Journaf of Range 9Vfanagment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Vegetation Map of the Valles Caldera National Preserve, New
______________________________________________________________________________ A Vegetation Map of the Valles Caldera National Preserve, New Mexico ______________________________________________________________________________ A Vegetation Map of Valles Caldera National Preserve, New Mexico 1 Esteban Muldavin, Paul Neville, Charlie Jackson, and Teri Neville2 2006 ______________________________________________________________________________ SUMMARY To support the management and sustainability of the ecosystems of the Valles Caldera National Preserve (VCNP), a map of current vegetation was developed. The map was based on aerial photography from 2000 and Landsat satellite imagery from 1999 and 2001, and was designed to serve natural resources management planning activities at an operational scale of 1:24,000. There are 20 map units distributed among forest, shrubland, grassland, and wetland ecosystems. Each map unit is defined in terms of a vegetation classification that was developed for the preserve based on 348 ground plots. An annotated legend is provided with details of vegetation composition, environment, and distribution of each unit in the preserve. Map sheets at 1:32,000 scale were produced, and a stand-alone geographic information system was constructed to house the digital version of the map. In addition, all supporting field data was compiled into a relational database for use by preserve managers. Cerro La Jarra in Valle Grande of the Valles Caldera National Preserve (Photo: E. Muldavin) 1 Final report submitted in April 4, 2006 in partial fulfillment of National Prak Service Award No. 1443-CA-1248- 01-001 and Valles Caldrea Trust Contract No. VCT-TO 0401. 2 Esteban Muldavin (Senior Ecologist), Charlie Jackson (Mapping Specialist), and Teri Neville (GIS Specialist) are with Natural Heritage New Mexico of the Museum of Southwestern Biology at the University of New Mexico (UNM); Paul Neville is with the Earth Data Analysis Center (EDAC) at UNM. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections. -
PDF Handbook Download
Navajo Nation Range Management . Handbook .~/ ·- .!-.:., ~~,-;--... ·-... r#~/ Frank Parrill Range Conservationist Navajo Tribe Window Rock, Arizona Allan H Blacksheep, Jr. Agricultural Extension Agent The University of Arizona Ft. Defiance, Arizona Cooperative Extension Service The University of Arizona T81104 Needle-and-threadgrass Stipa comata Atsábik’a’ítł’oh This handbook is dedicated to the memory of Alex Tsosie, Soil Conservationist with the Bureau of Indian Affairs in Window Rock. Alex had a deep love for his Navajo land and its livestock. He had the desire to both improve the future of his land and to stay close to the culture of his ancestors. His dedication to the care of the lands will always be an inspiration to those of us who knew and worked with him. Alex, we are glad that you passed among us. May your moccasins always walk in the soft green grass and may you never thirst for cool, clear water. Amen. The Navajo Nation Range Management Handbook has been developed through the efforts of many individuals. The original manuscript was drafted by Frank Parrill, range conservationist for the Navajo tribe, Window Rock, Arizona. Special acknowledgment is due to Joanne Manygoats, range technician for the tribe, who provided valuable assistance in supplying Navajo names for the plants listed in the publication and proofreading the type. Leo Beno, also a range conservationist for the tribe, served as technical consultant. At The University of Arizona, Dr. David Bryant, Extension range management specialist and professor in the School of Renewable Natural Resources, critically reviewed the preliminary manuscript and provided valuable experience and practical insights that are incorporated in the publication. -
List of Plants for Great Sand Dunes National Park and Preserve
Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present -
Differentiation of Archaeological Maize (Zea Mays L.) from Native Wild Grasses Based on Starch Grain Morphology
Accepted Manuscript Differentiation of archaeological Maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentina María Gabriela Musaubach, Anabela Plos, María Del Pilar Babot PII: S0305-4403(12)00428-1 DOI: 10.1016/j.jas.2012.09.026 Reference: YJASC 3440 To appear in: Journal of Archaeological Science Received Date: 26 May 2012 Revised Date: 19 September 2012 Accepted Date: 20 September 2012 Please cite this article as: Musaubach, M.G., Plos, A., Del Pilar Babot, M., Differentiation of archaeological Maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentina, Journal of Archaeological Science (2012), doi: 10.1016/ j.jas.2012.09.026. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Differentiation of archaeological Maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentina MARÍA GABRIELA MUSAUBACHa,*, ANABELA PLOSb, MARÍA DEL PILAR BABOT c. a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Museo Etnográfico J. B. Ambrosetti. Facultad de Filosofía y Letras, Universidad de Buenos Aires, Moreno 350, (1091). -
