Invertebrates of Organ Pipe Cactus National Monument, Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrates of Organ Pipe Cactus National Monument, Arizona 1 . Invertebrates of Organ Pipe Cactus National Monument, Arizona Kenneth J. Kingsley Technical Report No. 60 December 1998 U.S. Geological Survey Cooperative Park Studies Unit School of Renewable Natural Resources 125 Biological Sciences East The University of Arizona Tucson, Arizona 85721 National Park Service Organ Pipe Cactus National Monument Route 1, Box 100 Ajo, Arizona 85321 2 Author Monument Resources Management personnel* Kenneth J. Kingsley William Wellman, Superintendent SWCA Inc. Peter G. Rowlands, Chief, Resources Management 343 S. Scott Ave. Jim Petterson, Ecologist Tucson, AZ 85701-1901 Susan Rutman, Ecologist Timothy J. Tibbitts, Wildlife Biologist Unit Personnel Nancy Favour, Geographer William L. Halvorson, Unit Leader Charles W. Conner, Biological Science Technician Cecil R. Schwalbe, Research Ecologist Ami C. Pate, Biological Science Technician Peter S. Bennett, Ecologist Thomas N. Potter, Resource Management Specialist Michael R. Kunzmann, Ecologist Lara Dickson, Biological Science Technician Katherine L. Hiett, Biological Science Technician (520) 387-6849 Gloria J. Maender, Editor Rene M. Tanner, Editorial Assistant Daniel R. Morales, Jr., Editorial Assistant Sandra K. Mosolf, Administrative Assistant Brenda Carbajal, Secretary (520) 670-6885; (520) 621-1174; FTS (520) 670-6885 The Cooperative Park Studies Unit at The University of Arizona (CPSU/UA) was established 16 August 1993 as a unit in the National Park Service (NPS). By action of Secretary of the Interior Bruce Babbitt, the research function of NPS and several other Interior agencies was transferred to a newly created agency, the National Biological Service (NBS), on 12 November 1993. At that time, the CPSU/UA and unit personnel were transferred to the new agency. On 1 October 1996, NBS became the Biological Resources Division of the U.S. Geological Survey. As the nation's largest water, earth, and biological science and civilian mapping agency the USGS works in cooperation with more than 2,000 organizations across the country to provide reliable, impartial, scientific information to resource managers, planners, and other customers. This information is gathered in every state by USGS scientists to minimize the loss of life and property from natural disasters, contribute to sound economic and physical development of the nation's natural resources, and enhance the quality of life by monitoring water, biological, energy, and mineral resources. The CPSU/UA provides a multidisciplinary approach to studies in natural and cultural sciences. The unit conducts and coordinates research that is funded by various agencies. Principal Arizona cooperators include the School of Renewable Natural Resources and the Department of Ecology and Evolutionary Biology of The University of Arizona. The Western Archeological and Conservation Center (NPS) and the School of Renewable Natural Resources (UA) provide administrative assistance. Unit scientists hold faculty of research associate appointments at the university. The Technical Report series allows dissemination of information about high priority resource management questions. The series allows the flexibility of retaining considerable information on study design, methods, results, and applications not afforded in formal scientific publications. Technical reports are given peer review and editing. Documents in this series usually contain information of a preliminary nature and are prepared primarily for use by USGS personnel and cooperators. Mention of trade names or commercial products does not constitute endorsement or use by USGS. Reports in this series are produced in limited quantities. As long as the supply lasts, copies may be obtained from USGS-CPSU/UA, 125 Biological Sciences East, The University of Arizona, Tucson, A7,85721. 3 *This list does not include personnel who contributed to the Ecological Monitoring Program in 1995 but no longer work at Organ Pipe Cactus National Monument: Harold J. Smith (Superintendent), James J. Barnett (Chief, Resources Management), Jonathan F. Arnold (Ecologist), and Dennis Casper (Biological Science Technician). This report was printed on recycled paper. 4 Contents List of Figures..................................................................................................................................v List of Tables ................................................................................................................................. vi Abstract ........................................................................................................................................ vii Acknowledgments ....................................................................................................................... viii Introduction .....................................................................................................................................1 The Sensitive Ecosystems Program (SENECPRO)................................................................1 Products of This Study ...........................................................................................................1 Study Sites .............................................................................................................................2 Aguajita Wash and Spring (AG)................................................................................... 