Interactions Among Invasive Pacific Red Lionfish, Fish Parasites, and Cleaning Mutualisms Native to Atlantic Coral Reefs

Total Page:16

File Type:pdf, Size:1020Kb

Interactions Among Invasive Pacific Red Lionfish, Fish Parasites, and Cleaning Mutualisms Native to Atlantic Coral Reefs AN ABSTRACT OF THE DISSERTATION OF Lillian J. Tuttle for the degree of Doctor of Philosophy in Zoology presented on May 27, 2016. Title: Interactions among Invasive Pacific Red Lionfish, Fish Parasites, and Cleaning Mutualisms Native to Atlantic Coral Reefs. Abstract approved: _____________________________________________________________________ Mark A. Hixon What makes invasive species successful, and how do they affect native populations and communities? I addressed these key questions in the context of the invasion of Atlantic coral reefs by Pacific red lionfish (Pterois volitans). To assess the role of parasites in contributing to the success of this invasion, I compared infection rates of lionfish with syntopic carnivorous fishes at multiple locations in both the invasive and native ranges of lionfish. Invasive Atlantic lionfish had extremely few parasites when compared both to native Pacific lionfish and to ecologically similar native Atlantic reef fishes. Such “enemy release” may help to explain this successful invasion if lionfish consequently allocate more energy to growth and reproduction than to costly immune defenses. With few parasites limiting them, lionfish may consume ecologically important species, including Elacatinus spp. cleaning gobies: ubiquitous, conspicuous fishes that remove ectoparasites from other reef fishes. Although juvenile lionfish ate cleaner goby (E. genie) during laboratory experiments, they quickly learned to avoid them, likely due to a previously undescribed skin toxin in these gobies. Field experiments further revealed no change in the survival and growth rates of newly recruited cohorts of the cleaner goby in the presence vs. absence of lionfish. However, lionfish caused declines in the densities of the most abundant facultative cleaner, juvenile bluehead wrasse (Thalassoma bifasciatum), and of transient fishes that are often cleaned while visiting coral patch reefs. Therefore, lionfish do not have uniformly negative effects on native species; distasteful to potential predators, the cleaner goby is among the remarkably few small fish to escape predation by lionfish. The continued presence of Elacatinus spp. cleaning gobies, the predominant cleaners on invaded reefs, should limit cascading effects of lionfish on other Atlantic coral-reef inhabitants. Nonetheless, given their broad and voracious appetites, invasive lionfish will likely continue to affect native reef communities via predation on other cleaners and ecologically important fishes. ©Copyright by Lillian J. Tuttle May 27, 2016 All Rights Reserved Interactions among Invasive Pacific Red Lionfish, Fish Parasites, and Cleaning Mutualisms Native to Atlantic Coral Reefs by Lillian J. Tuttle A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented May 27, 2016 Commencement June 2016 Doctor of Philosophy dissertation of Lillian J. Tuttle presented on May 27, 2016 APPROVED: Major Professor, representing Zoology Chair of the Department of Integrative Biology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Lillian J. Tuttle, Author ACKNOWLEDGMENTS I once read a quote, I’m not sure by whom, that likened science to a first-rate piece of furniture in a person’s “upper chamber,” but only if that person had common sense on the ground floor. To extend the metaphor, my advisor, Mark Hixon, has an incredibly well furnished upper chamber. It is full of empirical artwork hanging from theoretical walls, an experimental armoire, a very well organized bureau, and a set of the most comfortably logical armchairs encircling a banquet-sized round table at which his academic family sits. Luckily, he is also grounded by an enviable work ethic, a dedication to teaching, an insatiable curiosity, and an immense love and respect for the ocean. Most profound is his ability to inspire hope when confronted with the challenges facing our generation. I am fortunate to have spent the last 6 years learning from him what is means to be a scientist of conscience, and hope to continue many more years of fruitful collaboration. Mahalo nui loa ko’o kumu. I thank my committee for their support and insight at several key transitional phases in my doctoral career (in chronological order). Though no longer on my committee, Isabelle Côté was an inspiration from the beginning as an amazing scientist who happened to be an expert in cleaning goby mutualisms and invasive lionfish. On her recommendation, I studied the evolution of cooperation for my oral preliminary exam, and had no idea how fascinated I would become with