A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes
Total Page:16
File Type:pdf, Size:1020Kb
A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes WUJUN MI Doctoral Thesis Stockholm, Sweden 2019 KTH Fysik TRITA-SCI-FOU 2019:41 SE-106 91 Stockholm ISBN 978-91-7873-286-9 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fysik fredagen den 27 september 2019 klockan 10.00 i E3, Osquars backe 14, Kungliga Tekniska Högskolan, Stockholm. © Wujun Mi, September 2019 Tryck: Universitetsservice US AB iii Abstract Over the past half century, the focusing X-ray telescope has played a very prominent role in X-ray astronomy at the frontier of fundamental physics. The finer angular resolution and increased effective area have enabled more and more exciting discoveries and detailed studies of the high-energy universe, including the cosmic X-ray background (CXB) radiation, black holes in active galactic nuclei (AGN), galaxy clusters, supernova remnants, and so on. At present, nearly all the state-of-the-art focusing X-ray telescopes are based on Wolter-I optics or its variations, for which the throughput is severely restricted by the mirror’s surface roughness, figure error, alignment error, and so on. Within the course of this work, we have developed a novel point-focusing refractive lens, the stacked prism lens (SPL), which is built by stacking disks embedded with various number of prismatic rings. As a Fresnel-like X-ray lens, it could provide a significantly higher efficiency and larger effective aper- ture than the conventional compound refractive lenses (CRLs). The aim of this thesis is to demonstrate the feasibility of the stacked prism lens and investigate the application to a next-generation hard X-ray telescope. First, SU-8 prototype lenses are fabricated by focused ultraviolet (UV) lithography, for which a UV lens is used as a photomask to form 3D patterns in the photoresist. The UV lens is homemade by grayscale electron beam lithography (EBL), and a proximity effect correction (PEC) method based on multivariate adaptive regression splines (MARS) ensures accurate control of the desired UV lens profile. The details of the whole fabrication process are described, and the fabrication results are discussed. Following that, the completed stacked prism lenses are characterized in the synchrotron radiation facility, and the results show the expected performance. Finally, a hard X-ray focusing telescope concept based on the proposed stacked prism lens array is presented. The performance, in terms of angular resolution, effective collecting area, field of view (FOV), mass and so on, is in- vestigated by self-developed simulation software based on ray-tracing method and compared with the current Wolter telescopes. The results suggest that the proposed stacked prism lens is a promising candidate for next-generation hard X-ray telescope with high angular resolution and large effective collecting area. Keywords: focusing X-ray telescope, Wolter-I optics, stacked prism lens, focused UV lithography, grayscale e-beam lithography iv Sammanfattning Under det senaste halvseklet har fokuserande röntgenteleskop spelat en mycket framträdande roll inom röntgenastronomin för att utforska den grund- läggande fysikens gränser. Bättre vinkelupplösning och större effektiv area har möjliggjort ett flertal upptäckter och detaljerade studier av universum vid höga energier, inklusive den kosmiska röntgenbakgrundsstrålningen (CXB), svarta hål i aktiva galaktiska kärnor (AGN), galaxkluster, supernovarester och så vidare. För närvarande är nästan alla fokuserande röntgenteleskop baserade på Wolter-I-optik eller variationer på denna teknik, för vilka effek- tiviteten är starkt begränsad av kvaliteten på spegelns yta och hårda krav på mekaniska toleranser. Under detta arbete har vi utvecklat en ny punktfokuserande lins, den staplade prisma linsen (SPL), som är uppbyggd av lager med olika antal pris- matiska ringar. Som en Fresnel-liknande röntgenlins kan den ge en betydligt högre effektivitet och större effektiv bländare än de konventionella refrak- tiva linserna (CRLs). Syftet med den här avhandlingen är att demonstrera funktionen för SPL linsen och att diskutera en tillämpning i form av nästa generations röntgenteleskop. Först tillverkas prototyplinser i SU-8 med fokuserad ultraviolett (UV) li- tografi, för vilken ett UV-objektiv används som en fotomask för att skapa 3D-mönster i fotoresisten. Vi har själva tillverkat UV-linsen med hjälp av elektronstråle-litografi (EBL). Detaljerna för hela tillverkningsprocessen be- skrivs och resultaten diskuteras. Därefter har vi utvärderat den färdiga SPL linsen vid en synkrotronljus anläggning och verifierat att resultaten överens- stämmer med simuleringar. Slutligen presenteras ett koncept för ett röntgenfokuserande