2 Alamo Canyon, South Fork (AL) ..................................................................................3 Arch Canyon (AC) ........................................................................................................3 Armenta Ranch (AR) ....................................................................................................4 Bull Pasture (BP) ..........................................................................................................4 Burn Site (BU) ..............................................................................................................5 Dirt Tank(DT) ...............................................................................................................5 Dos Lomitas Exclosure (DO) ........................................................................................6 Dripping Springs (DR) .................................................................................................6 East of Armenta Ranch (EA) .........................................................................................6 Growler Canyon (GC) ...................................................................................................7 Lost Cabin (LO).............................................................................................................8 Neolloydia(NE) 9 ..........................................................................................................8 Pozo Nuevo(PO) ...........................................................................................................9 Salsola(SA) ...................................................................................................................9 Senita Basin (SE) ..........................................................................................................9 Vulture (VU) ..............................................................................................................10 Weather .......................................................................................................................11 Previous Investigations ................................................................................................11 Methods .........................................................................................................................................16 Results and Discussion ...............................................................................................................21 General Observations ...........................................................................................................21 Taxonomic Accounts ...........................................................................................................41 Order: Acari (Mites and Ticks)....................................................................................43 Order: Araneae (Spiders) ............................................................................................43 Order: Opiliones (Harvestmen) ...................................................................................45 Order: Scorpiones (Scorpions) ....................................................................................45 Order: Solifugae (Windscorpions, Sunspiders, Solpugids). ........................................45 Order: Scolopendomorpha (Tropical Centipedes ........................................................46 iii Order: Isopoda ............................................................................................................46 Order: Concostraca .....................................................................................................46 Order: Spirobolida ......................................................................................................46 Order: Spirostreptida ...................................................................................................47 Order: Coleoptera (Beetles) ........................................................................................47 Order: Dermaptera (Earwigs) .....................................................................................66
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
    The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes.
    [Show full text]
  • 1 U of Ill Urbana-Champaign PEET
    U of Ill Urbana-Champaign PEET: A World Monograph of the Therevidae (Insecta: Diptera) Participant Individuals: CoPrincipal Investigator(s) : David K Yeates; Brian M Wiegmann Senior personnel(s) : Donald Webb; Gail E Kampmeier Post-doc(s) : Kevin C Holston Graduate student(s) : Martin Hauser Post-doc(s) : Mark A Metz Undergraduate student(s) : Amanda Buck; Melissa Calvillo Other -- specify(s) : Kristin Algmin Graduate student(s) : Hilary Hill Post-doc(s) : Shaun L Winterton Technician, programmer(s) : Brian Cassel Other -- specify(s) : Jeffrey Thorne Post-doc(s) : Christine Lambkin Other -- specify(s) : Ann C Rast Senior personnel(s) : Steve Gaimari Other -- specify(s) : Beryl Reid Technician, programmer(s) : Joanna Hamilton Undergraduate student(s) : Claire Montgomery; Heather Lanford High school student(s) : Kate Marlin Undergraduate student(s) : Dmitri Svistula Other -- specify(s) : Bradley Metz; Erica Leslie Technician, programmer(s) : Jacqueline Recsei; J. Marie Metz Other -- specify(s) : Malcolm Fyfe; David Ferguson; Jennifer Campbell; Scott Fernsler Undergraduate student(s) : Sarah Mathey; Rebekah Kunkel; Henry Patton; Emilia Schroer Technician, programmer(s) : Graham Teakle Undergraduate student(s) : David Carlisle; Klara Kim High school student(s) : Sara Sligar Undergraduate student(s) : Emmalyn Gennis Other -- specify(s) : Iris R Vargas; Nicholas P Henry Partner Organizations: Illinois Natural History Survey: Financial Support; Facilities; Collaborative Research Schlinger Foundation: Financial Support; In-kind Support; Collaborative Research 1 The Schlinger Foundation has been a strong and continuing partner of the therevid PEET project, providing funds for personnel (students, scientific illustrator, data loggers, curatorial assistant) and expeditions, including the purchase of supplies, to gather unknown and important taxa from targeted areas around the world.
