Simulated Observations of Galaxy Clusters for Current and Future X-Ray Surveys

Total Page:16

File Type:pdf, Size:1020Kb

Simulated Observations of Galaxy Clusters for Current and Future X-Ray Surveys TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ MAX-PLANCK-INSTITUT FUR¨ EXTRATERRESTRISCHE PHYSIK Simulated Observations of Galaxy Clusters for Current and Future X-ray Surveys Martin L. Muhlegger¨ Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Physik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Ratz Pr¨ufer der Dissertation: 1. Hon.-Prof. Dr. G. Hasinger 2. Univ.-Prof. Dr. L. Oberauer Die Dissertation wurde am 27.07.2010 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Physik am 02.11.2010 angenommen. TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Simulated Observations of Galaxy Clusters for Current and Future X-ray Surveys Dissertation von Martin L. Muhlegger¨ 10. November 2010 MAX-PLANCK-INSTITUT FUR¨ EXTRATERRESTRISCHE PHYSIK iv Abstract Clusters of galaxies are versatile tools for both astrophysics and cosmology. In the X-ray band, clusters are clearly identifiable by their distinct extended emission from the hot Intra Cluster Medium, which qualifies X-ray search techniques as a preferred method for cluster surveys. One of the currently active X-ray cluster surveys is the XMM-Newton Distant Cluster Project (XDCP), with the main objective to identify and study high redshift (z & 0.8) clusters using XMM archival data. The next generation all-sky X-ray cluster survey will be performed with eROSITA (extended ROentgen Survey with an Imaging Telescope Array), which is currently under development in a Russian-German collaboration led by the Max-Planck-Institute for Extraterrestrial Physics (MPE). Identifying clusters in X-ray surveys is a challenging task, but has the advantage that the surveys can be calibrated by simulations to fully exploit them in statistical studies. In this thesis, I have pursued three main projects, which are all connected to the detection of galaxy clusters in X-ray surveys: (1) As a hardware related project, I developed a new sub-pixel resolution algorithm making use of split events in X-ray CCDs. With the enhanced resolution, the measured Point Spread Function (PSF) of the first eROSITA mirror shells could be characterized with improved accuracy. A test measurement showed, that the derived half energy width of the PSF could be decreased by 18 % with respect to an analysis with standard CCD resolution. (2) For the upcoming eROSITA mission, I developed an image simulator, which combines large-scale structure simulations of galaxy clusters with point-sources and realistic background components as well as instrumental effects, such as the PSF, the spectral response, and sub-pixel resolution. The first simulated images will be used as input for the characterization of the cluster detection capabilities of eROSITA, once a dedicated analysis software becomes available in the near future. In order to allow predictions of the eROSITA cluster yield, I followed an alterna- tive approach using all-sky maps of exposure time and galactic neutral hydrogen, and a redshift dependent cluster luminosity function. With this, I could estimate the number of clusters being detectable in each 1◦ 1◦ sky pixel and dz = 0.01 redshift bin based on globally defined count limits. Relying on results× from earlier X-ray cluster surveys with ROSAT or XMM-Newton, I was able to confirm the feasibility of the scientific goal with the derived expectation values for the number of detectable clusters in the range from 85 000 to 177 000 based on realistic count limits from 100 to 50 photons. (3) The largest project within this thesis was the characterization of the detection sensitivity of the XDCP. I developed an image simulator tailored to XMM-Newton as a pointing instrument, which