that field! “Retired but not forgotten” from my committee is Paul Murtaugh, who in my humble opinion is a statistician of the highest order. In his office we were equals, planning the simplest and most elegant ways to test my hypotheses. He encouraged me to let my story shine through the data, not hide behind the analysis. Mark Novak is a scientist who I respected from the moment I met him – at his job interview at OSU! He is calm, approachable, and always asks the questions that get to the heart of every issue. I hope to collaborate on a project with him, one day soon. Jerri Bartholomew was the perfect grad rep, especially because she’s the only fish parasitologist on my committee! I enjoyed disease ecology seminars with her, and can’t wait to have her “buggy” insight at my defense. My new statistics advisor, Charlotte Wickham, has been a blessing in the final months of my degree. I thank her for her thoughtful feedback, patience, and artistic skills (!) that helped me to interpret the baffling beta- 3. Also new to my committee is Anna Jolles. She’s a talented disease ecologist who loves getting her hands dirty with fieldwork. I hope to follow her lead! Next, I’d like to pay homage to my brothers and sisters in arms (also in chronological order). Tim Pusack, from the moment I met you during my visit to Corvallis, I had you pegged as my future best friend. I’m glad I was right. I should write an entire chapter here about what an incredible example you have been to my cohort and me. I envy your ability to diffuse any tough situation with your smile and a few kind words, and cannot begin to live up to your standard as a hardworking and eloquent (yes, eloquent) scientist. I raise a glass of whiskey to you, my friend in high and low places. Kurt Ingeman, when I described you as a Norse god to a group of CEI interns who hadn’t yet met you, they didn’t know I wasn’t lying. Your heart and your scientific prowess match your stature. I’m so happy you didn’t let a silly little thing like tinnitus truncate your doctoral career – you deserve it and will make an excellent professor and advisor one day. I was nervous when I walked off that 10- person plane on Little Cayman. It was the beginning of a new chapter, literally (Chapter 2) and figuratively. I was met by the smiling faces of Casey Benkwitt and Tye Kindinger, two of the closest friends and colleagues I’ll ever have. We’ve done this entire PhD thing together, from beginning to end, and I’m still not sure how I managed to be the first to defend…guess I’m the Southern tortoise to your Yankee hare? Tye, I’m sure I’ll never live up to your incredible work ethic and leadership in the field, nor your “dead-eye” for lionfish and gorgeous presentation design. Casey, you’ve got one hell of a bright light shining through you that the whole world can see. You’ve got an equally bright future ahead of you. Thank you for inspiring me to be a better scientist, person, and competitor! Mark Albins, you are a trailblazer and a friend. Without you, we would have all floundered (pun!) a long time ago. Our dissertations were built on the foundation you laid as the King of Lionfish and the Keeper of Goals. Alex Davis, as a roommate and colleague you are second to none. Of all the field seasons (five!) we had together, I’m especially glad we shared that last one. You just need to learn how to control that (Cage) rage. Seriously. Steph Green, I feel like we’ve packed a life’s worth of friendship and science into our all-too-short time together. But I’m confident that we will collaborate for many years to come! Eric Dilley, Chapter 4 is dedicated to your enduring and painstaking sacrifices to the Rock Sound fish gods. Mahalo nui, hoa noho, and long live the ‘uhu. Last but not least is Erik Brush – finally! another Southerner in the lab – may your science always outpace your mosey, my friend. When it’s all said and done, I spent over 14 months of my doctorate immersed in fieldwork. That would not have been possible without an army of special people. The unending guidance and support of Kevin Buch, OSU’s dive safety officer, allowed me to feel safe and well prepared for the best and worst of fieldwork. Thank you to Emily Anderson, Kristian Dzilenski, and Allison Stringer – field assistants extraordinaire – and to Ashley Coke, Delaney Coleman, and Tayler Nichols who selflessly volunteered to torture themselves by watching long hours of tropical fishes halfway across the world. Thank you to Pat Lyons, court jester at Tomfoolery Cay. Thank you to the literally hundreds of staff members at the Perry Institute of Marine Science, the Central Caribbean Marine Institute, and the Cape Eleuthera Institute whose dedication to science, education, and conservation made them perfect hosts despite our intense demands on their resources and hospitality.