    [Show full text]
  • Intercepted Silvanidae [Insecta: Coleoptera] from the International Falls, MN [USA] Port-Of-Entry
    The Great Lakes Entomologist Volume 51 Numbers 1 & 2 - Spring/Summer 2018 Numbers Article 2 1 & 2 - Spring/Summer 2018 August 2018 Intercepted Silvanidae [Insecta: Coleoptera] From The International Falls, MN [USA] Port-Of-Entry Gary D. Ouellette United States Department of Agriculture-APHIS-PPQ, [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Ouellette, Gary D. 2018. "Intercepted Silvanidae [Insecta: Coleoptera] From The International Falls, MN [USA] Port-Of-Entry," The Great Lakes Entomologist, vol 51 (1) Available at: https://scholar.valpo.edu/tgle/vol51/iss1/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Ouellette: Intercepted Silvanidae [Insecta: Coleoptera] From The International Falls, MN [USA] Port-Of-Entry 2018 THE GREAT LAKES ENTOMOLOGIST 5 Intercepted Silvanidae (Insecta: Coleoptera) from the International Falls, MN (U.S.A.) Port of Entry Gary D. Ouellette USDA-APHIS-PPQ, 3600 E. Paisano Dr., El Paso, TX 79905. email: [email protected] Abstract Silvanidae species recorded in association with imported commodities, at United States ports-of-entry, have not been comprehensively studied. The present study examines the species of beetles of the family Silvanidae intercepted during agricultural quarantine inspections at the International Falls, MN port-of-entry. A total of 244 beetles representing two subfamilies, three genera, and four species of Silvanidae were collected between June 2016 and June 2017.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Revision of the Genus Acontia Ochsenheimer, 1816 and the Tribus Acontiini Guenée, 1841 (Old World) (Lepidoptera: Noctuidae Acontiinae) by H
    Esperiana Band 15: 359-373 Schwanfeld, 12. Januar 2010 ISBN 978-3-938249-10-9 Revision of the genus Acontia OCHSENHEIMER, 1816 and the tribus Acontiini GUENÉE, 1841 (Old World) (Lepidoptera: Noctuidae Acontiinae) by H. H. HACKER, A. LEGRAIN and M. FIBIGER (Esperiana 14: 7-533) Corrigenda and Supplementa (Plates 57, 64) by Hermann H. HACKER Abstract This paper contains some corrigenda of the Acontia revision, published in 2008, and results of several recent investigations made since the publication of the revision. It includes the description of two new species, Acontia hausmanni spec. nov. (Kenya), Acontia eburnea spec. nov. (Ivory Coast), and the following additional taxonomic changes: Acontia OCHSENHEIMER, 1816 = Hypercalymnia HAMPSON, 1910 syn. nov. tribe Acontiini = Hypercalymniini FIBIGER & LAFONTAINE, 2005 syn. nov. Acontia (Acontia) versicolorata HACKER nom. nov. (pro olivescens HAMPSON, 1910, praeocc.) Acontia (Uracontia) viettei HACKER nom. nov. (pro magnifica VIETTE, 1958, praeocc.) Acontia (Acontia) metaxantha HAMPSON, 1910 comb. nov. Acontia (Acontia) ampijoroa (VIETTE, 1965) comb. nov. Acontia (Acontia) laurenconi (VIETTE, 1965) comb. nov. Acontia (Acontia) malagasy (VIETTE, 1965) comb. nov. Acontia (Acontia) gloriosa (KENRICK, 1917) comb. nov. Acontia (Acontia) transducta (VIETTE, 1958) comb. nov. Acontia (Acontia) splendida (ROTHSCHILD, 1924) comb. nov. Acontia (Acontia) accola (FELDER & ROGENHOFER, 1874) comb. nov. Acontia (Uracontia) magnifica (VIETTE, 1958) comb. nov. Acontia (Uracontia) melaphora (HAMPSON, 1910) comb. nov. 1) Corrigenda p. 214 Acontia (Emmelia) esperiana spec. nov., paratypes omitted: 2 xx, 2 ww, [Burkina Faso] "Obervolta, Bobo Dioulasso, 4.viii.1975, 9.viii.1975, 14.viii.1979, 22.viii.1981 (leg. POLITZAR)” (ZSM); 1 x, [Burkina Faso] "Obervolta, Folonzo am Fluss, Comoe, 7.ix.1985 (leg.
