A Female Caste Specialized for the Production of Unfertilized Eggs in the Ant Crematogaster Smithi

Total Page:16

File Type:pdf, Size:1020Kb

A Female Caste Specialized for the Production of Unfertilized Eggs in the Ant Crematogaster Smithi View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro A Female Caste Specialized for the Production of Unfertilized Eggs in the Ant Crematogaster smithi By: J. Heinze, S. Foitzik, B. Oberstadt, O. Rüppell, and B. Hölldobler Heinze J., Foitzik S., Oberstadt B., Rüppell O. and Hölldobler B. (1999) A female caste specialized for the production of unfertilized eggs in the ant Crematogaster smithi. Naturwissenschaften 86: 93-95. Made available courtesy of Springer Verlag: http://www.springerlink.com/content/100479/?p=c4f5a8b39b78479f914a0d0105f739c8&pi=0 The original publication is available at www.springerlink.com ***Note: Figures may be missing from this format of the document In colonies of the North American ant Crematogaster smithi “large workers” occur which are morphologically intermediate between winged queens and small workers and appear to be specialized for the production of unfertilized eggs. In queenless colonies these eggs may develop into males, but most of them are eaten in colonies containing a queen. We discuss the possible significance of this new type of female. Ant reproduction was once considered to be quite simple and uniform. For example, it is widely thought that a virgin ant queen typically mates with a single male during a nuptial flight, after which she seals herself off in a small cavity in wood or in the soil to start a new colony. In the mature colony she monopolizes egg laying while all other individuals are non-reproductive workers. Recently, however, it has been shown that there are numerous variants of this simple scheme, such as queens’ multiple mating, mating within the nest, multiple fertile queens per nest, male production by workers, thelytoky (production of female offspring from unfertilized eggs), and sexual reproduction by mated workers [1–4]. Here we describe a striking addition to the growing range of ant reproductive strategies: in the myrmicine Crematogaster (Orthocrema) smithi, a distinct female caste exists which appears to be specialized in morphology and behavior for the production of unfertilized eggs. At least in queenless colonies, males are reared from these haploid eggs. C. smithi, also considered to be a subspecies of C. minutissima [5], is currently known only from two mountain ridges, the Huachuca and Chiricahua Mountains in Cochise County of southwestern Arizona in the United States. In summer 1992, 1993, 1997, and 1998 and spring 1996 we excavated a total of 137 colonies of C. smithi from their nests in the soil in a juniper- oak–pinyon forest at an elevation of approx. 2000 m. In 94 colonies a single queen, workers, and brood were present (“queenright colonies”), and in 40 colonies with workers and brood no queen was found. These latter colonies were probably incompletely collected. Three additional nests contained only a single founding queen. The number of workers ranged from 4 to 615 (not all colonies were censused; 82 queen- right colonies: median 165). In addition, almost half of all colonies contained between one and ten “large workers” (47% of 137). Of 94 queen- right colonies (excluding solitary foundresses), 53% contained one or several “large workers.” The median number of “large workers” in 50 censused queenright colonies was two. Queenright colonies containing “large workers” were significantly larger than queenright colonies without “large workers” (Mann-Whitney U test, n1 = 46, n2 = 36, U = 332, P<0.001), and the numbers of small workers and “large workers” per colony were positively correlated (Spearman’s test of rank correlation; all colonies, n =107, rS = 0.510, P < 0.001; only queenright colonies, n=82, rS=0.519, P<0.001; Fig. 1). “Large workers” were intermediate in size, weight, and morphology between queens and small workers (Fig.2). Weber’s alitrunk length in queens was 1.95 ± 0.08 mm (n = 21), in small workers 0.63 ± 0.04 mm (n = 62), and in “large workers” 1.01 ± 0.05 mm (n =17). Small workers weighed 0.72 ± 0.17 mg (n =150; because of the low precision of the scales the weight of small workers was determined in groups of ten), queens 5.3 ± 1.44 mg (n = 3), and “large workers” 2.2 ± 0.37 mg (n = 8). Body size and weight of “large workers” and small workers did not overlap. In contrast to small workers, which lacked ocelli and whose thoracic sclerites were widely fused, “large workers” showed thoracic sutures, traces of ocelli, and occasionally pigmented patches at the site of wings to a varying degree (for further details on morphology and the composition of a smaller sample of colonies see [6]). “Large workers” could therefore also be referred to as “intercastes” (see Peeters [7]; but see [8]). “Large workers” were intermediate between queens and workers