Evolution of Grasses and Grasslands in South America
TAXON 24(I): 53-66. FEBRUARY 1975 EVOLUTION OF GRASSESAND GRASSLANDS IN SOUTH AMERICA Arturo Burkart* Summary This is a discussion of the South American grasslands from the standpoint of their evolution and composition. The tribes are considered in relation to climate, and grasses are classified as mega-, meso-, or microthermic with respect to their temperature requirements. The principal grassland regions are three: (A) Tropical and Subtropical, which include the Llanos of the Orinoco River system and the Campos Cerrados of Central Brazil; (B) Temperate, including the Pampa of Argentina and the Campos of Uruguay; and (C) Cold Country Grasslands, which are the Steppes of the high Andes and Patagonia, and also the Pairamos of Colombia and Ecuador. Some attention is given to the floristic composition of each of these regions. The subject of endemism is dealt with, as well as the problem of disjunct distribution. Included is a discussion of changes brought about by agriculture and ranching in historic times, and what may be expected in the future. INTRODUCTION The Gramineae, with about 6oo genera and some 6ooo species, is one of the largest families of flowering plants. It is a truly cosmopolitan group, and remarkable because of the capacity of its members to form the domi- nant vegetation over large areas of the earth's surface. The terms steppes, savannas, prairies, pusztas, campos or pampas all refer to vegetation types in which grasses are dominant. To quote Ronald Good (1953; p. 53) "Pride of place must certainly go to the Gramineae . ., the great family ... Not only do the grasses reach to the furthest land in the north and to the borders of Antarctica in the south, but their degree of distribution is usually particularly complete and continuous. -
New Mexico Range Plants
New Mexico Range Plants Circular 374 Revised by Christopher D. Allison and Nick Ashcroft1 Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences New Mexico contains almost 78 million acres, more than 90 percent of which is in native vegetation grazed by domestic livestock and wildlife. The kinds of plants that grow on a range, along with their quality and quan- tity, determine its value. A successful rancher knows the plants on his or her range. There are more than 3,000 species of plants in New Mexico. The 85 discussed here are most important to the livestock industry. Most of these are native plants. RANGELAND AREAS OF NEW MEXICO Figure 1 represents the major rangeland areas in New Mexico. The northern desert, western plateau, and high valley areas are enough alike to be described together, as are the central and high plains areas and the southern desert and basin. Southern Desert and Basin 36 - New Mexico and Arizona Plateaus and Mesas 37 - San Juan River Valley, mesas and Plateaus The southern desert and basin occupies much of south- 39 - Arizona and New Mexico Mountains 41 - Southeastern Arizona Basin and Range 42 - Southern Desertic Basins, Plains and Mountains ern New Mexico at elevations between 3,000 and 5,000 48 - Southern Rocky Mountains 51 - High Intermountain Valleys feet. This area follows the Rio Grande north into the 70 - Pecos/Canadian Plains and Valleys southern part of Sandoval County. 77 - Southern High Plains Some of the most common plants are creosote bush (Larrea tridentata [DC.] Coville), mesquite (Prosopis Figure 1. -
Fort Valley Experimental Forest—A Century of Research 1908-2008
Understanding Ponderosa Pine Forest-Grassland Vegetation Dynamics at Fort Valley Experimental Forest Using Phytolith Analysis Becky K. Kerns, U.S. Forest Service, Pacific Northwest Research Station, OR; Margaret M. Moore and Stephen C. Hart, School of Forestry, Northern Arizona University, Flagstaff, AZ Abstract—In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small- diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference conditions are lacking. We developed and applied an approach using phytoliths to understand forest-grassland vegetation dynamics and historical conditions. Phytoliths are particles of hydrated silica that form in the cells of living plants that are often morphologically distinct. Upon plant death and decay, the stable silica remains in the soil. Soil phytoliths are a useful tool to examine the vegetation history of an area. We created and published a phytolith reference col- lection, including a previously undescribed diagnostic phytolith for ponderosa pine, examined relationships between contemporary vegetation and surface soil phytolith assemblages using a phytolith classification system, and used phytoliths to explore forest-grassland vegetation dynamics. Results indicate that soil phytolith assemblages reflect long-term accumulation of organic matter in soils, and do not mirror con- temporary vegetation at the scale of several meters, but rather several kilometers. Our data suggest that in the past, some C4 (warm-season) grasses were more widely distributed but less abundant, grasses were more spatially continuous, total grass production was greater, and some species (Koeleria sp. -
Jeffrey James Keeling Sul Ross State University Box C-64 Alpine, Texas 79832-0001, U.S.A