adds β-model clusters to real XMM observations. In a large simulation run including 2.5 million model clusters, I could determine the completeness functions of 160 XDCP pointings, i.e. the detection probability depending on the core radius rc, the number of photons Nph, and the off-axis angle θ at which the cluster was observed. By assuming a realistic rc distribution, I calculated the flux-dependent sky coverage of these fields. The average combined flux limit for a −15 −2 −1 50% completeness level was determined to be flim(0.5 2.0 keV) = 5.7 10 erg cm s ′ − × ′ for a maximum off-axis angle of θmax = 12 . Using a more conservative θmax = 10 , implying a loss of 30% of the survey area, would only marginally improve the flux limit by 3.5%. The simulation tools developed within this thesis will allow further extensive studies on cluster detection with XMM-Newton and eROSITA and serve as a starting point for testing and improving the currently developed sophisticated data analysis algorithms, which are required to process the extensive amount of all-sky survey data to be expected from eROSITA. v vi Zusammenfassung Galaxienhaufen sind vielseitige Studienobjekte, sowohl f¨ur die Astrophysik als auch f¨ur die Kos- mologie. Im R¨ontgenlicht sind Galaxienhaufen durch ihre charakteristische ausgedehnte Emis- sion des heißen Haufengases klar indentifizierbar. Dies qualifiziert R¨ontgenbeobachtungen als bevorzugte Suchmethode f¨ur Galaxienhaufen. Eine der aktuell aktiven Durchmusterungen ist das XMM-Newton Distant Cluster Project (XDCP), mit dem Ziel, Galaxienhaufen bei hoher Rotver- schiebung (z & 0.8) in XMM-Archivdaten zu identifizieren und zu studieren. Die Himmelsdurchmusterung der n¨achsten Generation wird mit eROSITA (extended ROent- gen Survey with an Imaging Telescope Array) durchgef¨uhrt werden, welches zur Zeit in einer russisch-deutschen Kollaboration unter Federf¨uhrung des Max-Planck-Instituts f¨ur extraterrestri- sche Physik (MPE) entwickelt wird. Die Identifikation von Galaxienhaufen in R¨ontgendurchmu- sterungen ist eine Herausforderung, hat aber den Vorteil, dass die Daten mit Hilfe von Simulatio- nen kalibriert werden k¨onnen, um ihr volles Potential in statistischen Studien zu nutzen. In dieser Arbeit habe ich haupts¨achlich drei Themen bearbeitet, die alle mit dem Nachweis von Galaxienhaufen in R¨ontgendurchmusterungen verkn¨upft sind: (1) Als Hardware-nahes Projekt entwickelte ich einen neuen Algorithmus f¨ur Sub-Pixel-Auf- l¨osung auf der Basis von Split-events in R¨ontgen-CCDs. Mit der verbesserten Aufl¨osung kann die gemessene Punktbildfunktion (PSF) der ersten eROSITA-Spiegelschalen mit h¨oherer Genauigkeit charakterisiert werden. In einer Testmessung konnte die abgeleitete halbe Energiebreite der PSF, im Vergleich zu einer Messung mit Standard-CCD-Aufl¨osung, um 18 % gesenkt werden. (2) F¨ur die bevorstehende eROSITA-Mission entwickelte ich einen Bildsimulator, der Simula- tionen der großr¨aumigen Struktur und Galaxienhaufen mit Punktquellen und realistischen Hinter- grundkomponenten kombiniert, sowie instrumentelle Effekte, wie PSF, spektrale Empfindlichkeit und Sub-Pixel-Aufl¨osung ber¨ucksichtigt. Die ersten simulierten Bilder werden als Grundlage f¨ur die Charakterisierung der Haufen-Nachweisf¨ahigkeit von eROSITA verwendet werden, sobald eine dedizierte Analyse-Software in naher Zukunft zur Verf¨ugung steht. Um Vorhersagen zum Ertrag an Galaxienhaufen mit eROSITA treffen zu k¨onnen, verfolgte ich einen alternativen Ansatz unter Verwendung von Himmelskarten von Belichtungszeit und galaktischem neutralem Wasser- stoff, sowie einer Rotverschiebungs-abh¨angigen Leuchtkraftfunktion von Galaxienhaufen. Damit konnte ich die Zahl der detektierbaren Haufen pro 1◦ 1◦ Himmelspixel und dz = 0.01 Rotver- × schiebungs-Intervall auf der Basis von global definierten minimalen Photonenzahlen