also in the anatomy of their ovaries. The ovaries of six dissected queens consisted of a total of 18–24 ovarioles (median 20.5) and a spermatheca, ten dissected small workers invariably had two ovarioles without spermatheca, and the ovaries of ten “large workers” had 6–12 ovarioles (median 10) and lacked a spermatheca. During more than 100 h of direct and video observation (for details see [6]) both small and “large workers” were observed laying eggs in colonies with and without queen. “Large workers” typically produced more eggs in queenless colonies than in the presence of the queen. In isolation, “large workers” from queenless colonies laid between 6 and 20 eggs in 3 days (n = 4; median 13.5). Under similar conditions “large workers” from queenright colonies laid between 0 and 11 eggs (n = 9, median 1; Mann- Whitney U test, U = 3.5, P < 0.05). In groups of 50 small workers each from queenright colonies, kept without queen for 3 days a total of 0–18 eggs were produced (n =11, median 5). Even when corrected for size, “large workers” thus appear to be considerably more efficient egg layers than small workers. Small workers laid on average 0.05 eggs per day and per milligram fresh weight and “large workers” 0.97. While many of the eggs produced by both small and “large workers” were fed to the larvae or eaten by the queen, at least in queenless colonies both types of workers were found capable of producing males. It remains unclear, however, whether worker-laid eggs can develop into males in queenright colonies. Our data do not suggest thelytoky, as has been suggested for another Crematogaster species [9]. As for queens, “large workers” were constantly surrounded and groomed by an entourage of small workers in queenless colonies and to a lesser extent also in queenright colonies. No aggressive interactions between nest- mate queen and “large workers” were observed in laboratory colonies. When we experimentally placed a fertile queen into an alien queenless colony containing a “large worker” and one “large worker” each into two alien queenright colonies, the small workers initially reacted with an alarm response typical for Crematogaster, with the triangular gaster pointing upwards [10, 11] but were later observed to treat the introduced individual amicably. Within a few of days after introduction, the two unrelated reproductives engaged in fighting, which led to one or both of the two individuals at least temporarily emigrating from the nest and finally resulted in the death of the “large workers” in all three replicates. A role of “large workers” in colony defense or as repletes for the storage of fat or liquid food as in other species with polymorphic workers [1, 12–14] could be excluded (for details see [6]). It therefore appears that the major function of “large workers” is to produce large amounts of unfertilized eggs. We believe that this is the first known case of a female caste morphologically and behaviorally specialized for this function in the social Hymenoptera. As long as data are lacking on the maternity of males produced in colonies with both queen and “large workers,” we can only speculate on their ecological significance. From our data we conclude, however, that in queenright colonies they convert perishable food carried in by forag- ers, such as insect prey, into viable eggs, which can be stored over several weeks and may be eaten by the queen or fed to the larvae during periods of prey shortage in the highly seasonal environment of the southwestern United States). Many other species living in xeric habitats rely on the storage of seeds (e.g., Pogonomyrmex, Ephebomyrmex) or liquids (Myrmecocystus) to resist starvation in periods of food shortage [1]. Interestingly, the ovaries were developed in a large percentage of workers of Novomessor cockerelli [15], Ephebomyrmex imberbiculus (35– 68% of all workers in seven colonies; J.H., unpublished), and several Pogonomyrmex species (P. barbatus: 18 of 50 dissected foragers; P. maricopa: 23 of 75 foragers; P. rugosus: 12 of 50 foragers, B.H., unpublished) from desert habitats adjacent to our collecting site. Their eggs are also most probably fed to larvae and nestmates. A highly variable food intake has also been suggested to underlie the evolution of egg eating in other species of social insects [16]. Furthermore, larvae of C. smithi and related species do not feed on solid items other than eggs and only infrequently receive liquid food by trophallaxis from small workers [17]. The presence of a caste specialized for the production of food for larvae or the queen might increase colony growth and the output of sexuals, leading to colonies with “large workers” being larger than colonies without. However, only experimental manipulations of the number of “large workers” per colony would be able to clarify the causes of the apparent correlation between colony size and the number of “large workers” in field- collected colonies.
