Materials and Methods

Total Page:16

File Type:pdf, Size:1020Kb

Materials and Methods STRUCTURAL STUDIES OF THE KLEBSIELLA PNEUMONIAE PANTOTHENATE KINASE IN COMPLEX WITH PANTOTHENAMIDE SUBSTRATE ANALOGUES by Buren Li A thesis submitted in conformity with the requirements for the degree of Master of Science. Graduate Department of Pharmacology and Toxicology University of Toronto. © Copyright by Buren Li (2012) Structural studies of the Klebsiella pneumoniae pantothenate kinase in complex with pantothenamide substrate analogues Buren Li Master of Science 2012 Department of Pharmacology and Toxicology University of Toronto ABSTRACT N-substituted pantothenamides are analogues of pantothenate, the precursor of the essential metabolic cofactor coenzyme A (CoA). These compounds are substrates of pantothenate kinase (PanK) in the first step of CoA biosynthesis, possessing antimicrobial activity against multiple pathogenic bacteria. This enzyme is an attractive target for drug discovery due to low sequence homology between bacterial and human PanKs. In this study, the crystal structure of the PanK from the multidrug-resistant bacterium Klebsiella pneumoniae (KpPanK) was first solved in complex with N- pentylpantothenamide (N5-Pan). The structure reveals that the N5-Pan pentyl tail is located within a highly aromatic pocket, suggesting that an aromatic substituent may enhance binding affinity to the enzyme. This finding led to the design of N-pyridin-3- ylmethylpantothenamide (Np-Pan) and its co-crystal structure with KpPanK was solved. The structure reveals that the pyridine ring adopts alternative conformations in the aromatic pocket, providing the structural basis for further improvement of pantothenamide-binding to KpPanK. ii ACKNOWLEDGEMENTS First and foremost, I would like to extend my gratitude to my parents and sisters for their unwavering love and support. My time in the graduate program has been made easier and enjoyable because of generous laboratory colleagues who are always willing to share their expertise and knowledge. I would like to especially thank Dr. BumSoo Hong for all those hours we spent troubleshooting my errors and of course, talking about life. I am also grateful to Johnny Guan, who was my mentor when I first arrived at the Park lab and has encyclopedic knowledge of all laboratory practices and techniques. It was also a pleasure to have worked alongside fellow students Hanyoul Lee, Cathy Kim, Kathy Mottaghi, Scott Hughes and Negar Nosrati. I would like to thank former members of the Park group, Drs. Yufeng Tong, Nan Zhong, as well as Lucy Nedyalkova, Slav Dimov and Limin Shen, who have never hesitated to lend a hand in my times of need. All work presented in this thesis was performed at the Structural Genomics Consortium (SGC), a truly ideal environment for structural biology research. I am indebted to Dr. Wolfram Tempel for helping me with crystal screening and Synchrotron data collection, and to Drs. Guillermo Senisterra and Abdellah Al-Hassani for valuable technical assistance in running kinetic assays. I would also like to extend my thanks to Drs. David Smil and Yuri Bolshan, the chemists at the SGC who generously provided the compounds used in these studies. I have also benefitted from the kindness and expertise of my co-supervisor Dr. Peter McPherson and advisor Dr. David Riddick, both of whom agreed to serve in their iii respective capacities without hesitation. They have my thanks for going above and beyond what I expected whenever I consult with them. I would also like to thank my defense committee members: Dr. Martin Zack (chair), Dr. Jeffrey Lee (external appraiser), Dr. Hong-Shuo Sun (internal appraiser) and Dr. David Riddick (additional voting member). Their