absch¨atzen. Beruhend auf Ergebnissen von fr¨uheren R¨ontgendurchmusterungen mit ROSAT und XMM-New- ton konnte ich die Realisierbarkeit der wissenschaftlichen Zielsetzung von eROSITA best¨atigen, wobei der Erwartungswert f¨ur die Zahl der detektierbaren Haufen im Bereich von 85 000 bis 177 000 liegt, bei realistischen Untergrenzen von 100 bis 50 Photonen pro Haufen. (3) Das umfangreichste Projekt im Rahmen dieser Arbeit war die Charakterisierung der Sensi- tivit¨at von XDCP. Dazu entwickelte ich einen auf XMM-Newton, als ein im pointierten Modus be- triebenes Observatorium, zugeschnittenen Bildsimulator, der β-Modell-Haufen zu realen XMM- Beobachtungen hinzuf¨ugt. In einem umfassenden Simulationslauf mit 2,5 Millionen Modell- Haufen konnte ich die Vollst¨andigkeits-Funktionen von 160 XDCP Feldern bestimmen, d.h. die Entdeckungswahrscheinlichkeit in Abh¨angigkeit von Core Radius rc, Photonenzahl Nph und Off- Axis-Winkel θ, bei welchem der Haufen beobachtet wurde. Unter Annahme einer realistischen rc- Verteilung berechnete ich die flussabh¨angige Himmelsabdeckung dieser Felder. Das durchschnitt- vii liche Flusslimit f¨ur ein Vollst¨andigkeits-Niveau von 50% bestimmte ich zu flim(0.5 2.0 keV) = −15 −2 −1 ′ − 5.7 10 erg cm s f¨ur einen maximalen Off-Axis-Winkel von θmax = 12 . Eine konser- × ′ vativere Bechr¨ankung auf θmax = 10 , entsprechend einem um 30% reduzierten Raumwinkel der Durchmusterung, w¨urde das Flusslimit nur marginal um 3.5% verbessern. Die in dieser Arbeit entwickelten Simulations-Werkzeuge werden weitere umfangreiche Stu- dien zur Galaxienhaufen-Detektierbarkeit mit XMM-Newton und eROSITA erm¨oglichen. Des Weiteren dienen sie als Startpunkt f¨ur das Testen und Verbessern von zur Zeit entwickelten fort- schrittlichen Datenanalyse-Algorithmen, die zur Prozessierung der von eROSITA zu erwartenden erheblichen Datenmenge notwendig sind. viii Table of Contents 1 Introduction 1 2 Clusters of Galaxies 5 2.1 Overview .....................................
Recommended publications
  • GRIPS-Gamma-Ray Imaging, Polarimetry and Spectroscopy
    Experimental Astronomy manuscript No. (will be inserted by the editor) GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy www.grips-mission.eu? Jochen Greiner · Karl Mannheim · Felix Aharonian · Marco Ajello · Lajos G. Balasz · Guido Barbiellini · Ronaldo Bellazzini · Shawn Bishop · Gennady S. Bisnovatij-Kogan · Steven Boggs · Andrej Bykov · Guido DiCocco · Roland Diehl · Dominik Els¨asser · Suzanne Foley · Claes Fransson · Neil Gehrels · Lorraine Hanlon · Dieter Hartmann · Wim Hermsen · Wolfgang Hillebrandt · Rene Hudec · Anatoli Iyudin · Jordi Jose · Matthias Kadler · Gottfried Kanbach · Wlodek Klamra · J¨urgenKiener · Sylvio Klose · Ingo Kreykenbohm · Lucien M. Kuiper · Nikos Kylafis · Claudio Labanti · Karlheinz Langanke · Norbert Langer · Stefan Larsson · Bruno Leibundgut · Uwe Laux · Francesco Longo · Kei'ichi Maeda · Radoslaw Marcinkowski · Martino Marisaldi · Brian McBreen · Sheila McBreen · Attila Meszaros · Ken'ichi Nomoto · Mark Pearce · Asaf Peer · Elena Pian · Nikolas Prantzos · Georg Raffelt · Olaf Reimer · Wolfgang Rhode · Felix Ryde · Christian Schmidt · Joe Silk · Boris M. Shustov · Andrew Strong · Nial Tanvir · Friedrich-Karl Thielemann · Omar Tibolla · David Tierney · Joachim Tr¨umper · Dmitry A. Varshalovich · J¨orn Wilms · Grzegorz Wrochna · Andrzej Zdziarski · Andreas Zoglauer Received: 21 April 2011 / Accepted: 2011 ? See this Web-site for the author's affiliations. Jochen Greiner Karl Mannheim MPI f¨urextraterrestrische Physik Inst. f. Theor. Physik & Astrophysik, Univ. W¨urzburg arXiv:1105.1265v1 [astro-ph.HE] 6 May 2011 85740 Garching, Germany 97074 W¨urzburg,Germany Tel.: +49-89-30000-3847 Tel.: +49-931-318-500 E-mail: [email protected] E-mail: [email protected] 2 Abstract We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig.