Recommended publications
  • Hymenoptera: Formicidae)
    SYSTEMATICS Phylogenetic Analysis of Aphaenogaster Supports the Resurrection of Novomessor (Hymenoptera: Formicidae) 1 B. B. DEMARCO AND A. I. COGNATO Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824. Ann. Entomol. Soc. Am. 108(2): 201–210 (2015); DOI: 10.1093/aesa/sau013 ABSTRACT The ant genus Aphaenogaster Mayr is an ecologically diverse group that is common throughout much of North America. Aphaenogaster has a complicated taxonomic history due to variabil- ity of taxonomic characters. Novomessor Emery was previously synonymized with Aphaenogaster, which was justified by the partial mesonotal suture observed in Aphaenogaster ensifera Forel. Previous studies using Bayesian phylogenies with molecular data suggest Aphaenogaster is polyphyletic. Convergent evolution and retention of ancestral similarities are two major factors contributing to nonmonophyly of Aphaenogaster. Based on 42 multistate morphological characters and five genes, we found Novomessor more closely related to Veromessor Forel and that this clade is sister to Aphaenogaster. Our results confirm the validity of Novomessor stat. r. as a separate genus, and it is resurrected based on the combi- nation of new DNA, morphological, behavioral, and ecological data. KEY WORDS Aphaenogaster, Novomessor, phylogenetics, resurrection Introduction phylogenetic analyses resolved Aphaenogaster as polyphyletic, including Messor Forel, 1890 and Sten- The ant genus Aphaenogaster Mayr, 1853 is a speciose amma (Brady et al. 2006, Moreau and Bell 2013). group,whichhasnotbeentaxonomicallyreviewedin Ward (2011) suggested that convergent evolution and over 60 years (Creighton 1950). Aphaenogaster con- retention of ancestral similarities were two major fac- tains 227 worldwide species (Bolton 2006), with 23 tors contributing to polyphyly of Aphaenogaster. valid North American species reduced from 31 original Aphaenogaster taxonomy was further complicated species descriptions.
    [Show full text]
  • Effect of Increased Soil Moisture and Reduced Soil Temperature on a Desert Soil Arthropod Community
    Effect of Increased Soil Moisture and Reduced Soil Temperature on a Desert Soil Arthropod Community WILLIAM P. MACKAY, SOLANGE SILVA, DAVID C. LIGHTFOOT, MARIA INEZ PAGANI and WALTER G. WHITFORD' Department of Biology, Box 3AFJ New Mexico State University, Las Cruces 88003 ABSTRACT: The effects of soil moisture and temperature on arthropod communi- ties were experimentally examined in the northern Chihuahuan Desert of New Mex- ico. Shaded plots were established which lowered the soil temperature several degrees; some plots received artificial rainfall to increase soil moisture. Shading reduced soil temperature at 5-cm depth 7-10 C. Soil moisture at 5 cm accounted for most of the variation in surface activity of subterranean termites (r values between 0.3 and 0.7). Termites did not respond to temperature differences. When all soils were at field capacity, there was no difference in termite activity in shaded and unshaded plots. There were higher densities of mi- croarthropods in litter bags on the shaded plots than on the unshaded plots. Numbers of microarthropods were an order of magnitude larger in litter bags on watered and shaded plots than on other plots. Lower litter temperatures apparently affect litter ar- thropods more than increased soil moisture. Shade had no effect on ant colonies but there were fewer colonies on the watered plots. There was between 40 to 50% mass loss from creosotebush leaf litter after 7 months on all plots. Water and soil temperature had no effect on decomposition rates. INTRODUCTION Temperature extremes and water availability are considered to be the most impor- tant factors limiting production, activity of desert organisms and ecosystem processes in deserts (Noy-Meir, 1973, 1974; Whitford et al., 1981, Whitford et al., 1983).