teleskop ba- serat på den föreslagna SPL linsen. Prestandan, i form av vinkelupplösning, effektivt uppsamlingsområde, synfält (FOV), massa och så vidare och jäm- fört dessa parametrar med nuvarande Wolter-teleskop. Resultaten tyder på att den föreslagna SPL linsen är en lovande kandidat för nästa generations röntgenteleskop med hög vinkelupplösning och möjlighet till stort effektivt uppsamlingsområde. Nyckelord: röntgenteleskop, Wolter-I-optik, staplade prisma linse, fokuserad UV-litografi, elektronstråle-litografi Publications This thesis is based on the following papers: I. W. Mi and P. Nillius. Efficient proximity effect correction method based on multivariate adaptive regression splines for grayscale e-beam lithography. J. Vac. Sci. Technol. B, 32(3):031602, 2014. II. W. Mi, S. Karlsson, A. Holmberg, M. Danielsson, and P. Nillius. Fabrication of circular sawtooth gratings using focused UV lithography. J. Micromech. Microeng., 26(3):035001, 2016. III. W. Mi, P. Nillius, M. Pearce, and M. Danielsson. A stacked prism lens concept for next-generation hard X-ray telescopes. Nat. Astron., 2019. Reprints were made with permission from the publishers. v List of Figures 1.1 Schematic of the nested Wolter-I optics. 3 2.1 Illustration of the proposed stacked prism lens. 8 2.2 The transition from MPL, PAL to SPL. 8 3.1 Schematic diagram of focused UV lithography. 12 3.2 Schematic drawing of ray paths in focused UV lithography. 13 3.3 Principle of grayscale electron beam lithography. 14 3.4 Focused UV lithography simulation. 15 4.1 UV lenses fabricated by grayscale EBL. 19 4.2 Fabrication process of focused UV lithography. 20 4.3 Fabricated SPL disks with basic processes. 21 4.4 Fabricated SPL disks with improved processes. 22 4.5 The fabricated stacked prism lenses. 23 5.1 Experimental setup for SPL charactrization. 26 5.2 Experimental and simulated performance of SPLs. 27 6.1 A hard X-ray focusing telescope concept based on the SPL array. 30 6.2 On-axis and off-axis performance for SPL telescopes. 32 6.3 Angular resolution vs X-ray energies for SPL telescopes. 33 6.4 Potential effective collecting area of SPL telescopes. 34 vi List of Tables 1.1 Comparison of Wolter telescopes. 2 2.1 Parameters of typical CRLs and SPLs. 10 4.1 Fabrication process parameters for the UV lens. 18 4.2 Fabrication process parameters for SPL disks. 20 6.1 The performance of the SPL telescopes and Wolter telescopes. 35 vii Contents Publications v List of Figures vi List of Tables vii Contents viii 1 Introduction 1 1.1 History of the Focusing X-Ray Telescope . 1 1.2 OpticsfortheFocusingX-RayTelescope. 2 1.2.1 Wolter-I-like optics . 3 1.2.2 Transmissive optics . 4 1.3 ThesisOutline .............................. 5 1.4 ContributionbyOthers ......................... 5 2 Stacked Prism Lens 7 2.1 Introduction................................ 7 2.2 BasicPrinciple .............................. 8 2.3 Theory................................... 9 2.4 Efficiency and EffectiveAperture .................... 9 2.5 Numerical Examples . 10 2.6 Summary ................................. 10 3 Fabrication Method 11 3.1 Introduction................................ 11 3.2 Focused UV Lithography . 11 3.3 UV-Lens Design . 12 3.4 UV-Lens Fabrication Method . 13 3.4.1 Grayscale e-beam lithography . 13 3.4.2 3D proximity effect correction method . 13 3.5 Simulation and Result . 14 3.6 Summary ................................. 15 viii CONTENTS ix 4 Fabrication Processes 17 4.1 Introduction................................ 17 4.2 UVlens .................................. 17 4.2.1 Fabrication process . 17 4.2.2 Results .............................. 18 4.3 SPLDisks................................. 18 4.3.1 Basic process . 18 4.3.2 Results .............................. 19 4.3.3 Improvedprocess......................... 21 4.3.4 Results .............................. 21 4.4 SPLAssembly .............................. 22 5 Characterization of SPLs 25 5.1 Introduction................................ 25 5.2 ExperimentalSetup ........................... 25 5.3 MeasurementResults........................... 26 5.4 Summary ................................. 27 6 Application to Next-Generation Hard X-Ray Telescopes 29 6.1 Introduction................................ 29 6.2 SPL Telescope Concept . 29 6.3 Performance Prediction . 31 6.3.1 Angular resolution . 31 6.3.2 Effectivecollectingarea . 31 6.3.3 Focal length, mass, FoV and others . 32 6.4 Summary ................................. 33 7 Conclusions and Outlook 37 7.1 Conclusions . 37 7.2 Outlook .................................. 38 Acknowledgements 39 Bibliography 41 Chapter 1 Introduction 1.1 History of the Focusing X-Ray Telescope A lot of astrophysical objects emit, fluoresce, or reflect X-rays, from galaxy clusters [1], through black