careful review of this thesis is greatly appreciated. Last but definitely not least, I would like to extend my sincerest thanks to my supervisor Dr. Hee-Won Park. I feel extremely fortunate to have met such a bighearted, inspiring and selfless mentor. The rewarding journey wasn’t always smooth, and results didn’t always come readily. But I would always be reassured by Dr. Park that with hard work and strong convictions, things will work out. iv TABLE OF CONTENTS Abstract ii Acknowledgements iii-iv Table of Contents v-vi Lists of Tables and Appendix vii List of Figures viii-ix Abbreviations x-xi 1. INTRODUCTION 1.1 Urgency for antimicrobial drug discovery 1-3 1.2 Pantothenate Essentiality and Uptake Mechanisms 3-5 1.3 Overview of Coenzyme A 5-11 1.4 Synthesis of Coenzyme A 11 1.4.1 De novo Pantothenate Synthesis 12 1.4.2 Coenzyme A Synthesis from Pantothenate 14 1.4.2.1 Conversion of Pantothenate to 4’-phosphopantothenate 16 1.4.2.2 Conversion of 4’-phosphopantothenate to 4’- 16-17 phosphopantetheine 1.4.2.3 Conversion of 4’-phosphopantetheine to coenzyme A 17 1.5 Pantothenate Kinase as point of drug discovery 17-18 1.5.1 Pantoyltaurine 20 1.5.2 N’-pantoyl-substituted amide 20-21 1.5.3 N-substituted pantothenamide 21-22 1.6 Overview of Pantothenate Kinases 24 1.6.1 Type I Pantothenate Kinases 24-27 1.6.2 Type II Pantothenate Kinases 27-31 1.6.3 Type III Pantothenate Kinases 31-32 1.7 Hypothesis and Rationale for Study 38 1.7.1 Aims and Approaches 38-39 1.7.2 Rationale for Experimental Approach 1.7.2.1 Structure Determination of Macromolecules 39 1.7.2.2 X-ray Crystallography 39-40 1.7.2.3 Protein Crystallization 40 1.7.2.4 Data Collection 42 1.7.2.5 Structure Determination 42-43 2. MATERIALS AND METHODS 2.1 Materials 43-44 2.2 Methods 2.2.1 Preparation of Expression Plasmid 46 2.2.2 Protein Expression and Purification 49-50 2.2.3 Protein Crystallization and Data Collection 52-53 2.2.4 Structure Determination, Refinement and Validation 57-59 v 2.2.5 Spectrophotometric Assessment of Substrate Kinetics 63 3. RESULTS 3.1 Structural Overview of KpPanK 65 3.1.1 Nucleotide-binding site 65-66 3.1.2 N5-Pan binding site of KpPanK 69 3.1.3 Np-Pan binding site of KpPanK 71-72 3.2 KpPanK substrate kinetics 74 4. DISCUSSION 4.1 Comparison with EcPanK 77-78 4.2 Comparison with MtPanK 80-81 4.3 Modeling of a Branched Compound 84-85 4.4 KpPanK Substrate Kinetics 88 4.5 Summary of Findings 88-89 4.6 Recommendations for Future Studies 89-92 References 93-100 vi LIST OF TABLES Table I Sequences of primers used to generate each KpPanK construct. 48 Table II Summary of substrates used for KpPanK co-crystallization and the 56 best resolution achieved. Table III Data collection and refinement statistics for KpPanK crystals. 61 Table IV Characterization of KpPanK substrate kinetics. 76 Table V Summary of polar interactions involving the pantothenate moiety of 82 substrates in KpPanK, EcPanK and MtPanK structures. vii LIST OF FIGURES Figure 1 Chemical structure of coenzyme A. 7 Figure 2 Overview of fatty acid synthesis. 9 Figure 3 De novo pantothenate biosynthesis pathway in bacteria. 13 Figure 4 CoA biosynthesis from pantothenate in bacteria. 15 Figure 5 Chemical structures of pantothenate and related derivatives. 19 Figure 6 Proposed mechanisms of pantothenamide toxicity. 23 Figure 7 Phylogenetic distributions of prokaryotic and eukaryotic 33 pantothenate kinases from notable organisms. Figure 8 Sequence-based alignments of prokaryotic and eukaryotic PanKs 34-36 from types I (A), II (B), and III (C). Figure 9 Comparison of the structures and dimer folds of types I, II and III 37 bacterial PanKs. Figure 10 Phase diagram of crystallization. 41 Figure 11 Overview of the pET28-MHL expression vector. 