Lessepsian Migration and Parasitism: Richness, Prevalence and Intensity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cobia Database Articles Final Revision 2.0, 2-1-2017
Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator. -
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
Redalyc.Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae)
Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Bunkley-Williams, Lucy; Williams, Jr., Ernest H.; Bashirullah, Abul K.M. Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Revista de Biología Tropical, vol. 54, núm. 3, diciembre, 2006, pp. 175-188 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44920193024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp. -
Observations on the Agonistic Behavior of the Swimming Crab Charybdis Longicollis Leene Infected by the Rhizocephalan Barnacle Heterosaccus Dollfusi Boschma
173 NOTE Observations on the agonistic behavior of the swimming crab Charybdis longicollis Leene infected by the rhizocephalan barnacle Heterosaccus dollfusi Boschma Gianna Innocenti, Noa Pinter, and Bella S. Galil Abstract: The effects of the invasive rhizocephalan parasite Heterosaccus dollfusi on the agonistic behavior of the in- vasive swimming crab Charybdis longicollis were quantitatively analyzed under standardized conditions. The behavior of uninfected male crabs contained more aggressive elements than that of uninfected females. In encounters between infected males, markedly fewer and less aggressive elements were displayed than in encounters between uninfected males, whereas in encounters between infected females, more aggressive elements were displayed than in encounters between uninfected females. It is suggested that the presence of the parasite reduces belligerence in male crabs, possi- bly to avoid injury and to enhance the life expectancy of host and parasite. Résumé : Les effets d’Heterosaccus dollfusi, un parasite rhizocéphale envahissant, sur le comportement agonistique du crabe nageur envahissant Charybdis longicollis ont été soumis à une analyse quantitative dans des conditions contrô- lées. Les crabes mâles sains montrent plus d’éléments d’un comportement agressif que les femelles saines. Les rencon- tres entre mâles infectés comptent moins d’éléments de comportement agressif et l’agressivité y est moins intense qu’au cours de rencontres entre des mâles sains. Les femelles infectées montrent plus d’éléments de comportement agressif les unes envers les autres que les femelles saines entre elles. Il apparaît donc que la présence du parasite rend les crabes mâles moins belligérants, peut-être pour éviter les blessures et pour améliorer l’espérance de vie des parasi- tes et de leurs hôtes. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Crustaceans Topics in Biodiversity
Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens. -
Otolith Atlas for the Western Mediterranean, North and Central Eastern Atlantic
SCIENTIA MARINA 72S1 July 2008, 7-198, Barcelona (Spain) ISSN: 0214-8358 Otolith atlas for the western Mediterranean, north and central eastern Atlantic VICTOR M. TUSET 1, ANTONI LOMBARTE 2 and CARLOS A. ASSIS 3 1 Instituto Canario de Ciencias Marinas, Departamento de Biología Pesquera, P.O. Box. 56, E-35200 Telde (Las Palmas), Canary Islands, Spain. E-mail: [email protected] 2 Institut de Ciències del Mar-CSIC, Departament de Recursos Marins Renovables, Passeig Marítim 37-49, Barcelona 08003, Catalonia, Spain. 3 Instituto de Oceanografia e Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal. SUMMARY: The sagittal otolith of 348 species, belonging to 99 families and 22 orders of marine Teleostean fishes from the north and central eastern Atlantic and western Mediterranean were described using morphological and morphometric characters. The morphological descriptions were based on the otolith shape, outline and sulcus acusticus features. The mor- phometric parameters determined were otolith length (OL, mm), height (OH, mm), perimeter (P; mm) and area (A; mm2) and were expressed in terms of shape indices as circularity (P2/A), rectangularity (A/(OL×OH)), aspect ratio (OH/OL; %) and OL/fish size. The present Atlas provides information that complements the characterization of some ichthyologic taxa. In addition, it constitutes an important instrument for species identification using sagittal otoliths collected in fossiliferous layers, in archaeological sites or in feeding remains of bony fish predators. Keywords: otolith, sagitta, morphology, morphometry, western Mediterranean, north eastern Atlantic, central eastern Atlantic. RESUMEN: Otolitos de peces del mediterráneo occidental y del atlántico central y nororiental. -
CIESM Congress 2010, Venice, Article 0545
INVASIVE HOST, CHARYBDIS LONGICOLLIS (DECAPODA: BRACHYURA: PORTUNIDAE), AND INVASIVE PARASITE, HETEROSACCUS DOLLFUSI (CIRRIPEDIA: RHIZOCEPHALA: SACCULINIDAE) Gianna Innocenti 1* and Bella S. Galil 2 1 Museo di Storia Naturale, Sezione di Zoologia “La Specola”, Università di Firenze - [email protected] 2 National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa 31080, Israel Abstract The Levantine populations of Erythrean invasive swimming crab Charybdis longicollis have been parasitized by the rhizocephalan Heterosaccus dollfusi, itself an Erythrean alien, since 1992. The parasite affects the host morphology, moulting, behaviour, causes its sterilization, and induces mortality. The high prevalence of H. dollfusi can be ascribed to the dense population of the host, the year- round reproduction of the parasite that promotes recurrent re-infection. Despite the high prevalence of the parasite and its injurious impact on the host reproduction, the invasive host-parasite pair has reached an apparent modus vivendi. Keywords: Levantine Basin, Decapoda, Parasitism Instances of rhizocephalans accompanying their invasive hosts are few. Yet parasitized morphologically-modified crabs. The incidence of parasitization has among the hundreds of alien species that have entered the Mediterranean been high and fairly stable over the past 15 years. The number of specimens and through the Suez Canal such an invasive host-parasite pair was identified: the the incidence of parasitizationwere higher in the spring (May-June) than in the portunid crab Charybdis longicollis (Fig. 1) with its parasitic barnacle fall samples (August-October). The abdomen of both sexes of infected C. Heterosaccus dollfusi (Fig.2). longicollis is modified to such an extent that the sexual apertures remain the only reliable character. -
