X-Ray Pulsar Navigation Instrument Performance and Scale Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRIPS-Gamma-Ray Imaging, Polarimetry and Spectroscopy
Experimental Astronomy manuscript No. (will be inserted by the editor) GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy www.grips-mission.eu? Jochen Greiner · Karl Mannheim · Felix Aharonian · Marco Ajello · Lajos G. Balasz · Guido Barbiellini · Ronaldo Bellazzini · Shawn Bishop · Gennady S. Bisnovatij-Kogan · Steven Boggs · Andrej Bykov · Guido DiCocco · Roland Diehl · Dominik Els¨asser · Suzanne Foley · Claes Fransson · Neil Gehrels · Lorraine Hanlon · Dieter Hartmann · Wim Hermsen · Wolfgang Hillebrandt · Rene Hudec · Anatoli Iyudin · Jordi Jose · Matthias Kadler · Gottfried Kanbach · Wlodek Klamra · J¨urgenKiener · Sylvio Klose · Ingo Kreykenbohm · Lucien M. Kuiper · Nikos Kylafis · Claudio Labanti · Karlheinz Langanke · Norbert Langer · Stefan Larsson · Bruno Leibundgut · Uwe Laux · Francesco Longo · Kei'ichi Maeda · Radoslaw Marcinkowski · Martino Marisaldi · Brian McBreen · Sheila McBreen · Attila Meszaros · Ken'ichi Nomoto · Mark Pearce · Asaf Peer · Elena Pian · Nikolas Prantzos · Georg Raffelt · Olaf Reimer · Wolfgang Rhode · Felix Ryde · Christian Schmidt · Joe Silk · Boris M. Shustov · Andrew Strong · Nial Tanvir · Friedrich-Karl Thielemann · Omar Tibolla · David Tierney · Joachim Tr¨umper · Dmitry A. Varshalovich · J¨orn Wilms · Grzegorz Wrochna · Andrzej Zdziarski · Andreas Zoglauer Received: 21 April 2011 / Accepted: 2011 ? See this Web-site for the author's affiliations. Jochen Greiner Karl Mannheim MPI f¨urextraterrestrische Physik Inst. f. Theor. Physik & Astrophysik, Univ. W¨urzburg arXiv:1105.1265v1 [astro-ph.HE] 6 May 2011 85740 Garching, Germany 97074 W¨urzburg,Germany Tel.: +49-89-30000-3847 Tel.: +49-931-318-500 E-mail: [email protected] E-mail: [email protected] 2 Abstract We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. -
25 Years of Indian Remote Sensing Satellite (IRS)
2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B • -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
Design of the Wavefront Sensor Unit of ARGOS, the LBT Laser Guide Star System
UNIVERSITA` DEGLI STUDI DI FIRENZE Dipartimento di Fisica e Astronomia Scuola di Dottorato in Astronomia Ciclo XXIV - FIS05 Design of the wavefront sensor unit of ARGOS, the LBT laser guide star system Candidato: Marco Bonaglia arXiv:1203.5081v1 [astro-ph.IM] 22 Mar 2012 Tutore: Prof. Alberto Righini Cotutore: Dott. Simone Esposito A common use for a glass plate is as a beam splitter, tilted at an angle of 45◦ [:::] Since this can severely degrade the image, such plate beam splitters are not recommended in convergent or divergent beams. W. J. Smith, Modern Optical Engineering. Contents 1 Introduction 1 1.1 The Large Binocular Telescope . 2 1.2 LUCI . 4 1.3 First Light AO system . 5 1.3.1 Angular anisoplanatism . 8 1.4 Wide field AO correction . 9 1.5 Laser guide star AO . 10 1.5.1 Limits of LGS AO . 11 1.5.2 Rayleigh LGS . 13 1.6 LGS-GLAO facilities . 14 1.6.1 GLAS . 15 1.6.2 The MMT GLAO system . 15 1.6.3 SAM . 18 2 ARGOS: a laser guide star AO system for the LBT 21 2.1 System design . 22 2.2 Study of ARGOS performance . 29 2.2.1 The simulation code . 30 2.2.2 Results of ARGOS end-to-end simulations . 36 3 The wavefront sensor dichroic 43 3.1 Effects of a window in a convergent beam . 43 3.2 Aberration compensation with window shape . 47 3.2.1 Effects of a wedge between surfaces . 48 3.2.2 Effects of a cylindrical surface . -
+ Return to Flight Implementation Plan -- 12Th Edition (8.4 Mb PDF)
NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond A periodically updated document demonstrating our progress toward safe return to flight and implementation of the Columbia Accident Investigation Board recommendations June 20, 2006 Volume 1, Twelfth Edition An electronic version of this implementation plan is available at www.nasa.gov NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond June 20, 2006 Twelfth Edition Change June 20, 2006 This 12th revision to NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond provides updates to three Columbia Accident Investigation Board Recommendations that were not fully closed by the Return to Flight Task Group, R3.2-1 External Tank (ET), R6.4-1 Thermal Protection System (TPS) On-Orbit Inspection and Repair, and R3.3-2 Orbiter Hardening and TPS Impact Tolerance. These updates reflect the latest status of work being done in preparation for the STS-121 mission. Following is a list of sections updated by this revision: Message from Dr. Michael Griffin Message from Mr. William Gerstenmaier Part 1 – NASA’s Response to the Columbia Accident Investigation Board’s Recommendations 3.2-1 External Tank Thermal Protection System Modifications (RTF) 3.3-2 Orbiter Hardening (RTF) 6.4-1 Thermal Protection System On-Orbit Inspect and Repair (RTF) Remove Pages Replace with Pages Cover (Feb 17, 2006) Cover (Jun. 20, 2006 ) Title page (Feb 17, 2006) Title page (Jun. 20, 2006) Message From Michael D. Griffin Message From Michael D. Griffin (Feb 17, 2006) -
A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes
A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes WUJUN MI Doctoral Thesis Stockholm, Sweden 2019 KTH Fysik TRITA-SCI-FOU 2019:41 SE-106 91 Stockholm ISBN 978-91-7873-286-9 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fysik fredagen den 27 september 2019 klockan 10.00 i E3, Osquars backe 14, Kungliga Tekniska Högskolan, Stockholm. © Wujun Mi, September 2019 Tryck: Universitetsservice US AB iii Abstract Over the past half century, the focusing X-ray telescope has played a very prominent role in X-ray astronomy at the frontier of fundamental physics. The finer angular resolution and increased effective area have enabled more and more exciting discoveries and detailed studies of the high-energy universe, including the cosmic X-ray background (CXB) radiation, black holes in active galactic nuclei (AGN), galaxy clusters, supernova remnants, and so on. At present, nearly all the state-of-the-art focusing X-ray telescopes are based on Wolter-I optics or its variations, for which the throughput is severely restricted by the mirror’s surface roughness, figure error, alignment error, and so on. Within the course of this work, we have developed a novel point-focusing refractive lens, the stacked prism lens (SPL), which is built by stacking disks embedded with various number of prismatic rings. As a Fresnel-like X-ray lens, it could provide a significantly higher efficiency and larger effective aper- ture than the conventional compound refractive lenses (CRLs). The aim of this thesis is to demonstrate the feasibility of the stacked prism lens and investigate the application to a next-generation hard X-ray telescope. -
Final Report for a Robotic Exploration Mission to Mars and Phobos Argos
NASA-CR-197168 NASw-4435 /'/F/ 4 '_/e'7 t'/-q 1- Final Report for a Robotic Exploration Mission to Mars and Phobos PROJECT AENEAS Response to RFP Number ASE274L.0893 o r,4 u_ 4" submitted to: I ,-- ,0 U i'_ C_ e" 0 Z _ 0 Dr. George Botbyl The University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics Austin, Texas 78712 Z cn _. submitted by: 0 cO_ 0 Argos Space Endeavours 29 November 1993 zxI_f _rOos 8Face _.aea_ours _roJect Aeneas CDestBn _"eam Fall 1993 Chief Executive Officer Justin H. Kerr Chief Engineer Erin Defoss6 Chief Administrator Quang Ho Engineers Emisto Barriga Grant Davis Steve McCourt Matt Smith Aeneas Project Preliminary Design of a Robotic Exploration Mission to Mars and Phobos Approved: Justin H. Kerr CEO, Argos Space Endeavours Approved: Erin Defoss6 Chief Engineer, Argos Space Endeavours Approved: Quang Ho Administrative Officer, Argos Space Endeavours Argos 8pace q .aca ours University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics November 1993 Acknowledgments Argos Space Endeavours would like to thank all personnel at The University and in industry who made Project Aeneas possible. This project was conducted with the support of the NASA/USRA Advanced Design Program. Argos Space Endeavours wholeheartedly thanks the following faculty, staff, and students from the University of Texas at Austin: Dr. Wallace Fowler, Dr. Ronald Stearman, Dr. John Lundberg, Professor Richard Drury, Dr. David Dolling, Ms. Kelly Spears, Mr. Elfego Piton, Mr. Tony Economopoulos, and Mr. David Garza. The support of Project Aeneas from the aerospace industry was overwhelming. -