45 Figure 12 Small scale test of expression of KpPanK constructs. 47 Figure 13 Purification of KpPanK. 51 Figure 14 Crystals of KpPanK co-crystallized with N5-Pan. 54 Figure 15 Crystals of KpPanK co-crystallized with Np-Pan. 55 Figure 16 Diffraction patterns of KpPanK crystals. 60 Figure 17 Matthews Probability calculation of the oligomeric state of the 62 KpPanK asymmetric unit. Figure 18 Pyruvate kinase (PK)/lactate dehydrogenase (LDH) coupled assay 64 for characterization of kinase activity. Figure 19 Structure of a KpPanK subunit. 67 viii Figure 20 Interaction of KpPanK nucleotide-binding residues with ADP. 68 Figure 21 Residues of the KpPanK substrate-binding site. 70 Figure 22 Interactions of the pyridine of Np-Pan with substrate pocket 73 residues. Figure 23 Michaelis-Menten plot of reaction velocity vs. substrate 75 concentration. Figure 24 Structural differences between KpPanK and EcPanK substrate 79 binding sites. Figure 25 Comparison of the substrate-binding sites of KpPanK and MtPanK. 83 Figure 26 Modeling of a branched version of Np-Pan in the KpPanK substrate- 86 binding site. Figure 27 Modeling of a branched derivative of Np-Pan in human PanK3. 87 ix ABBREVIATIONS ACP = acyl carrier protein ACS = acetyl-CoA synthetase AnPanK = Aspergillus nidulans pantothenate kinase ASKHA = acetate and sugar kinase/heat shock protein 70/actin Baf = Bvg accessory factor DPC = dephospho-coenzyme A DPCK = dephospho-coenzyme A kinase EcPanK = Escherichia coli pantothenate kinase Ed-CoA = ethyldethia-CoA ESBL = extended spectrum β-lactamase FAS = fatty acid synthase hPanK3 = human pantothenate kinase isoform 3 IPTG = isopropyl β-D-1-thiogalactopyranoside MIC = minimum inhibitory concentration mPanK = Mus musculus pantothenate kinase MR = molecular replacement MtPanK = Mycobacterium tuberculosis pantothenate kinase N5-Pan = N-pentylpantothenamide N7-Pan = N-heptylpantothenamide N9-Pan = N-nonylpantothenamide Np-Pan = N-pyridin-3’-ylmethylpantothenamide x PanF = pantothenate permease PanK = pantothenate kinase (coaA) P-Pan = 4’-phosphopantothenate PP = 4’-phosphopantetheine PPAT = phosphopantetheine adenyltransferase (coaD) PPC = phosphopantothenoylcysteine PPCDC = phosphopantothenoylcysteine decarboxylase (coaC) PPCS = phosphopantothenoylcysteine synthetase (coaB) RMSD = root mean square deviation SVMT = sodium-dependent multi-vitamin transporter xi 1. INTRODUCTION 1.1 Urgency for antimicrobial drug discovery Drug-resistant pathogens represent a major challenge to healthcare and drug development. Conventional classes of antibiotics that were once capable of controlling infections are becoming more and more ineffective (Rice 2012).
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution
    CH. 13 Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution Electrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. Recall: R3 R4 E Y E Y C C + E Y R1 C C R4 R1 C C R4 − R2 R1 δ+ δ R2 R3 R2 R3 In aromatic rings, however, we see substitution of one of the benzene ring hydrogens for an electrophile. H E + E Y + Y H δ+ δ− The mechanism is the same regardless of the electrophile. It involves two steps: (1) Addition of the electrophile to form a high-energy carbocation. (2) Elimination of the proton to restore the aromatic ring system. H H H H slow E Y + Y step 1 + E δ+ δ− high energy arenium ion H H step 2 fast E E + Y + Y H The first step is the slow step since the aromaticity of the benzene ring system is destroyed on formation of the arenium ion intermediate. This is a high energy species but it is stabilized by resonance with the remaining two double bonds. The second step is very fast since it restores the aromatic stabilization. 1 CH. 13 H H H H H H E E E There are five electrophilic aromatic substitution reactions that we will study. (1) Nitration H NO2 H2SO4 + HNO3 (2) Sulfonation H SO3H + H2SO4 (3) Halogenation with bromine or chlorine H X FeX3 X = Br, Cl + X2 (4) Friedel-Crafts Alkylation H R AlX + RX 3 (5) Friedel-Crafts Acylation O H O C AlX3 R + Cl C R 2 CH.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]