AN ANNOTATED VASCULAR FLORA AND FLORISTIC ANALYSIS OF THE SOUTHERN HALF OF THE NATURE CONSERVANCY DAVIS MOUNTAINS PRESERVE, JEFF DAVIS COUNTY, TEXAS, U.S.A. Jeffrey James Keeling Sul Ross State University Box C-64 Alpine, Texas 79832-0001, U.S.A. [email protected] ABSTRACT The Nature Conservancy Davis Mountains Preserve (DMP) is located 24.9 mi (40 km) northwest of Fort Davis, Texas, in the northeastern region of the Chihuahuan Desert and consists of some of the most complex topography of the Davis Mountains, including their summit, Mount Livermore, at 8378 ft (2554 m). The cool, temperate, “sky island” ecosystem caters to the requirements that are needed to accommo- date a wide range of unique diversity, endemism, and vegetation patterns, including desert grasslands and montane savannahs. The current study began in May of 2011 and aimed to catalogue the entire vascular flora of the 18,360 acres of Nature Conservancy property south of Highway 118 and directly surrounding Mount Livermore. Previous botanical investigations are presented, as well as biogeographic relation- ships of the flora. The numbers from herbaria searches and from the recent field collections combine to a total of 2,153 voucher specimens, representing 483 species and infraspecies, 288 genera, and 87 families. The best-represented families are Asteraceae (89 species, 18.4% of the total flora), Poaceae (76 species, 15.7% of the total flora), and Fabaceae (21 species, 4.3% of the total flora). The current study represents a 25.44% increase in vouchered specimens and a 9.7% increase in known species from the study area’s 18,360 acres and describes four en- demic and fourteen non-native species (four invasive) on the property. -
A Classification of the Chloridoideae (Poaceae)
Molecular Phylogenetics and Evolution 55 (2010) 580–598 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees Paul M. Peterson a,*, Konstantin Romaschenko a,b, Gabriel Johnson c a Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA b Botanic Institute of Barcelona (CSICÀICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain c Department of Botany and Laboratories of Analytical Biology, Smithsonian Institution, Suitland, MD 20746, USA article info abstract Article history: We conducted a molecular phylogenetic study of the subfamily Chloridoideae using six plastid DNA Received 29 July 2009 sequences (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) and a single nuclear ITS Revised 31 December 2009 DNA sequence. Our large original data set includes 246 species (17.3%) representing 95 genera (66%) Accepted 19 January 2010 of the grasses currently placed in the Chloridoideae. The maximum likelihood and Bayesian analysis of Available online 22 January 2010 DNA sequences provides strong support for the monophyly of the Chloridoideae; followed by, in order of divergence: a Triraphideae clade with Neyraudia sister to Triraphis; an Eragrostideae clade with the Keywords: Cotteinae (includes Cottea and Enneapogon) sister to the Uniolinae (includes Entoplocamia, Tetrachne, Biogeography and Uniola), and a terminal Eragrostidinae clade of Ectrosia, Harpachne, and Psammagrostis embedded Classification Chloridoideae in a polyphyletic Eragrostis; a Zoysieae clade with Urochondra sister to a Zoysiinae (Zoysia) clade, and a Grasses terminal Sporobolinae clade that includes Spartina, Calamovilfa, Pogoneura, and Crypsis embedded in a Molecular systematics polyphyletic Sporobolus; and a very large terminal Cynodonteae clade that includes 13 monophyletic sub- Phylogenetic trees tribes. -
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report By Dr. Terri Hildebrand Southern Utah University, Cedar City, UT and Dr. Walter Fertig Moenave Botanical Consulting, Kanab, UT Colorado Plateau Cooperative Ecosystems Studies Unit Agreement # H1200-09-0005 1 May 2012 Prepared for Grand Canyon-Parashant National Monument Southern Utah University National Park Service Mojave Network TABLE OF CONTENTS Page # Introduction . 4 Study Area . 6 History and Setting . 6 Geology and Associated Ecoregions . 6 Soils and Climate . 7 Vegetation . 10 Previous Botanical Studies . 11 Methods . 17 Results . 21 Discussion . 28 Conclusions . 32 Acknowledgments . 33 Literature Cited . 34 Figures Figure 1. Location of Grand Canyon-Parashant National Monument in northern Arizona . 5 Figure 2. Ecoregions and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 8 Figure 3. Soil types and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 9 Figure 4. Increase in the number of plant taxa confirmed as present in Grand Canyon- Parashant National Monument by decade, 1900-2011 . 13 Figure 5. Southern Utah University students enrolled in the 2010 Plant Anatomy and Diversity course that collected during the 30 August 2010 experiential learning event . 18 Figure 6. 2010-2011 collection sites and transportation routes in Grand Canyon-Parashant National Monument in northern Arizona . 22 2 TABLE OF CONTENTS Page # Tables Table 1. Chronology of plant-collecting efforts at Grand Canyon-Parashant National Monument . 14 Table 2. Data fields in the annotated checklist of the flora of Grand Canyon-Parashant National Monument (Appendices A, B, C, and D) .