    [Show full text]
  • Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note
    Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note: BMNA = Butterflies and Moths of North America web site MPG = Moth Photographers Group web site Most are from the Essig Museum’s California Moth Specimens Database web site Arctiidae. Tiger and Lichen Moths. Apantesis proxima (Notarctia proxima). Mexican Tiger Moth. 8181 [BMNA] Ectypia clio (clio). Clio Tiger Moth. 8249 Estigmene acrea (acrea). Salt Marsh Moth. 8131 Euchaetes zella. 8232 Autostichidae (Deoclonidae). Oegoconia novimundi. Four-spotted Yellowneck Moth. 1134 (Oegoconia quadripuncta mis-applied) Bucculatricidae. Ribbed Cocoon-maker Moths. Bucculatrix enceliae. Brittlebrush Moth. 0546 Cossidae. Goat Moths, Carpenterworm Moths, and Leopard Moths. Comadia henrici. 2679 Givira mucida. 2660 Hypopta palmata. 2656 Prionoxystus robiniae (mixtus). Carpenterworm or Locust Borer. 2693 Depressariidae. Pseudethmia protuberans. 1008 [MPG] Ethmiidae. Now assigned to Depressariidae. Ethmiinae. Ethmia timberlakei. 0984 Pseudethmia protuberans. 1008 Gelechiidae. Twirler Moths. Aristotelia adceanotha. 1726 [Sighting 1019513 BMNA] Chionodes abdominella. 2054 Chionodes dentella. 2071 Chionodes fructuaria. 2078 Chionodes kincaidella. 2086 (reared from Atriplex acanthocarpa in Texas) Chionodes oecus. 2086.2 Chionodes sistrella. 2116 Chionodes xanthophilella. 2125 Faculta inaequalis. Palo Verde Webworm. 2206 Friseria cockerelli. Mesquite Webworm. 1916 Gelechia desiliens. 1938 Isophrictis sabulella. 1701 Keiferia lycopersicella. Tomato Pinworm. 2047 Pectinophora gossypiella. Pink Bollworm. 2261 Prolita puertella. 1895 Prolita veledae. 1903 Geometridae. Inchworm Moths, Loopers, Geometers, or Measuring Worms. Archirhoe neomexicana. 7295 Chesiadodes coniferaria. 6535 Chlorochlamys appellaria. 7073 Cyclophora nanaria. Dwarf Tawny Wave. W 7140 Dichorda illustraria. 7055 Dichordophora phoenix. Phoenix Emerald. 7057 Digrammia colorata. Creosote Moth. 6381 Digrammia irrorata (rubricata). 6395 Digrammia pictipennata. 6372 Digrammia puertata.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • THE IMMATURE STAGES of Eurymerus Eburioides AUDINET-SERVILLE, 1833 (COLEOPTERA: CERAMBYCIDAE: ECTENESSINI)
    IMMATURE STAGES OF Eurymerus eburioides AUDINET-SERVILLE, 1833 97 THE IMMATURE STAGES OF Eurymerus eburioides AUDINET-SERVILLE, 1833 (COLEOPTERA: CERAMBYCIDAE: ECTENESSINI) MORELLI, E.,1 SANCHEZ, A.2 and BIANCHI, M.2 1Sección Entomología, Facultad de Ciencias, Iguá, 4225, Montevideo 11400, Uruguay 2Protección Forestal, Facultad de Agronomía, Avda. Garzón, 780, Montevideo 12900, Uruguay Correspondence to: Enrique Morelli, Sección Entomología, Facultad de Ciencias, Iguá, 4225, Montevideo 11400, Uruguay, e-mail: [email protected] Received October 28, 2003 – Accepted July 16, 2004 – Distributed February 28, 2005 (With 13 figures) ABSTRACT Last instar larva and pupa of Eurymerus eburioides Audinet-Serville, 1833, are described and illus- trated based on