  • Table S1. List of Oligonucleotide Primers Used
    Table S1. List of oligonucleotide primers used. Cla4 LF-5' GTAGGATCCGCTCTGTCAAGCCTCCGACC M629Arev CCTCCCTCCATGTACTCcgcGATGACCCAgAGCTCGTTG M629Afwd CAACGAGCTcTGGGTCATCgcgGAGTACATGGAGGGAGG LF-3' GTAGGCCATCTAGGCCGCAATCTCGTCAAGTAAAGTCG RF-5' GTAGGCCTGAGTGGCCCGAGATTGCAACGTGTAACC RF-3' GTAGGATCCCGTACGCTGCGATCGCTTGC Ukc1 LF-5' GCAATATTATGTCTACTTTGAGCG M398Arev CCGCCGGGCAAgAAtTCcgcGAGAAGGTACAGATACGc M398Afwd gCGTATCTGTACCTTCTCgcgGAaTTcTTGCCCGGCGG LF-3' GAGGCCATCTAGGCCATTTACGATGGCAGACAAAGG RF-5' GTGGCCTGAGTGGCCATTGGTTTGGGCGAATGGC RF-3' GCAATATTCGTACGTCAACAGCGCG Nrc2 LF-5' GCAATATTTCGAAAAGGGTCGTTCC M454Grev GCCACCCATGCAGTAcTCgccGCAGAGGTAGAGGTAATC M454Gfwd GATTACCTCTACCTCTGCggcGAgTACTGCATGGGTGGC LF-3' GAGGCCATCTAGGCCGACGAGTGAAGCTTTCGAGCG RF-5' GAGGCCTGAGTGGCCTAAGCATCTTGGCTTCTGC RF-3' GCAATATTCGGTCAACGCTTTTCAGATACC Ipl1 LF-5' GTCAATATTCTACTTTGTGAAGACGCTGC M629Arev GCTCCCCACGACCAGCgAATTCGATagcGAGGAAGACTCGGCCCTCATC M629Afwd GATGAGGGCCGAGTCTTCCTCgctATCGAATTcGCTGGTCGTGGGGAGC LF-3' TGAGGCCATCTAGGCCGGTGCCTTAGATTCCGTATAGC RF-5' CATGGCCTGAGTGGCCGATTCTTCTTCTGTCATCGAC RF-3' GACAATATTGCTGACCTTGTCTACTTGG Ire1 LF-5' GCAATATTAAAGCACAACTCAACGC D1014Arev CCGTAGCCAAGCACCTCGgCCGAtATcGTGAGCGAAG D1014Afwd CTTCGCTCACgATaTCGGcCGAGGTGCTTGGCTACGG LF-3' GAGGCCATCTAGGCCAACTGGGCAAAGGAGATGGA RF-5' GAGGCCTGAGTGGCCGTGCGCCTGTGTATCTCTTTG RF-3' GCAATATTGGCCATCTGAGGGCTGAC Kin28 LF-5' GACAATATTCATCTTTCACCCTTCCAAAG L94Arev TGATGAGTGCTTCTAGATTGGTGTCggcGAAcTCgAGCACCAGGTTG L94Afwd CAACCTGGTGCTcGAgTTCgccGACACCAATCTAGAAGCACTCATCA LF-3' TGAGGCCATCTAGGCCCACAGAGATCCGCTTTAATGC RF-5' CATGGCCTGAGTGGCCAGGGCTAGTACGACCTCG
    [Show full text]
  • Monoazo Dyes of the Benzothiazole Series, Their Preparation and Use In
    Europâisches Patentamt 0 013 809 (ij) QJJJ EuropeanEurooean Patent Office Qj)l'ï> Publication number: V ^- Office européen des brevets (lD EUROPEAN PATENT SPECIFICATION © Date of publication of patent spécification: 10.08.83 © Int. Cl.3: C 09 B 23/00, C 09 B 29/08, D 06 P 1/18 @^ Application number: 79302860.6 @ Dateof filing: 12.12.79 54) Monoazo dyes of the benzothiazole séries, their préparation and use in dyeing or printing hydrophobic fibres. (30) Priority: 25.12.78 JP 163617/78 @ Proprietor: SUMITOMO CHEMICAL COMPANY, 03.10.79 JP 128308/79 LIMITED 1 5 Kitahama 5-chome Higashi-ku Osaka-shi Osaka-fu (JP) © Date of publication of application: 06.08.80 Bulletin 80/16 @ Inventor: Yoshinaga, Kenja 10-3-314, Sonehigashinocho-2-chome @ Publication of the grant of the patent: Tokonaka-shi (JP) 1 0.08.83 Bulletin 83/32 Inventor: Hashimoto, Kiyoyasu 2-40, Hirata-1-chome Ibaraki-shi (JP) (84) Designated Contracting States: Inventor: Okaniwa, Tetsuo CH DE FR GB IT NL 27, Kuisehonmachi-1 -chome Amagasaki-shi (JP) Inventor: Kenmochi, Hirohito @ References cited: 9-1 5, Matsugaoka-4-chome DE - A - 1 959 777 Takatsuki-shi (JP) FR - A - 1 444 036 GB - A - 944 250 GB - A - 1 448 782 @ Representative: Harrison, Michael Robert et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1 M 6DL(GB) The file contains technical information submitted after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Pantothenate Kinase-Associated Neurodegeneration
