, Terry Smith, Luis Jesús Villarreal- Gómez, Irma E. Soria-Mercado, Ana Leticia Iglesias, Graciela Lizeth Perez-Gonzalez, Carsten Wrenger, Eva Liebau, Taosheng Chen, Asli Nur Goktug, Sergio C. Chai, Xin Liang, Jimmy Cui, Jonathan Low, Henning Ulrich, Claudiana Lameu, Gabriel Magoma, Samuel Constant, Christophe Mas, Song Huang, Ludovic Wiszniewski Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. -
AN ILLUSTRATED HISTORY of ALCHEMY and EARLY CHEMISTRY ©2008, 2004, 1978 by David A
AN ILLUSTRATED HISTORY OF ALCHEMY AND EARLY CHEMISTRY ©2008, 2004, 1978 BY David A. Katz. All rights reserved. Permission for classroom and educational use as long as original copyright is included SPLENDOR SOLIS AN ILLUSTRATED HISTORY OF ALCHEMY AND EARLY CHEMISTRY ©2008, 2004, 1978 BY David A. Katz. All rights reserved. Permission for classroom and educational use as long as original copyright is included. David A. Katz Chemist, educator, science communicator, and consultant. 133 N. Desert Stream Dr., Tucson, AZ 85745, U.S.A. Voice: 520-624-2207 Email: [email protected] I. Prehistoric Times To tell the story of chemistry, it is best to start in prehistoric times with primitive humans. In his quest for survival, and endowed with a natural curiosity, primitive man learned much about his environment. He was aware of physical properties of substances such as color, shape or form, hardness, taste, weight, density in the form of relative weight, and odor. And he was most probably aware of natural physical changes such as water to ice (and vice versa), lava to rock, certain rocks to dust, etc. It is also safe to assume that primitive man, although he had no knowledge of chemistry, was aware of chemical change in the forms of decaying organic matter, natural production of ozone from lightning (by noting the odor of the ozone), wood burning into charcoal and ash, etc. But primitive man was by no means any sort of scientist and he made no logical or organized study of natural phenomena. The information he gathered about the world was passed from generation to generation by memory, demonstration, or by observation without explanation or any understanding of the true reasons for these phenomena. -
Acronyms Used in Theoretical Chemistry
Pure & Appl. Chem., Vol. 68, No. 2, pp. 387-456, 1996. Printed in Great Britain. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION WORKING PARTY ON THEORETICAL AND COMPUTATIONAL CHEMISTRY ACRONYMS USED IN THEORETICAL CHEMISTRY Prepared for publication by the Working Party consisting of R. D. BROWN* (Australia, Chiman);J. E. BOWS (USA); R. HILDERBRANDT (USA); K. LIM (Australia); I. M. MILLS (UK); E. NIKITIN (Russia); M. H. PALMER (UK). The focal point to which to send comments and suggestions is the coordinator of the project: RONALD D. BROWN Chemistry Department, Monash University, Clayton, Victoria 3 168, Australia. Responses by e-mail would be particularly appreciated, the number being: rdbrown @ vaxc.cc .monash.edu.au another alternative is fax at: +61 3 9905 4597 Acronyms used in theoretical chemistry synogsis An alphabetic list of acronyms used in theoretical chemistry is presented. Some explanatory references have been added to make acronyms better understandable but still more are needed. Critical comments, additional references, etc. are requested. INTRODUC'IION The IUPAC Working Party on Theoretical Chemistry was persuaded, by discussion with colleagues, that the compilation of a list of acronyms used in theoretical chemistry would be a useful contribution. Initial lists of acronyms drawn up by several members of the working party have been augmented by the provision of a substantial list by Chemical Abstract Service (see footnote below). The working party is particularly grateful to CAS for this generous help. It soon became apparent that many of the acron ms needed more than mere spelling out to make them understandable and so we have added expr anatory references to many of them. -
ACID SPIRITS and ALKALINE SALTS the Iatrochemistry of Franciscus
