Conocimiento Taxonómico De La Familia Poaceae En México
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
View Plant List Here
12th annual Theodore Payne Native Plant Garden Tour Plant List GARDEN 5 in pasadena provided by homeowner Botanical Name Common Name Abutilon palmeri Indian Mallow Achillea millefolium ‘Calistoga’ Calistoga Yarrow Achillea millefolium ‘Island Pink’ Island Pink Yarrow Achnatherum--see Stipa Aesculus californica California Buckeye Arctostaphylos glauca Big Berry Manzanita Arctostaphylos silvicola ‘Ghostly’ Ghostly Manzanita Artemisia californica California Sagebrush Artemisia ludoviciana ‘Silver King’ Silver King Wormwood Artemisia tridentata Great Basin Sagebrush Asclepias eriocarpa Kotolo or Indian Milkweed Astragalus pychnostachyus var. lanosissimus Ventura Marsh Milkvetch Bahiopsis (Viguiera) laciniata San Diego Sunflower Berberis (Mahonia) nervosa Cascades Oregon Grape Bergerocactus emoryi Cunyado, Golden Spined Cereus Brahea armata Mexican Blue Palm Calystegia macrostegia ‘Anacapa Pink’ Anacapa Pink Island Morning Glory Carpenteria californica Bush Anemone Dendromecon harfordii Channel Island Bush Poppy Diplacus (Mimulus) aurantiacus var. puniceus ‘Torrey Torrey Pines Red Bush Monkeyflower Pines’ Dudleya anomala no common name Dudleya pulverulenta Chalk Dudleya Encelia californica California Bush Sunflower Encelia farinosa Brittlebush, Incienso Epilobium (Zauschneria) ‘Silver Select’ Silver Select California Fuchsia Eriogonum fasciculatum ‘Dana Point’ Dana Point California Buckwheat Fouquieria splendens Ocotillo Frangula (Rhamnus) californica ‘Eve Case’ Eve Case Coffeeberry Gutierrezia californica California Matchweed Hazardia detonsa -
Carrying Capacity of Vicunas in the Chimborazo Faunal Production Reserve, Ecuador
Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 Carrying capacity of vicunas in the Chimborazo Faunal Production Reserve, Ecuador Scott, David http://knowledgecommons.lakeheadu.ca/handle/2453/4610 Downloaded from Lakehead University, KnowledgeCommons CARRYING CAPACITY OF VICUNA IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO April 2020 ii CARRYING CAPACITY OF VICUNAS IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University April 2020 --------------------------------------- ---------------------------------- Dr. Brian McLaren Patricio Lozano Major Advisor Second Reader iii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Date: _____________________________April 22nd 2020 iv A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific environmental management. The reader should be aware that the opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University. -
Grasses of Oklahoma
osu p.llaotten Technical Bulletin No. 3 October, 1938 OKLABOJIA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL ExPERIMENT STATION Lippert S. Ellis, Acting Director GRASSES OF OKLAHOMA By B. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma Technical Bulletin No. 3 October, 1938 OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL EXPERIMENT STATION Lippert S. Ellis. Acting Director GRASSES OF OI(LAHO~lA By H. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma ERRATA Page 6, No. 6: For "Leptochlea" read "Leptochloa." Page 10, No. 3 (second line): For "E. colona" read "E. colonum." Page 11, in "Distribution" of Phalaris caroliniana (Walt.): For "Ste-.vens" read "Stevens." Page 23, No. 2b: J:o"'or "Elymus canadensis ar. brachystachys" read "Elymus canadensis var. brachystachys." Page 28: For "Cynodon Dactylon ... etc." read "Cynodon dactylon (I,.) Pers. (Capriola dactylon Kuntz.) Bermuda G1·ass." Page 41, No. 13: For "Aristida divaricata Humb. and Bonnl." read "Aristida divaricata Humb. and Bonpl." Page 65, No. 3: For "Triodia clongata" read "Triodia elongata." Page 67. No. 11 (thud linel: For "ekels" read "keels." Page 71, No. 9 and Fig 81: For "Eragrostis sessilispicata" read "EragTostis sessilispica." Page 84, first line at top of page: For Melica nitens (Nutt.)'' re~d '?tE:cH~·a nH:ens CSc-;:itn.) !-Iutt." Page 106, No. 12, third line of description: For "within white margins" read "with white margins." Page 117. No. 2: l',or "Erianthus ... etc." read "Erianthus alopecuroides (L.) Ell. (E. divaricatus (L.) Hitchc.) Silver Plume-grass." Fage 123, No. 8: For "(A. torreanus Steud.)" read "A. tor rey:Jnus Steuc1.)" PREFACE The grass family needs no introduction. -