    [Show full text]
  • A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes
    A Stacked Prism Lens Concept for Next-Generation Hard X-Ray Telescopes WUJUN MI Doctoral Thesis Stockholm, Sweden 2019 KTH Fysik TRITA-SCI-FOU 2019:41 SE-106 91 Stockholm ISBN 978-91-7873-286-9 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fysik fredagen den 27 september 2019 klockan 10.00 i E3, Osquars backe 14, Kungliga Tekniska Högskolan, Stockholm. © Wujun Mi, September 2019 Tryck: Universitetsservice US AB iii Abstract Over the past half century, the focusing X-ray telescope has played a very prominent role in X-ray astronomy at the frontier of fundamental physics. The finer angular resolution and increased effective area have enabled more and more exciting discoveries and detailed studies of the high-energy universe, including the cosmic X-ray background (CXB) radiation, black holes in active galactic nuclei (AGN), galaxy clusters, supernova remnants, and so on. At present, nearly all the state-of-the-art focusing X-ray telescopes are based on Wolter-I optics or its variations, for which the throughput is severely restricted by the mirror’s surface roughness, figure error, alignment error, and so on. Within the course of this work, we have developed a novel point-focusing refractive lens, the stacked prism lens (SPL), which is built by stacking disks embedded with various number of prismatic rings. As a Fresnel-like X-ray lens, it could provide a significantly higher efficiency and larger effective aper- ture than the conventional compound refractive lenses (CRLs). The aim of this thesis is to demonstrate the feasibility of the stacked prism lens and investigate the application to a next-generation hard X-ray telescope.
    [Show full text]
  • Ii. Future Missions (A) X-Ray and Gamma-Ray Missions
    II. FUTURE MISSIONS (A) X-RAY AND GAMMA-RAY MISSIONS Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 29 Sep 2021 at 08:47:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100076909 RONTGEN SATELLITE J. TRUMPER MPI fur Extraterrestrische Physik, D-8O46 Garching-bei-Miinchen The ROSAT launch on June 1, 1990 happened to be after the IAU Colloquium No. 123 before the deadline for submitting manuscripts. I therefore take the liberty to deviate grossly from the manuscript of my talk and give a short up to date mission summary. A more complete description of the mission can be found in References 1 and 2. The launch of the Delta II rocket was perfect and the orbital parameters reached are very close to nominal: height 580 km, inclination 53°. The predicted satellite's lifetime in this orbital is at least 10 years. The switch-on of the spacecraft and instrument subsystems could be completed without any losses. All systems are in good health. ROSAT carries two instruments: — a large Wolter telescope covering the energy range 0.1-2.4 keV with two position sensitive proportional counters (PSPC) and one high resolution imager (HRI) and — Wolter-Schwarzschild-telescope with two channel plate detectors covering the adjacent XUV-range. The novel features of the X-ray telescope are: — large collecting power — good spectral resolution of the PSPC's: AE/E ~ 0.4 at 1 keV; four colours — low background of the PSPC's: 3 x 10-5 cts/arcmin2 sec — high angular resolution with the HRI: < 4 arcsec half power width (PSPC ~ 25 arcsec) The ROSAT mission comprises three phases: After the initial calibration and verification phase an all sky survey is carried out during half a year, followed by a period of pointed observations.
    [Show full text]
  • Metrology of X-Ray Optics in Pursuit of Perfection
    Metrology of X-ray Optics In Pursuit of Perfection Peter Z. Takacs Brookhaven National Laboratory Laboratory for Forensic Metrology Center for Archaeo-metrology MEADOW 2013 Workshop, ICTP Trieste, Italy 28-30 October 2013 1 Roadmap § One man's journey in pursuit of the perfect surface • A retrospective on how profilometry has improved the state-of-the-art of fabrication of SR optics over the past 30+ years. § Brief history of x-ray optics § Surface finish metrology § Surface figure metrology This presentation has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Brookhaven National Laboratory, the Department of Energy, or the United States Government. The views and opinions expressed herein do not necessarily state or reflect those of Brookhaven National Laboratory, the Department of Energy, or the United States Government, and may not be used for advertising or product endorsement purposes. 2 Giovanni Sostero – friend and colleague 3 Reflective x-ray optics BRIEF HISTORICAL INTRODUCTION 4 Brief history of significant events in x-ray science Autoradiography imaging Crystal structure Surface reflection 1910 1920 1930 1895 1900 1912 1918 1923 1899 Recognizes Total external reflection X-rays are electromagnetic measurements as demonstrated waves (Haga&Wind) total external reflection Röntgen discovers x-rays Diffraction from crystals A. Einstein W. H. Bragg W. L. Bragg (1879-1955) Arthur Holly Compton Max von Laue (1862-1942) (1890-1971) (1892-1962) (1879-1960) Wilhelm Conrad Röntgen (1845-1923) 5 A brief history – cont.