Ii. Future Missions (A) X-Ray and Gamma-Ray Missions
II. FUTURE MISSIONS (A) X-RAY AND GAMMA-RAY MISSIONS Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 29 Sep 2021 at 08:47:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100076909 RONTGEN SATELLITE J. TRUMPER MPI fur Extraterrestrische Physik, D-8O46 Garching-bei-Miinchen The ROSAT launch on June 1, 1990 happened to be after the IAU Colloquium No. 123 before the deadline for submitting manuscripts. I therefore take the liberty to deviate grossly from the manuscript of my talk and give a short up to date mission summary. A more complete description of the mission can be found in References 1 and 2. The launch of the Delta II rocket was perfect and the orbital parameters reached are very close to nominal: height 580 km, inclination 53°. The predicted satellite's lifetime in this orbital is at least 10 years. The switch-on of the spacecraft and instrument subsystems could be completed without any losses. All systems are in good health. ROSAT carries two instruments: — a large Wolter telescope covering the energy range 0.1-2.4 keV with two position sensitive proportional counters (PSPC) and one high resolution imager (HRI) and — Wolter-Schwarzschild-telescope with two channel plate detectors covering the adjacent XUV-range. The novel features of the X-ray telescope are: — large collecting power — good spectral resolution of the PSPC's: AE/E ~ 0.4 at 1 keV; four colours — low background of the PSPC's: 3 x 10-5 cts/arcmin2 sec — high angular resolution with the HRI: < 4 arcsec half power width (PSPC ~ 25 arcsec) The ROSAT mission comprises three phases: After the initial calibration and verification phase an all sky survey is carried out during half a year, followed by a period of pointed observations. -
Metrology of X-Ray Optics in Pursuit of Perfection
Metrology of X-ray Optics In Pursuit of Perfection Peter Z. Takacs Brookhaven National Laboratory Laboratory for Forensic Metrology Center for Archaeo-metrology MEADOW 2013 Workshop, ICTP Trieste, Italy 28-30 October 2013 1 Roadmap § One man's journey in pursuit of the perfect surface • A retrospective on how profilometry has improved the state-of-the-art of fabrication of SR optics over the past 30+ years. § Brief history of x-ray optics § Surface finish metrology § Surface figure metrology This presentation has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Brookhaven National Laboratory, the Department of Energy, or the United States Government. The views and opinions expressed herein do not necessarily state or reflect those of Brookhaven National Laboratory, the Department of Energy, or the United States Government, and may not be used for advertising or product endorsement purposes. 2 Giovanni Sostero – friend and colleague 3 Reflective x-ray optics BRIEF HISTORICAL INTRODUCTION 4 Brief history of significant events in x-ray science Autoradiography imaging Crystal structure Surface reflection 1910 1920 1930 1895 1900 1912 1918 1923 1899 Recognizes Total external reflection X-rays are electromagnetic measurements as demonstrated waves (Haga&Wind) total external reflection Röntgen discovers x-rays Diffraction from crystals A. Einstein W. H. Bragg W. L. Bragg (1879-1955) Arthur Holly Compton Max von Laue (1862-1942) (1890-1971) (1892-1962) (1879-1960) Wilhelm Conrad Röntgen (1845-1923) 5 A brief history – cont. -
Fusion of Wildlife Tracking and Satellite Geomagnetic Data for the Study of Animal Migration Fernando Benitez-Paez1,2 , Vanessa Da Silva Brum-Bastos1 , Ciarán D