Euteleostei: Aulopiformes) and the Timing of Deep-Sea Adaptations ⇑ Matthew P
Molecular Phylogenetics and Evolution 57 (2010) 1194–1208 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations ⇑ Matthew P. Davis a, , Christopher Fielitz b a Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA b Department of Biology, Emory & Henry College, Emory, VA 24327, USA article info abstract Article history: The divergence times of lizardfishes (Euteleostei: Aulopiformes) are estimated utilizing a Bayesian Received 18 May 2010 approach in combination with knowledge of the fossil record of teleosts and a taxonomic review of fossil Revised 1 September 2010 aulopiform taxa. These results are integrated with a study of character evolution regarding deep-sea evo- Accepted 7 September 2010 lutionary adaptations in the clade, including simultaneous hermaphroditism and tubular eyes. Diver- Available online 18 September 2010 gence time estimations recover that the stem species of the lizardfishes arose during the Early Cretaceous/Late Jurassic in a marine environment with separate sexes, and laterally directed, round eyes. Keywords: Tubular eyes have arisen independently at different times in three deep-sea pelagic predatory aulopiform Phylogenetics lineages. Simultaneous hermaphroditism evolved a single time in the stem species of the suborder Character evolution Deep-sea Alepisauroidei, the clade of deep-sea aulopiforms during the Early Cretaceous. This result indicates the Euteleostei oldest known evolutionary event of simultaneous hermaphroditism in vertebrates, with the Alepisauroidei Hermaphroditism being the largest vertebrate clade with this reproductive strategy. Divergence times Ó 2010 Elsevier Inc. -
Short Communication
RAY : New Records of Four Squirrelfishes......from the coastal waters of West Bengal, India 207 ISSN 0375-1511 Rec. zool. Surv. India : 115(Part-2) : 207-211, 2015 Short Communication NEW RECORDS OF FOUR SQUIRRELFISHES (BERYCIFORMES : HOLOCENTRIDAE) FROM THE COASTAL WATERS OF WEST BENGAL, INDIA INTRODUCTION 1802) which were not reported from the coast. The fishes of family Holocentridae (Order This paper describes four species of fishes from Berciformes) are characterized by having large family Holocentridae which are new addition to eyes, brilliant colouration with red predominating the icthyofaunal resource of West Bengal. and spiny squamation (Shimizu & Yamakawa, MATERIALS AND METHODS 1979). The family represented by 8 genera All the specimens were collected from fish and 65 species throughout the world (Nelson, landing centre Digha Mohona (21°37.843’N, 2006), however, 19 species from 4 genera were 87°32.827’E). The detail morphometric reported so far in Indian waters (Talwar, 1991). measurements were taken in the field and the The two subfamilies of this group, Holocentrinae specimens were preserved in 10% formalin after (squirrelfishes) and Myripristinae (soldierfishes) taking the fresh photographs. Material details are are distributed worldwide from tropical to warm given under each species and these specimens temperate waters in shallow water on coral reefs are housed at museum of Marine Aquarium and or rocky bottom. The family is well known Regional Center of Zoological Survey of India, for sound production and nocturnal habit, hide Digha. in caves during day and come out at night for feeding. These fishes are very hardy in aquariums RESULTS AND DISCUSSION and attractive for the bright colouration. -
Gill Metazoan Parasites of the Spotted Goatfish Pseudupeneus Maculatus (Ostheichthyes: Mullidae) from the Coast of Pernambuco, Northeastern Brazil L
http://dx.doi.org/10.1590/1519-6984.166631 Gill metazoan parasites of the spotted goatfish Pseudupeneus maculatus (Ostheichthyes: Mullidae) from the Coast of Pernambuco, northeastern Brazil L. Cardosoa, A. C. F. Lacerdab*, E. L. T. Gonçalvesa, D. I. Cadorina, C. N. C. Bonfimc, R. L. M. Oliveirac and M. L. Martinsa aLaboratório de Patologia e Sanidade de Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Rodovia Admar Gonzaga, 1346, CEP 88040-900, Florianópolis, SC, Brazil bPrograma de Pós-graduação em Ciências Biológicas – Zoologia, Laboratório de Hidrologia, Microbiologia e Parasitologia – LAHMP, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – UFPB, Campus I, Castelo Branco, CEP 58051-900, João Pessoa, PB, Brazil cDepartamento de Engenharia de Pesca e Aquicultura, Centro de Ciências Agrárias Aplicadas, Universidade Federal de Sergipe – UFSE, Rua Marechal Rondon, s/n, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil *e-mail: [email protected] Received: July 14, 2016 – Accepted: March 24, 2017 – Distributed: October 31, 2018 (With 1 figure) Abstract This study evaluated the parasite fauna on the gills of spotted goatfish Pseudupeneus maculatus captured in the dry and rainy seasons in the coast of the State of Pernambuco, Brazil. Eight parasite species were identified belonging to the following taxa: Monogenea (Haliotrema caraïbensis, Haliotrema caballeroi and Haliotrema golvani); Crustacea (Rocinela signata, Hamaticolax scutigerulus and Caligidae gen. sp.) and Cestoda (Nybelinia indica and Pseudolacistorhynchus noodti). The most prevalent parasites were: Monogenea (100%), H. scutigerulus (35%), N. indica (11.7%), R. signata (8.3%), Caligidae gen. -
Authorship, Availability and Validity of Fish Names Described By
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).