    [Show full text]
  • The Satellite with X-Ray Vision
    The Satellite with X-ray Vision In the early hours of October 23, 2011, ROSAT was engulfed in the waves of the Indian Ocean. This was the end of a success story that is unparalleled in German space exploration research. The satellite, developed and built by a team led by Joachim Trümper from the Garching- based Max Planck Institute for Extraterrestrial Physics, not only found more than 150,000 new cosmic X-ray sources, it also revolutionized astronomy. TEXT HELMUT HORNUNG The pile of debris came from the southwest, flew over the Gulf of on June 1, 1990 like it was yesterday, and was, of course, present at Bengal and finally crashed into the sea at 450 km/h. There were no Cape Canaveral Space Center in the US. A few days before lift-off, witnesses. Didn’t the most famous German research satellite de- he once again traveled in the elevator to the top of the Delta II serve a more fitting finale? At least the German weekly news mag- launch system. “I took a final look at ROSAT through a window azine Der Spiegel took pity and tried to save what could be saved. there,” says the astronomer. In an article entitled “Directly in its Path” published on January 30, While Trümper was with some of his team members in the 2012, it reported that ROSAT fell to Earth “just barely missing the US, those who had remained at home witnessed the launch at the Chinese capital Beijing.” The satellite “would likely have torn deep Oberpfaffenhofen-based research center.
    [Show full text]
  • Advanced Certification in Science - Level I
    Advanced Certification in Science - Level I www.casiglobal.us | www.casi-india.com | CASI New York; The Global Certification body. Page 1 of 391 CASI New York; Reference material for ‘Advanced Certification in Science – Level 1’ Recommended for college students (material designed for students in India) About CASI Global CASI New York CASI Global is the apex body dedicated to promoting the knowledge & cause of CSR & Sustainability. We work on this agenda through certifications, regional chapters, corporate chapters, student chapters, research and alliances. CASI is basically from New York and now has a presence across 52 countries. World Class Certifications CASI is usually referred to as one of the BIG FOUR in education, CASI is also referred to as the global certification body CASI offers world class certifications across multiple subjects and caters to a vast audience across primary school to management school to CXO level students. Many universities & colleges offer CASI programs as credit based programs. CASI also offers joint / cobranded certifications in alliances with various institutes and universities. www.casiglobal.us CASI India CASI India has alliances with hundreds of institutes in India where students of these institutes are eligible to enroll for world class certifications offered by CASI. The reach through such alliances is over 2 million citizens CASI India also offers cobranded programs with Government Polytechnic and many other institutes of higher learning. CASI India has multiple franchises across India to promote certifications especially for school students. www.casi-india.com Volunteering @ CASI NY CASI India / CSR Diary also provide volunteering opportunities and organizes mega format events where in citizens at large can also volunteer for various causes.