Recommended publications
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Taxonomy, Biology and Phylogeny of Miraciidae (Copepoda: Harpacticoida)
    TAXONOMY, BIOLOGY AND PHYLOGENY OF MIRACIIDAE (COPEPODA: HARPACTICOIDA) Rony Huys & Ruth Böttger-Schnack SARSIA Huys, Rony & Ruth Böttger-Schnack 1994 12 30. Taxonomy, biology and phytogeny of Miraciidae (Copepoda: Harpacticoida). - Sarsia 79:207-283. Bergen. ISSN 0036-4827. The holoplanktonic family Miraciidae (Copepoda, Harpacticoida) is revised and a key to the four monotypic genera presented. Amended diagnoses are given for Miracia Dana, Oculosetella Dahl and Macrosetella A. Scott, based on complete redescriptions of their respective type species M. efferata Dana, 1849, O. gracilis (Dana, 1849) and M. gracilis (Dana, 1847). A fourth genus Distioculus gen. nov. is proposed to accommodate Miracia minor T. Scott, 1894. The occurrence of two size-morphs of M. gracilis in the Red Sea is discussed, and reliable distribution records of the problematic O. gracilis are compiled. The first nauplius of M. gracilis is described in detail and changes in the structure of the antennule, P2 endopod and caudal ramus during copepodid development are illustrated. Phylogenetic analysis revealed that Miracia is closest to the miraciid ancestor and placed Oculosetella-Macrosetella at the terminal branch of the cladogram. Various aspects of miraciid biology are reviewed, including reproduction, postembryonic development, verti­ cal and geographical distribution, bioluminescence, photoreception and their association with filamentous Cyanobacteria {Trichodesmium). Rony Huys, Department of Zoology, The Natural History Museum, Cromwell Road, Lon­ don SW7 5BD, England. - Ruth Böttger-Schnack, Institut für Meereskunde, Düsternbroo- ker Weg 20, D-24105 Kiel, Germany. CONTENTS Introduction.............. .. 207 Genus Distioculus pacticoids can be carried into the open ocean by Material and methods ... .. 208 gen. nov.................. 243 algal rafting. Truly planktonic species which perma­ Systematics and Distioculus minor nently reside in the water column, however, form morphology ..........
    [Show full text]
  • The Impact of Live Rock Harvesting on Fish Abundance, Substrate Composition and Reef Topography Along the Coral Coast, Fiji Islands
    The impact of live rock harvesting on fish abundance, substrate composition and reef topography along the Coral Coast, Fiji Islands By Make Liku Movono A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science School of Marine Studies Faculty of Island and Oceans The University of the South Pacific December, 2007 Dedication This is for my Normie and to God Almighty! Declaration of Originality I Make Liku Movono declare that this thesis is my own work and that, to the best of my knowledge, it contains no material previously published or substantially overlapping with material submitted for the award of any other degree at any institution, except where due acknowledgement is made in the text. Make Liku Movono Date The current research was conducted under mine and other co-supervisors and I am certain that this is the sole work of Ms Make Liku Movono. i ACKNOWLEDGEMENTS First and Foremost, I would like to thank my God Almighty for bringing me through these challenging times and has never failed me! In addition to this, acknowledging the financial assistance by the Institute of Applied Science at the University of the South Pacific with which this project would not have been possible. A big “vinaka vakalevu” to Professor William Aalbersberg for giving me an opportunity to work on a challenging and vital issue. To the communities, whom without their concern, this study would not have been initiated. A very big “vinaka vakalevu” to Dr James Reynolds, who was with me from “scratch” till the very end, justifying every detail of the work.
    [Show full text]
  • Lessepsian Migration and Parasitism: Richness, Prevalence and Intensity
    Lessepsian migration and parasitism: richness, prevalence and intensity of parasites in the invasive fish Sphyraena chrysotaenia compared to its native congener Sphyraena sphyraena in Tunisian coastal waters Wiem Boussellaa1,2, Lassad Neifar1, M. Anouk Goedknegt2 and David W. Thieltges2 1 Department of Life Sciences, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia 2 Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg Texel, Netherlands ABSTRACT Background. Parasites can play various roles in the invasion of non-native species, but these are still understudied in marine ecosystems. This also applies to invasions from the Red Sea to the Mediterranean Sea via the Suez Canal, the so-called Lessepsian migration. In this study, we investigated the role of parasites in the invasion of the Lessepsian migrant Sphyraena chrysotaenia in the Tunisian Mediterranean Sea. Methods. We compared metazoan parasite richness, prevalence and intensity of S. chrysotaenia (Perciformes: Sphyraenidae) with infections in its native congener Sphyraena sphyraena by sampling these fish species at seven locations along the Tunisian coast. Additionally, we reviewed the literature to identify native and invasive parasite species recorded in these two hosts. Results. Our results suggest the loss of at least two parasite species of the invasive fish. At the same time, the Lessepsian migrant has co-introduced three parasite species during Submitted 13 March 2018 Accepted 7 August 2018 the initial migration to the Mediterranean Sea, that are assumed to originate from the Published 14 September 2018 Red Sea of which only one parasite species has been reported during the spread to Corresponding author Tunisian waters.