specimens reared from neonate larvae on Eucalyptus globulus globulus logs in the laboratory. Characters of possible diagnostic value are presented in this work. Key words: Coleoptera, Cerambycidae, Eurymerus, larva, pupa. RESUMO Estágios imaturos de Eurymerus eburioides Audinet-serville, 1833 (Coleoptera: Cerambycidae: Ectenessini) Neste trabalho são descritas a larva do último instar e a pupa de Eurymerus eburioides Audinet-Serville, 1833, com base em espécimes criados em laboratório a partir de larvas neonatas de Eucalyptus globulus globulus. Apresentam-se, também, características com possível valor diagnóstico. Palavras-chave: Coleoptera, Cerambycidae, Eurymerus, larva, pupa. INTRODUCTION MATERIAL AND METHODS Eurymerus eburioides Audinet-Serville is a E. eburioides beetles were reared in the labo- native cerambicid often found attacking Eucalipt in ratory on one of their hosts (Eucalyptus globulus South America (Bosq, 1934; Costa, 1943; Hayward, globulus). Neonate larvae were manually transferred 1960; Bienzanko & Bosq, 1956; Berti Filho, 1985; to logs kept in a controlled-environment chamber Moraes & Berti-Filho, 1974; Monné et al., 2002).
    [Show full text]
  • Why Do Models of Insect Respiratory Patterns Fail? John S
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb130039. doi:10.1242/jeb.130039 COMMENTARY Why do models of insect respiratory patterns fail? John S. Terblanche1,* and H. Arthur Woods2 ABSTRACT exchange (the whole surface, lungs, gills, parapodia, everted rectal Insects exchange respiratory gases using an astonishing diversity of sacs, etc.). Usually there is convective transport (see Glossary) of patterns. Of these, discontinuous gas exchange cycles (DGCs) have oxygen to the exchange surface from the environment, either by received the most study, but there are many other patterns exhibited external currents of water or by active ventilation of the surface (e.g. ‘ ’ intraspecifically and interspecifically. Moreover, some individual tidal ventilation of lungs in mammals). Oxygen then moves insects transition between patterns based on poorly understood inward by diffusion across that surface, and CO2 (usually) moves combinations of internal and external factors. Why have biologists outward across the same structure. Because most animals are large failed, so far, to develop a framework capable of explaining this enough that internal diffusion-based supplies of oxygen become diversity? Here, we propose two answers. The first is that the highly inadequate (Schmidt-Nielsen, 1997), they use additional framework will have to be simultaneously general and highly detailed. internal systems for distributing the oxygen from the exchange It should describe, in a universal way, the physical and chemical surface to the mitochondria (and removing CO2). This they do processes that any insect uses to exchange gases through the largely by using muscular pumps that drive internal, oxygen- respiratory system (i.e.
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]