    [Show full text]
  • X-Ray Detectors ƒX-Ray Spectroscopy
    WhatWhat toto measure?measure? X-ray emission carries various information – quantify: • the position in the sky • the time of arrival • the energies of the X-rays • the brightness of the source (ratio of events over exposure time) • [polarization] Detectors for non-focusing telescopes X-ray focusing optics X-ray detectors X-ray spectroscopy <HE-Astro_TUM_SS2003_10> Jochen Greiner NonNon--focusingfocusing XX--rayray detectorsdetectors to avoid detection of cosmic rays shield works as second “detector“ CR: signal in both devices X-rays: signal only in detector ¨ Distinction possible to avoid light from unwanted directions equipped with metallic tubes <HE-Astro_TUM_SS2003_10> Jochen Greiner Collimator:Collimator: ExampleExample constructionconstruction very high-Z material walls extremely thin ¨ max. aperture but thick enough to stop X-rays of the highest energies usage for very long time possible cheap <HE-Astro_TUM_SS2003_10> Jochen Greiner RotationRotation ModulationModulation CollimatorCollimator spinning satellite ¨ rotating collimator ¨ spinning transmission bands on the sky proportional counter behind collimator observation: count rate vs. time modulation of the count rate depends on the position of the overall FOV ¨ locating X-ray source drawback: source confusion <HE-Astro_TUM_SS2003_10> Jochen Greiner 1951 WolterWolter OpticsOptics 1960 Hans Wolter’s discovery of a mirror Riccardo Giacconi & Bruno Rossi configuration using reflective optics construction of „analogous“ set of optics (for developing an X-ray microscope)
    [Show full text]
  • X- & Γ-Ray Instrumentation and Everything Else
    X- & γ-ray Instrumentation and everything else The Dark Ages Used nuclear physics detectors Proportional Counters Scintillators Simple collimators HEAO A1 & A2: 2 x 8 degree field of view Confusion limit is about 200 sources over whole sky Or more complex ones Modulation collimator, e.g. HEAO A3 – resolution of a few arcmin within a 4 degree field Coded masks Imaging has been revolutionary X-ray instruments are strongly affected by the necessity to use grazing incidence reflection. Wolter Telescopes provide the usual gains we expect from telescopes in the optical, infrared, and radio. They consist of conic sections but operate at grazing incidence. They are hopelessly in violation of the Abbe Sine Condition. On-axis they provide good images (this is for Chandra). Corrective optics are not feasible, so the off-axis images degrade quickly as the field angle increases. The Basic Chandra Focal Plane Instrument AXAF CCD Imaging Spectrometer (ACIS) Ten 1024 X 1024 CCDs Frame transfer readout Read out every 41msec Quantum yield: 1 electron/3.6eV CCDs give good results from about 0.6 to 10 keV. a = back illuminated, b = front illuminated, c = deep depletion, d = pn CCD The Galactic Center The CCDs are capable of limited energy resolution. These pre-launch predictions are a factor of 2 – 3 optimistic because of damage to the CCDs by cosmic rays on orbit. Bragg diffraction provides better spectral resolution. Uses the structure of a crystal as the diffraction grating Constructive interference for m 2d sin Therefore, for d = 2 X 10-4 mm, at 10 kev (1 X 10-4 mm), m = 1 = 15o The High Energy Transmission Grating (HETG) for Chandra The grating has a medium energy (outer rings) and a high energy section (inner rings).
    [Show full text]
  • Optimizing the Performance of As-Manufactured Grazing Incidence X-Ray Telescopes Using Mosaic Detector Arrays
    OPTIMIZING THE PERFORMANCE OF AS-MANUFACTURED GRAZING INCIDENCE X-RAY TELESCOPES USING MOSAIC DETECTOR ARRAYS by MARTINA IVANOVA ATANASSOVA M.S. Engineering Physics, Sofia University St. Kliment Ohridski, Bulgaria 1999 M.S. Optics, College of Optics and Photonics, University of Central Florida, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Spring Term 2005 Major Professor: James E. Harvey © 2005 Martina Ivanova Atanassova ii ABSTRACT The field of X-ray astronomy is only forty (43) years old, and grazing incidence X-ray telescopes have only been conceived and designed for a little over fifty (50) years. The Wolter Type I design is particularly well suited for stellar astronomical telescopes (very small field-of- view). The first orbiting X-ray observatory, HEAO-1 was launched in 1977, a mere twenty-eight (28) years ago. Since that time large nested Wolter Type I X-ray telescopes have been designed, build, and launched by the European Space Agency (ROSAT) and NASA (the Chandra Observatory). Several smaller grazing incidence telescopes have been launched for making solar observations (SOHO, HESP, SXI). These grazing incidence designs tend to suffer from severe aberrations and at these very short wavelengths scattering effects from residual optical fabrication errors are another major source of image degradation. The fabrication of precision optical surfaces for grazing incidence X-ray telescopes thus poses a great technological challenge. Both the residual “figure” errors and the residual microroughness or “finish” of the manufactured mirrors must be precisely measured, and the image degradation due to these fabrication errors must be accurately modeled in order to predict the final optical performance of the as-manufactured telescope.