    [Show full text]
  • Semih ENGIN 1* and Kadir SEYHAN 2
    ACTA ICHTHYOLOGICA ET PISCATORIA (2009) 39 (2): 111–118 DOI: 10.3750/AIP2009.39.2.05 BIOLOGICAL CHARACTERISTICS OF ROCK GOBY, GOBIUS PAGANELLUS (ACTINOPTERYGII: PERCIFORMES: GOBIIDAE) , IN THE SOUTH-EASTERN BLACK SEA Semih ENGIN 1* and Kadir SEYHAN 2 1 Rize University, Faculty of Fisheries, 53100, Rize, Turkey 2 Karadeniz Technical University, Faculty of Marine Sciences, Trabzon, Turkey Engin S., Seyhan K. 2009. Biological characteristics of rock goby, Gobius paganellus (Actinopterygii: Perciformes: Gobiidae), in the south-eastern Black Sea. Acta Ichthyol. Piscat. 39 (2): 111–118. Background. Gobius paganellus L. is one of the most common gobiid fish in the south-eastern Black Sea. The aim of present study is to provide information on age structure and growth, length at sexual maturity, annual cycle of gonad development, and diet of rock goby in the south-eastern Black Sea. Materials and Methods. One hundred seventy-five specimens of G. paganellus were sampled from two stations in the province of Rize, south-eastern Black Sea. Samplings were performed by free diving using spear gun and hand net at night time. Specimens were dissected and sagittal otoliths, stomachs, livers, and gonads were removed. Otoliths were cleaned, immersed in glycerol, and examined on black background using reflected light at low magnification to determine age. Mean size at sexual maturity (L 50 ) (i.e., size at which 50% of fish are mature) was estimated for males and females by fitting the logistic Gompertz function to the proportion of mature fish per cm size-class. The gonadosomatic index, seminal vesicle somatic index, and hepatosomatic index were calculated on monthly basis.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 49(2) 1982
    I , , _ / ,' "T '- "/-_ J, . _. Volume 49 Jrily 1982;} Nufnber,2 \~-.\ .•'.' ''•-,- -• ;- - S "• . v-T /7, ' V. >= v.-"' " - . f "-< "'• '-.' '" J; PROCEEDINGS -. .-.•, • "*-. -. The Helmifltliological Society Washington :- ' ; "- ' A^siBmiohnua/ /ourna/ of research devofedVfp ^He/miiithoibgy and , a// branches of Parasi'fology in part by the ; r r;Brqytpn H.yRansom Memorial /Trust Fond TA'&'- -s^^>~J ••..''/'""', ':vSj ''--//;i -^v Subscription ^$18X)0 a Volume; Foreign, $19.00 AMIN, ,OwARr M. Adult Trematodes (Digenea) from Lake'Fishes ;6f Southeastern;Wisconsin, A with a Key to;Species ofvthe Genus Crleptdottomu/rt firwm, 1900 in-North America '_'.C-_~i-, 196- '•}AMIN, OMAR M. Two larval Trematodes'^Strigeoide^y^f fishes iri/Southeastern Wiscpnsin .:._ 207 AIMIN, OMARM. Description of Larval Acanthoctphajus parksidei Amin, 1975 (Acanthocephala: I A Echinorhynchidae) from Its iSopod Intermediate Host—i'.i.—_i.;—;-__-..-_-__-.—J....... 235 AMIN, PAIARM."and DONAL G.'My/ER. 'Paracreptbtrematina\timi gen.;et sp. inov. (Digenea: -. v Allocreadiidae) frohi-the Mudminnow, Umbra limi '.:'-._.2i_i-..__.^^.^i.., _— -____i_xS185 BAKER, M.i R. ,'On Two'Nevy Nie;matode Parasites (TnchOstrongyloidea: Molineidae) from f— , Amphibians;and Reptiles (...^d.-. -—._..-l.H— --^_./——.—.—.j- ^::l.._.___i__ 252 CAMPBELL, RONALD A:, STEVEN J- CORREIA, AND ;RIGHA»PTL. HAEPRJGH., A ,New Mbnor : • \ ^genean/and Cestode from'jthe Deep-Sea Fish, Macrourus berglax Lacepede, ;1802,' from jHe Flemish 'Cap off Newfoundland -u—— :.^..——u—^—-—^—y——i——~--———::-—:^ 169 vCAMPBELL, .RoNALp A. AND JOHN V.-^GARTNER, JR. "'Pistarta eutypharyifgis gen.\et sp. 'n.' , (', (Ceystoda: Pseudophyllidea)_from/;the Bathypelagic Gulper .Eel, ~Eurypharynx-pelecanoides ^.Vaillant, 1882, withiComments on Host arid Parasite Ecology -.:^-_r-::--—i—---_—L——I.