    [Show full text]
  • Pared with Other Ant Species Indigenous to Texas
    FORAGING AND RECHUITMENT ABILITIES OF SOLENOPSIS INVICTA BOREN, CO*!PARED WITH OTHER ANT SPECIES INDIGENOUS TO TEXAS by STANLEY R. JONES, B.S. A THESIS IN ENTOMOLOGY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved May, 1985 yv C-C^^'^ ACKN0^LEDGE?1ENTS I would like to express my sincere appreciation to Dr. Sherman Phillips, committee chairman, for his guidance and support of this research. To Dr. Bernard Hartaan and Dr. James Wangberg I extend my gratitude for serving as commit­ tee members and for review of this thesis. I ar^ grateful to Dr. a. Willig for his helpful comments and assistance with data analysis, to Dr. Oscar Francke for verification of ant species identification, and to Is. Mary Peek for technical assistance. Finally, I thank James Cok- endolpher for review of preliminary drafts of this thesis. Special recognition is given to my parents for their encouragement and support of my education. To my wife Jo Ann, I express r^y deepest appreciation for her understand­ ing, support, and consideration during my graduate studies. This research was conducted through the facilities and financial resources provided by '^exas Tech University. To this institution I aii indebted. 11 ABSTRACT Since its accidental introduction into "•obile, Alabama, the red imported fire ant, Solenopsis invlcta Buren, has be­ come an economic pest of much of the southern United States. Each year this ant continues to expand its range. Why S. invicta is able to successfully colonize areas previously inhabited by multifarious ant species is not understood.
    [Show full text]
  • Path Integration and Panorama Guided Navigation in the Sonoran Desert Ant, Novomessor Cockerell
    1 Traveling through light clutter: Path integration and panorama guided 2 navigation in the Sonoran Desert ant, Novomessor cockerelli 3 4 Cody A Freas, Nicola JR Plowes, Marcia L Spetch 5 6 Department of Psychology, University of Alberta, Alberta, Canada 7 8 9 10 11 Address for correspondence: 12 Cody A Freas 13 Department of Psychology 14 University of Alberta 15 Edmonton, Alberta T6G 2R3 Canada 16 Email: [email protected] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Abstract 31 Foraging ants use multiple navigational strategies, including path integration and visual 32 panorama cues, which are used simultaneously and weighted based upon context, the 33 environment and the species’ sensory ecology. In particular, the amount of visual clutter in the 34 habitat predicts the weighting given to the forager’s path integrator and surrounding panorama 35 cues. Here, we characterize the individual cue use and cue weighting of the Sonoran Desert ant, 36 Novomessor cockerelli, by testing foragers after local and distant displacement. Foragers attend 37 to both a path-integration-based vector and the surrounding panorama to navigate, on and off 38 foraging routes. When both cues were present, foragers initially oriented to their path integrator 39 alone, yet weighting was dynamic, with foragers abandoning the vector and switching to 40 panorama-based navigation after a few meters. If displaced to unfamiliar locations, experienced 41 foragers travelled almost their full homeward vector (~85%) before the onset of search. Through 42 panorama analysis, we show views acquired on-route provide sufficient information for 43 orientation over only short distances, with rapid parallel decreases in panorama similarity and 44 navigational performance after even small local displacements.