    Pantothenate kinase-associated neurodegeneration Description Pantothenate kinase-associated neurodegeneration (formerly called Hallervorden-Spatz syndrome) is a disorder of the nervous system. This condition is characterized by progressive difficulty with movement, typically beginning in childhood. Movement abnormalities include involuntary muscle spasms, rigidity, and trouble with walking that worsens over time. Many people with this condition also develop problems with speech ( dysarthria), and some develop vision loss. Additionally, affected individuals may experience a loss of intellectual function (dementia) and psychiatric symptoms such as behavioral problems, personality changes, and depression. Pantothenate kinase-associated neurodegeneration is characterized by an abnormal buildup of iron in certain areas of the brain. A particular change called the eye-of-the- tiger sign, which indicates an accumulation of iron, is typically seen on magnetic resonance imaging (MRI) scans of the brain in people with this disorder. Researchers have described classic and atypical forms of pantothenate kinase- associated neurodegeneration. The classic form usually appears in early childhood, causing severe problems with movement that worsen rapidly. Features of the atypical form appear later in childhood or adolescence and progress more slowly. Signs and symptoms vary, but the atypical form is more likely than the classic form to involve speech defects and psychiatric problems. A condition called HARP (hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration) syndrome, which was historically described as a separate syndrome, is now considered part of pantothenate kinase-associated neurodegeneration. Frequency The precise incidence of this condition is unknown. It is estimated to affect 1 to 3 per million people worldwide. Causes Mutations in the PANK2 gene cause pantothenate kinase-associated neurodegeneration.
    [Show full text]
  • A Novel Nonsense Mutation in PANK2 Gene in Two Patients with Pantothenate Kinase-Associated Neurodegeneration
    IJMCM Case Report Autumn 2016, Vol 5, No 4 A Novel Nonsense Mutation in PANK2 Gene in Two Patients with Pantothenate Kinase-Associated Neurodegeneration Soudeh Ghafouri-Fard 1, Vahid Reza Yassaee 2, Alireza Rezayi 3, Feyzollah Hashemi-Gorji 2, Nasrin Alipour 2, ∗ Mohammad Miryounesi 2 1. Department of Medical Genetics, Shahid Beheshti University of Medical sciences, Tehran, Iran. 2. Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 3. Pediatric Neurology Department, Loghman Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Submmited 29 June 2016; Accepted 14 August 2016; Published 23 October 2016 Pantothenate kinase- associated neurodegeneration (PKAN) syndrome is a rare autosomal recessive disorder characterized by progressive extrapyramidal dysfunction and iron accumulation in the brain and axonal spheroids in the central nervous system. It has been shown that the disorder is caused by mutations in PANK2 gene which codes for a mitochondrial enzyme participating in coenzyme A biosynthesis. Here we report two cases of classic PKAN syndrome with early onset of neurodegenerative disorder. Mutational analysis has revealed that both are homozygous for a novel nonsense mutation in PANK2 gene (c.T936A (p.C312X)). The high prevalence of consanguineous marriages in Iran raises the likelihood of occurrence of autosomal recessive disorders such as PKAN and necessitates proper premarital genetic counseling. Further research is needed to provide the data on the prevalence of PKAN and identification of common PANK2 mutations in Iranian population. Key words : PANK2 , pantothenate kinase-associated neurodegeneration, mutation antothenate kinase-associated neurodegen- weighted which is due to iron deposition in the Peration (PKAN) syndrome is a rare autosomal periphery (hypointensity) and necrosis on its central recessive disorder characterized by progressive part (hyperintensity) (2).