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • Publicación Ocasional En Versión
    ISSN 0716 - 0224 MUSEO NACIONAL DE HISTORIA NATURAL CHILE PUBLICACIÓN OCASIONAL N° 66 / 2017 CATÁLOGO DE LA COLECCIÓN DEL MATERIAL TIPO DEPOSITADO EN EL ÁREA DE ZOOLOGÍA DE INVERTEBRADOS DEL MUSEO NACIONAL DE HISTORIA NATURAL Andrea Martínez, Catalina Merino-Yunnissi y Gabriel Rojas Motivo de la portada Caulophacus (Caulophacus) chilense Reiswig & Araya, 2014 MNHNCL POR-100 Holotipo Loc.: 50km. NO de Caldera, Chile, Lat. S 26°44’; Long. W 70°07’, Recol.: F/V “Juan Antonio”, Fecha Recol.: 07.01.2014, Prof. m: 1300-1800, Ejemp.: 1, Nº Est.: 6 (Figura 1), Mat.: Seco, Est.: En colección Leg.: ND Fotografía, Herman Núñez. Referencia Bibliográfica Martínez, A. Merino-Yunnissi, C. y G.Rojas. 2017. Catálogo de la Colección del Material Tipo depositado en el Área de Zoología de Invertebrados del Museo Nacional de Historia Natural. Publicación Ocasional del Museo Nacional de Historia Natural, 66: 9-64. Este volumen está disponible para su distribución en formato pdf. Toda correspondencia debe dirigirse a: Casilla 787 – Santiago, Chile www.mnhn.cl MINISTERIO DE EDUCACIÓN PÚBLICA Ministra de Educación Adriana Delpiano Puelma Subsecretaria de Educación Valentina Quiroga Canahuate Director de Bibliotecas, Archivos y Museos Ángel Cabeza Monteira PUBLICACIÓN OCASIONAL DEL MUSEO NACIONAL DE HISTORIA NATURAL CHILE Director Claudio Gómez Papic Editor Herman Núñez Comité Editor Mario Elgueta Gloria Rojas David Rubilar Rubén Stehberg © Dirección de Bibliotecas, Archivos y Museos Inscripción N° Diagramación: Herman Núñez Ajustes de diagramación: Milka Marinov Una institución pública se mantiene con los recursos que el Estado provee para su permanencia, puesto que se considera que estas instituciones son importantes desde el punto de vista estratégico del desarrollo del país, a partir de diversos ámbitos: educación, producción, salud entre otras importantes funciones, y aún para la preservación del patrimonio natural o cultural.
    [Show full text]
  • Parasites from the Red Lionfish, Pterois Volitans from the Gulf of Mexico
    Gulf and Caribbean Research Volume 27 Issue 1 2016 Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico Alexander Q. Fogg Florida Fish and Wildlife Conservation Commission, [email protected] Carlos F. Ruiz Auburn University, [email protected] Stephen S. Curran The University of Southern Mississippi, [email protected] Stephen A. Bullard Auburn University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Biodiversity Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Fogg, A. Q., C. F. Ruiz, S. S. Curran and S. A. Bullard. 2016. Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico. Gulf and Caribbean Research 27 (1): SC1-SC5. Retrieved from https://aquila.usm.edu/gcr/vol27/iss1/7 DOI: https://doi.org/10.18785/gcr.2701.07 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Cymothoidae) from Sub-Sahara Africa
    Biodiversity and systematics of branchial cavity inhabiting fish parasitic isopods (Cymothoidae) from sub-Sahara Africa S van der Wal orcid.org/0000-0002-7416-8777 Previous qualification (not compulsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Sciences at the North-West University Supervisor: Prof NJ Smit Co-supervisor: Dr KA Malherbe Graduation May 2018 23394536 TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................... VI LIST OF TABLES .................................................................................................................. XIII ABBREVIATIONS .................................................................................................................. XIV ACKNOWLEDGEMENTS ....................................................................................................... XV ABSTRACT ........................................................................................................................... XVI CHAPTER 1: INTRODUCTION ................................................................................................. 1 1.1 Subphylum Crustacea Brünnich, 1772 ............................................................ 2 1.2 Order Isopoda Latreille, 1817 ........................................................................... 2 1.3 Parasitic Isopoda .............................................................................................
    [Show full text]