    [Show full text]
  • A Preliminary Investigation of the Arthropod Fauna of Quitobaquito Springs Area, Organ Pipe Cactus National Monument, Arizona
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF ARIZONA 125 Biological Sciences (East) Bldg. 43 Tucson, Arizona 85721 R. Roy Johnson, Unit Leader National Park Senior Research Scientist TECHNICAL REPORT NO. 23 A PRELIMINARY INVESTIGATION OF THE ARTHROPOD FAUNA OF QUITOBAQUITO SPRINGS AREA, ORGAN PIPE CACTUS NATIONAL MONUMENT, ARIZONA KENNETH J. KINGSLEY, RICHARD A. BAILOWITZ, and ROBERT L. SMITH July 1987 NATIONAL PARK SERVICE/UNIVERSITY OF ARIZONA National Park Service Project Funds CONTRIBUTION NUMBER CPSU/UA 057/01 TABLE OF CONTENTS Introduction......................................................................................................................................1 Methods............................................................................................................................................1 Results ............................................................................................................................................2 Discussion......................................................................................................................................20 Literature Cited ..............................................................................................................................22 Acknowledgements........................................................................................................................23 LIST OF TABLES Table 1. Insects Collected at Quitobaquito Springs ...................................................................3
    [Show full text]
  • Colony Founding, Queen Control and Worker Reproduction in the Ant Aphaenogaster (--No Vomessor) Cockerelli (Hymenoptera: Formicidae)
    PSYCHE Vol. 96 1989 No. 3-4 COLONY FOUNDING, QUEEN CONTROL AND WORKER REPRODUCTION IN THE ANT APHAENOGASTER (--NO VOMESSOR) COCKERELLI (HYMENOPTERA: FORMICIDAE) BY BERT HOLLDOBLER AND NORMAN F. CARLIN Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology Laboratories, Harvard University, Cambridge, MA 02138 INTRODUCTION The closely related species Aphaenogaster cockerelli and A. albisetosus are common ants of the southwestern United States and northern Mexico (Creighton 1950, 1955). Originally described as members of Aphaenogaster, until recently these species together with A. manni constituted the genus Novomessor. However, Brown (1974) suggested returning them to Aphaenogaster, which treatment is followed here. The foraging and communication behavior of these ants has been studied intensively by several authors (H611dobler et al. 1976, Whitford 1976, Davidson 1977, H611dobler et al. 1978, Markl and H611dobler 1978). Recently, McDonald and Topoff (1985) and Beshers and Traniello (1987) investigated division of labor in A. albisetosus. In the course of analyzing the communica- tion system of A. cockerellL we made a series of observations con- cerning its social organization which are assembled in the present paper. These include colony foundation and queen number, queen control of oviposition by workers, worker reproduction and tem- 1Present address: Zoological Institute of the University of Wirzburg, R6ntgenring 10, 8700 Wfirzburg, Federal Republic of Germany. Manuscript received by the editor June 10, 1989. 131 132 Psyche [Vol. 96 poral polyethism, and aggression toward ovipositing workers. Some of our findings on A. cockerelli are complementary to those reported for A. albisetosus. METHODS Field studies were conducted during the summer months between 1974 and 1988 in the Chihuahuan desert near Portal, Arizona and Rodeo, New Mexico.
    [Show full text]
  • Cooperative Transport by the Ant Novomessor Cockerelli
    Insect. Soc. DOI 10.1007/s00040-016-0486-y Insectes Sociaux RESEARCH ARTICLE Cooperative transport by the ant Novomessor cockerelli 1 1 A. Buffin • S. C. Pratt Received: 29 November 2015 / Revised: 19 January 2016 / Accepted: 21 January 2016 Ó International Union for the Study of Social Insects (IUSSI) 2016 Abstract While most ant species carry burdens solitarily, for competitor avoidance, in contrast to swarm raiders, a few have evolved impressive skills at cooperative trans- where the special need for efficient prey retrieval has shaped port that are important to their ecological success. We distinctive transport tactics. examined one of these species, Novomessor cockerelli, with the goals of better understanding how transport groups are Keywords Ants Á Collective behaviour Á coordinated and how cooperation influences the efficiency Cooperative transport Á Foraging behaviour Á of load transport. Ants were induced to carry standard Decentralized coordination artificial loads over a smooth horizontal surface, both in groups and as solitary individuals. Porters in groups were non-randomly distributed around the load, with most pull- Introduction ing from the front while walking backward. Porters were more persistent at the leading edge than at the rear, where Cooperative transport is one of the more distinctive col- high rates of leaving and joining were observed. Solitary lective behaviours of ants (Moffett 1988; Czaczkes and porters also pulled the load, but they usually first attempted Ratnieks 2013; McCreery and Breed 2014). Groups can to walk forward and push, until their interactions with the carry food items too large for a single porter, helping unwieldy load rotated them into a pulling position.