39 ACID SPIRITS AND ALKALINE SALTS The iatrochemistry ofFranciscus dele Doe, Sylvius. Harm Beukers The second halfofthe seventeenth century is generally considered as the flourishing-time of the Leiden medical faculty. The ideas prevailing there, are more or less illustrated in the seal of 1670, with which the faculty authenticated its documents (fig. 1). Prominent in the picture stands a two-headed woman placed against a background with a radiant sun and a colonnade. The woman, wearing a cuirass, has in her left hand a heart with an eye and in her right hand a burning-lens lighting a fire. The colonnade referred to the ideal of the constantia or, in the words ofthe famous humanist Justus Lipsius, the proper and firm strength ofmind which does not lead to over-boldness or dejection by external or accidental circumstances. Constantia certainly 40 was needed in the turbulent seventeenth-century medicine dominated by the controversies between Galenists and empirically inspired doctors. 1 The core of Galenism was classical natural philosophy handed down in medical texts and reasoned in the scholastic tradition. Its learned adherents considered medicine as a part of knowledge engaged in regulating human life in accordance with universal principles, thus a philosophy of health. The opponents emphasized the study of nature, "God's book of nature", over scholastic learning. They were more interested in natural history than in natural philosophy. They established a refonned medicine based on Vesalian anatomy and Harvey's physiology. The controversy was not just an intellectual discourse, it had also consequences for medical practice. Galenists emphasized the classical diaetetica and the preservation of health. -
Introduction to Pharmacy Technician
Pharmacy Technician Orientation : Introduction to Pharmacy Technician Lesson 1 Overview Pharmacy is defined as the art and science of preparing, compounding, and dispensing drugs. However, the practice of pharmacy has greatly developed from this core function to include various aspects of enhancing health. This lesson will provide a foundation of the early origins and development of the pharmacy profession. You’ll also receive core information on the current, exciting, and promising new roles of pharmacy technicians in healthcare delivery. 1.1 Summarize the history of pharmacy and of technician career development History of Pharmacy READING ASSIGNMENT Early Practice of Medicinal Chemistry A pharmaceutical is related to the preparation, sale, or use of a medicinal drug. In early times, in different parts of the world, a health practitioner or healer wasn’t only a medical doctor, but a pharmacist and sometimes even a priest. These practitioners often combined these roles by preparing and mixing a healing substance, administering it, and then praying for positive outcomes. Copyright Penn Foster, Inc. 2018 Page 1 Course Version: 2 Many of the practices of those times are the foundations of medical and pharmacy practice today. For instance, pharmacognosy is the study of the medical properties of drugs obtained from natural sources such as plants. During the first century CE, Pedanius Dioscorides was an important figure who provided a strong foundation for the development of pharmacy practice. He recorded and developed the rules for the proper collection and storage of drugs. His work was respected and used for many centuries. Another prominent pharmaceutical record originated in ancient Egypt. -
Alchemy and Alchemical Knowledge in Seventeenth-Century New England a Thesis Presented by Frederick Kyle Satterstrom to the Depa
Alchemy and Alchemical Knowledge in Seventeenth-Century New England A thesis presented by Frederick Kyle Satterstrom to The Department of the History of Science in partial fulfillment for an honors degree in Chemistry & Physics and History & Science Harvard University Cambridge, Massachusetts March 2004 Abstract and Keywords Abstract By focusing on Gershom Bulkeley, John Winthrop, Jr., and other practitioners of alchemy in seventeenth-century New England, I argue that the colonies were home to a vibrant community of alchemical practitioners for whom alchemy significantly overlapped with medicine. These learned men drew from a long historical tradition of alchemical thought, both in the form of scholastic matter theory and also their contemporaries’ works. Knowledge of alchemy was transmitted from England to the colonies and back across a complex network of strong and weak personal connections. Alchemical thought pervaded the intellectual landscape of the seventeenth century, and an understanding of New England’s alchemical practitioners and their practices will fill a gap in the current history of alchemy. Keywords Alchemy Gershom Bulkeley Iatrochemistry Knowledge transmission Medicine New England Seventeenth century i Acknowledgements I owe thanks to my advisor Elly Truitt, who is at least as responsible for the existence of this work as I am; to Bill Newman, for taking the time to meet with me while in Cambridge and pointing out Gershom Bulkeley as a possible figure of study; to John Murdoch, for arranging the meeting; to the helpful staff of the Harvard University Archives; to Peter J. Knapp and the kind librarians at Watkinson Library, Trinity College, Hartford, Connecticut; and to the staff of the Hartford Medical Society, for letting me use their manuscript collection and for offering me food.