    [Show full text]
  • Realization of X-Ray Telescopes—From Design to Performance
    Exp Astron (2009) 26:95–109 DOI 10.1007/s10686-009-9163-8 REVIEW ARTICLE Realization of X-ray telescopes—from design to performance Bernd Aschenbach Received: 23 March 2009 / Accepted: 26 March 2009 / Published online: 22 April 2009 © The Author(s) 2009. This article is published with open access at Springerlink.com Abstract For more than 45 years the building of X-ray telescopes for solar and astronomical observations has been practised with significant performance improvement. The various techniques applied are reviewed emphazising the impact of proper mirror material choice, grinding and polishing improvements and the role of metrology. Keywords Astronomy · X-ray telescopes · Imaging · Grazing incidence 1 Introduction This symposium celebrates the 400th anniversary of the invention of the optical telescope. X-ray telescopes are much younger, not even 60 years of age. Riccardo Giacconi, the “father” of X-ray astronomy and the astronomically used X-ray telescope, has familiarized us with the early beginnings and the scientific success of both X-ray astronomy in general and X-ray telescopes in particular, emphasizing the history in the United States of America. In the late 1960’s, early 1970’s experimental studies on developing X-ray telescopes were initiated also in several countries in Europe, including the Netherlands, the United Kingdom, Germany and the former Tchechoslovakia, and Italy and Denmark later on. In my talk I will concentrate on the physical principles of X-ray telescopes, the technological and technical challenges and the B. Aschenbach (B) Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany e-mail: [email protected] 96 Exp Astron (2009) 26:95–109 performance of the various approaches, which of up to today have resulted in more than ten space-borne missions with X-ray telescopes for astronomical observations.
    [Show full text]
  • Erosita Date : 2007-10-18 Mission Description Page : 1
    Ref. : eRO-MPE-DD-13-01_2 eROSITA Date : 2007-10-18 Page : 1 Mission Description Abstract : This document describes the Spectrum-RG mission in general and the eROSITA instrument in particular. This document serves as basis for the planning and development of eROSITA. Change Record Issue Date Description of Change Affected Pages 1 2007-06-05 RID Response All 2 2007-10-18 Update, Changes are highlighted many Distribution List Organisation Name Organisation Name Organisation Name MPE Document server DLR H. Scheuerle Approvals Function Name Date Signature Author P. Predehl 2007-10-18 N/A Product Assurance N/A Project Manager N/A N/A System Engineer N/A Principal Investigator N/A Ref. : eRO-MPE-DD-13-01_2 eROSITA Date : 2007-10-18 Mission Description Page : 2 CONTENTS CONTENTS........................................................................................................................................................... 2 1 SCOPE......................................................................................................................................................... 3 2 REFERENCES............................................................................................................................................ 4 APPLICABLE DOCUMENTS.................................................................................................................................. 4 REFERENCE DOCUMENTS.................................................................................................................................
    [Show full text]
  • X-Ray Astronomy: Why and How
    X-Ray Astronomy: Why and How Emrah Kalemci Jörn Wilms Sabancı Universitesi University of Erlangen-Nuremberg Black Hole Universe Purpose of this lecture: Why do we do X-Ray Astronomy? • – Accretion on Black Holes – Diagnostic Possibilities How do we do X-Ray Astronomy? • – The need for Space – Balloons, Rockets, Satellites – Detection methods for X-rays and Gamma-rays Literature LONGAIR, M.S., 1992, High Energy Astrophysics, Vol. 1: Particles, Photons, and their Detection, Cambridge: Cambridge Univ. Press, 50e ∼ Good introduction to high energy astrophysics, the 1st volume deals extensively with high en- ergy procsses, the 2nd with stars and the Galaxy. The announced 3rd volume has never ap- peared. Unfortunately, everything is in SI units. TRÜMPER, J., HASINGER, G. (eds.), 2007, The Universe in X-rays, Heidelberg: Springer, 96.25e Recent book giving an overview of X-ray astronomy written by a group of experts (mainly) from Max Planck Institut für extraterrestrische Physik, the central institute in this area in Ger- many. BRADT, H., 2004, Astronomy Methods: A Physical Approach to Astronomical Observations, Cambridge: Cambridge Univ. Press, $50 Good general overview book on astronomical observations at all wavelengths. Introduction 2 Literature CHARLES, P., SEWARD, F., 1995, Exploring the X-ray Universe, Cambridge: Cambridge Univ. Press, out of print Summary of X-ray astronomy, roughly presenting the state of the early 1990s. SCHLEGEL, E.M., 2002, The restless universe, Oxford: Oxford Univ. Press, 32e Popular X-ray astronomy book summarizing results from XMM-Newton and Chandra. ASCHENBACH, B. et al., 1998, The invisible sky, New York: Copernicus Popular “table top” book summarizing the results of the ROSAT satellite, with many beautiful pictures.
    [Show full text]