    [Show full text]
  • Effects of Three Species of Chihuahuan Desert Ants on Annual Plants and Soil Properties
    ARTICLE IN PRESS Journal of Arid Environments Journal of Arid Environments 72 (2008) 392–400 www.elsevier.com/locate/jaridenv Effects of three species of Chihuahuan Desert ants on annual plants and soil properties W.G. Whitforda, G. Barnessb, Y. Steinbergerb,Ã aUSDA-ARS Jornada Experimental Range, New Mexico State University, P.O. Box 3003, MSC 3JER, Las Cruces, NM 88003, USA bThe Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel Received 20 February 2007; received in revised form 16 July 2007; accepted 23 July 2007 Available online 4 September 2007 Abstract We tested the hypothesis that ant species, which occupy the same nest for a decade or longer, would modify nest soils by increasing soil nutrients and microorganisms resulting in increased biomass, density, cover and species richness of annual plants. We measured soil properties and annual plants on nest soils of three species of Chihuahuan Desert ants (Pogonomyrmex rugosus—seed harvester, Aphaenogaster cockerelli—generalist forager, and Myrmecocystus depilis—liquid collector-insect scavenger) in comparison to paired reference soils at several locations. There were no differences in nest and reference total soil nitrogen of M. depilis and of P. rugosus on three catena soils. Total soil nitrogen of nest-modified soils was higher than of reference soils of A. cockerelli and P. rugosus in a desert grassland site. Soil microbial biomass and respiration were not significantly different among ant species at most locations with the exception of P. rugosus at the base of the catena. Annual plant biomass was higher on M. depilis and A.
    [Show full text]
  • Characteristics of Exotic Ants in North America Supplement 1: Literature Sources for the Dataset, Phylogeny, and Species List
    Wittenborn, Jeschke: Characteristics of exotic ants in North America Supplement 1: Literature sources for the dataset, phylogeny, and species list Akre RD, Hansen LD, Myhre EA (1994) Colony size and polygyny in carpenter ants (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society 67: 1-9. Alloway TM, Buschinger A, Talbot M, Stuart R, Thomas C (1982) Polygyny and polydomy in three North American species of the ant genus Lepthothorax Mayr (Hymenoptera: Formicidae). Psyche 89: 249-274. AntWeb (2009) http://www.antweb.org (last access: August 2009). Astruc C, Malosse C, Errard C (2001) Lack of intraspecific aggression in the ant Tetramorium bicarinatum: a chemical hypothesis. Journal of Chemical Ecology 27: 1229-1248. Astruc C, Julien JF, Errard C, Lenoir A (2004) Phylogeny of ants (Formicidae) based on morphology and DNA sequence data. Molecular Phylogenetics and Evolution 31: 880-893. Baur A, Sanetra M, Chalwatzis N, Buschinger A, Zimmermann FK (1996) Sequence comparisons of the internal transcribed spacer region of ribosomal genes support close relationships between parasitic ants and their respective host species (Hymenoptera: Formicidae). Insectes Sociaux 43: 53-67. Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony size, communication and ant foraging strategy. Psyche 96: 239-256. Beshers SN, Traniello JFA (1996) Polyethism and the adaptiveness of worker size variation in the attine ant Trachymyrmex septentrionalis. Journal of Insect Behavior 9: 61-83. Billick I (2002) The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 132: 244-249. Blacker NC (1992) Some ants (Hymenoptera: Formicidae) from southern Vancouver Island, British Columbia.