    [Show full text]
  • Ganic Compounds
    6-1 SECTION 6 NOMENCLATURE AND STRUCTURE OF ORGANIC COMPOUNDS Many organic compounds have common names which have arisen historically, or have been given to them when the compound has been isolated from a natural product or first synthesised. As there are so many organic compounds chemists have developed rules for naming a compound systematically, so that it structure can be deduced from its name. This section introduces this systematic nomenclature, and the ways the structure of organic compounds can be depicted more simply than by full Lewis structures. The language is based on Latin, Greek and German in addition to English, so a classical education is beneficial for chemists! Greek and Latin prefixes play an important role in nomenclature: Greek Latin ½ hemi semi 1 mono uni 1½ sesqui 2 di bi 3 tri ter 4 tetra quadri 5 penta quinque 6 hexa sexi 7 hepta septi 8 octa octo 9 ennea nona 10 deca deci Organic compounds: Compounds containing the element carbon [e.g. methane, butanol]. (CO, CO2 and carbonates are classified as inorganic.) See page 1-4. Special characteristics of many organic compounds are chains or rings of carbon atoms bonded together, which provides the basis for naming, and the presence of many carbon- hydrogen bonds. The valency of carbon in organic compounds is 4. Hydrocarbons: Compounds containing only the elements C and H. Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, decane.
    [Show full text]
  • Comparative Responses of Rice (Oryza Sativa) Straw to Urea Supplementation and Urea Treatment
    COMPARATIVE RESPONSES OF RICE (ORYZA SATIVA) STRAW TO UREA SUPPLEMENTATION AND UREA TREATMENT M. N. A. Kumar1, K. Sundareshan, E. G. Jagannath S. R. Sampath and P. T. Doyle2 Southern Regional Station, National Dairy Research Institute, Bangalore - 560030, India Summary Twenty five 75% Holstein Friesian cross bred bullocks fed rice straw (Oryza saliva) of long form, were fed with the following five treatments. 1. Rice straw, untreated (RS) 2. RS + water (1:1), stored for 24 hours (WRS) 3. RS (100 kg) + urea solution (4 kg urea/100 litre water) and dried (USRS) 4. RS (100 kg) + urea solution (as in 3) stored in wet condition for 24 hours (UWRS) 5. RS (100 kg) + urea solution (as in 3) stored in pit for 21 days (UTRS). Potential digestibility of treatments of RS was evaluated by monitoring (in vitro) Simulating Rumen like Fermentation (SRLF). The results indicated that Dry Matter Intake (DMI), digestibility of nutrients, N utilization were of the order UTRS > UWRS > USRS > WRS and RS (p < 0.05 to P < 0.01). SRLF index was high (255.84) for UTRS and least (145.58) for USRS. It was interm­ ediary (199.66) for UWRS. The acetyl content (AC) of UTRS with higher hemicellulose (HCE) dig­ estibility (80.8%) was low compared to UWRS, USRS, RS and WRS. The acetate content was of the order UTRS < UWRS < USRS < WRS and RS thereby indicating that reduction in acetyl con­ tent was an index of positive response of urea-treatment of RS. In addition, the ratio of HCE/AC in faeces of UTRS was 0.87 as against the ratios (2.26-2.48) observed in other treatments recording reduction jn AC due to urea-treatinent.
    [Show full text]
  • Molecular Structure of Wlbb, a Bacterial N-Acetyltransferase Involved in the Biosynthesis †,‡ of 2,3-Diacetamido-2,3-Dideoxy-D-Mannuronic Acid James B
    4644 Biochemistry 2010, 49, 4644–4653 DOI: 10.1021/bi1005738 Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis †,‡ of 2,3-Diacetamido-2,3-dideoxy-D-mannuronic Acid James B. Thoden and Hazel M. Holden* Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Received April 14, 2010; Revised Manuscript Received April 29, 2010 ABSTRACT: The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP- GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 A˚resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the LβH superfamily of N-acyltransferases. Each subunit contains 27 β-strands, 23 of which form the canonical left-handed β-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between Oδ1 of Asn 84 and the sugar C-30 amino group and the second between the backbone amide group of Arg 94 and the sugar C-50 carboxylate.
    [Show full text]