Benitez-Paez et al. Movement Ecology (2021) 9:31 https://doi.org/10.1186/s40462-021-00268-4 METHODOLOGY ARTICLE Open Access Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration Fernando Benitez-Paez1,2 , Vanessa da Silva Brum-Bastos1 , Ciarán D. Beggan3 , Jed A. Long1,4 and Urška Demšar1* Abstract Background: Migratory animals use information from the Earth’s magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. Methods: We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency’s Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. Results: We find that the average absolute error of intensity is − 21.6 nT (95% CI [− 22.26555, − 20.96664]), which is at the lower range of the intensity that animals can sense. -
Spacecraft Navigation Using X-Ray Pulsars
JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Vol. 29, No. 1, January–February 2006 Spacecraft Navigation Using X-Ray Pulsars Suneel I. Sheikh∗ and Darryll J. Pines† University of Maryland, College Park, Maryland 20742 and Paul S. Ray,‡ Kent S. Wood,§ Michael N. Lovellette,¶ and Michael T. Wolff∗∗ U.S. Naval Research Laboratory, Washington, D.C. 20375 The feasibility of determining spacecraft time and position using x-ray pulsars is explored. Pulsars are rapidly rotating neutron stars that generate pulsed electromagnetic radiation. A detailed analysis of eight x-ray pulsars is presented to quantify expected spacecraft position accuracy based on described pulsar properties, detector parameters, and pulsar observation times. In addition, a time transformation equation is developed to provide comparisons of measured and predicted pulse time of arrival for accurate time and position determination. This model is used in a new pulsar navigation approach that provides corrections to estimated spacecraft position. This approach is evaluated using recorded flight data obtained from the unconventional stellar aspect x-ray timing experiment. Results from these data provide first demonstration of position determination using the Crab pulsar. Introduction sources, including neutron stars, that provide stable, predictable, and HROUGHOUT history, celestial sources have been utilized unique signatures, may provide new answers to navigating through- T for vehicle navigation. Many ships have successfully sailed out the solar system and beyond. the Earth’s oceans using only these celestial aides. Additionally, ve- This paper describes the utilization of pulsar sources, specifically hicles operating in the space environment may make use of celestial those emitting in the x-ray band, as navigation aides for spacecraft. -
ARGOS Advanced Rayleigh Ground Layer Adaptive Optics System
Large Binocular Telescope ARGOS Advanced Rayleigh Ground layer adaptive Optics System Science Case Study Doc. No. ARGOS PDR 001 Issue 1.1 Date 19.12.2008 Prepared R. Davies 2008/12/19 Name Date Approved S. Rabien 2009/02/04 Name Date Released S. Rabien 2009/02/04 Name Date © ARGOS Consortium Doc: ARGOS PDR 001 Science Case Study Issue 1.1 Date 19.12.2008 Page 2 of 48 TABLE OF CONTENTS Change Record ................................................................................................................................................ 3 Updates from Phase A to PDR........................................................................................................................ 3 Contributing Authors....................................................................................................................................... 4 1 Scope ...................................................................................................................................................... 4 2 Applicable documents ............................................................................................................................ 4 3 Overview ................................................................................................................................................ 5 4 Gains in Science Capability from GLAO............................................................................................... 7 4.1 Increased Point Source Sensitivity................................................................................................