    [Show full text]
  • I 9761 Holidobler, Stant On, and Engel-Exocrine Gland 33
    A NEW EXOCRINE GLAND IN NOVOMESSOR (HYMENOPTERA: FORMICIDAE) AND ITS POSSIBLE SIGNIFICANCE AS A TAXONOMIC CHARACTER BY BERTHOLLDOBLER, ROBERT STANTON, AND HILTRUDENGEL Department of Biology, Harvard University, MCZ Laboratories, Cambridge, Mass. 02138 The genus Novomessor is comprised of only three species: N. albisetosus, N. cockerelli and N. manni. The first two species are rather common in the Southwestern United Staes and North- ern Mexico (CREIGHTON1950, 1955), and the latter has been col- lected along the Pacific coast of Mexico (KANNOWSKI1954). The forms of Novomessor were originally described as Aphaeno- gaster, and recently W.L. Brown (1974) suggested that they should be placed back in that genus. He pointed out that "the characters supposed to distinguish the two genera are not very strong when one considers the whole world fauna of this complex". Brown's arguments were especially supported by his reexamination of Novomessor manni Wheeler and Creighton (1934) and Aphaeno- ggster ensifera Fore1 (1899), which he found to be synonymous. He concluded his reasoning by stating ". ..the example of A. ensifera and N. manni may help to alert myrmecologists to the kind of change to be expected of a worldwide reclassification. One of the changes in status resulting from this study is of course the return of cockerelli and albisetosus to their original generic assignment in Aphaenogaster". In the course of a comparative study of communication mecha- nisims in Novomessor, we discovered a new complex exocrine gland. Since this gland is a very distinct character, it should be given con- siderable weight in the future taxonomic assessment of the species possessing it.
    [Show full text]
  • Zootaxa, Hymneoptera, Formicidae
    ZOOTAXA 936 A synoptic review of the ants of California (Hymenoptera: Formicidae) PHILIP S. WARD Magnolia Press Auckland, New Zealand PHILIP S. WARD A synoptic review of the ants of California (Hymenoptera: Formicidae) (Zootaxa 936) 68 pp.; 30 cm. 12 Apr. 2005 ISBN 1-877354-98-8 (paperback) ISBN 1-877354-99-6 (Online edition) FIRST PUBLISHED IN 2005 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2005 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 936: 1–68 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 936 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A synoptic review of the ants of California (Hymenoptera: Formicidae) PHILIP S. WARD Department of Entomology, University of California, Davis, CA 95616, USA; [email protected] TABLE OF CONTENTS ABSTRACT . 4 INTRODUCTION . 5 MATERIALS AND METHODS . 6 GENERAL FEATURES OF THE CALIFORNIA ANT FAUNA . 7 TAXONOMIC CHANGES . 8 Subfamily Dolichoderinae . 9 Genus Forelius Mayr . 9 Subfamily Formicinae . 10 Genus Camponotus Mayr . 10 Genus Lasius Fabricius . 13 Subfamily Myrmicinae . 13 Genus Leptothorax Mayr . 13 Genus Monomorium Mayr .
    [Show full text]
  • A Female Caste Specialized for the Production of Unfertilized Eggs in the Ant Crematogaster Smithi
    A Female Caste Specialized for the Production of Unfertilized Eggs in the Ant Crematogaster smithi By: J. Heinze, S. Foitzik, B. Oberstadt, O. Rüppell, and B. Hölldobler Heinze J., Foitzik S., Oberstadt B., Rüppell O. and Hölldobler B. (1999) A female caste specialized for the production of unfertilized eggs in the ant Crematogaster smithi. Naturwissenschaften 86: 93-95. Made available courtesy of Springer Verlag: http://www.springerlink.com/content/100479/?p=c4f5a8b39b78479f914a0d0105f739c8&pi=0 The original publication is available at www.springerlink.com ***Note: Figures may be missing from this format of the document In colonies of the North American ant Crematogaster smithi “large workers” occur which are morphologically intermediate between winged queens and small workers and appear to be specialized for the production of unfertilized eggs. In queenless colonies these eggs may develop into males, but most of them are eaten in colonies containing a queen. We discuss the possible significance of this new type of female. Ant reproduction was once considered to be quite simple and uniform. For example, it is widely thought that a virgin ant queen typically mates with a single male during a nuptial flight, after which she seals herself off in a small cavity in wood or in the soil to start a new colony. In the mature colony she monopolizes egg laying while all other individuals are non-reproductive workers. Recently, however, it has been shown that there are numerous variants of this simple scheme, such as queens’ multiple mating, mating within the nest, multiple fertile queens per nest, male production by workers, thelytoky (production of female offspring from unfertilized eggs), and sexual reproduction by mated workers [1–4].
    [Show full text]