Project Report
THE APPLICATION OF PHYTOLITH AND STARCH GRAIN ANALYSIS TO UNDERSTANDING FORMATIVE PERIOD SUBSISTENCE, RITUAL, AND TRADE ON THE TARACO PENINSULA, HIGHLAND BOLIVIA ___________________________________________________________________ A Thesis Presented to the Faculty of the Graduate School University of Missouri, Columbia ___________________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Arts ___________________________________________________________________ By AMANDA LEE LOGAN Supervisor: Dr. Deborah M. Pearsall AUGUST 2006 Dedicated to the memory of my grandmother Joanne Marie Higgins 1940-2005 ACKNOWLEDGEMENTS There are a great number of people who have helped in this process in passing or in long, detailed conversations, and everything in between. First and foremost, many thanks to my advisor, Debby Pearsall, for creative and inspired guidance, and for taking the time to talk over everything from the smallest detail to the biggest challenges. Debby introduced me to the world of phytoliths, and then to the wonders of starch grains, and encouraged me to find and pursue the issues that drive me. My committee has been very helpful and patient, and made my oral exams and defense far more enjoyable then expected—Dr. Christine Hastorf, Dr. Bob Benfer, and Dr. Randy Miles. Dr. Benfer was crucial in helping me sort through the statistical applications. I also benefited tremendously from conversations with and advice from my cohorts in the MU Paleoethnobotany lab, or as we are better known, the “Pearsall Youth”— Neil Duncan, Shawn Collins, Meghann O’Brien, Tom Hart, and Nicole Little. Dr. Karol Chandler-Ezell gave me great advice on calcium oxalate and chemical processing. Dr. Todd VanPool graciously provided much needed advice on the statistical applications. -
Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona
Felger, R.S., S. Rutman, and J. Malusa. 2014. Ajo Peak to Tinajas Altas: A flora of southwestern Arizona. Part 6. Poaceae – grass family. Phytoneuron 2014-35: 1–139. Published 17 March 2014. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA Part 6. POACEAE – GRASS FAMILY RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & Sky Island Alliance P.O. Box 41165, Tucson, Arizona 85717 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 JIM MALUSA School of Natural Resources and the Environment University of Arizona Tucson, Arizona 85721 [email protected] ABSTRACT A floristic account is provided for the grass family as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona. This is the second largest family in the flora area after Asteraceae. A total of 97 taxa in 46 genera of grasses are included in this publication, which includes ones established and reproducing in the modern flora (86 taxa in 43 genera), some occurring at the margins of the flora area or no long known from the area, and ice age fossils. At least 28 taxa are known by fossils recovered from packrat middens, five of which have not been found in the modern flora: little barley ( Hordeum pusillum ), cliff muhly ( Muhlenbergia polycaulis ), Paspalum sp., mutton bluegrass ( Poa fendleriana ), and bulb panic grass ( Zuloagaea bulbosa ). Non-native grasses are represented by 27 species, or 28% of the modern grass flora. -
Greene's Tuctoria 0 12.5 25 50 75 100
14. TUCTORIA GREENEI (GREENE’S TUCTORIA) a. Description and Taxonomy Taxonomy.—The genus Tuctoria is in the grass family (Poaceae), subfamily Chloridoideae, and is a member of the Orcuttieae tribe, which also includes Neostapfia and Orcuttia (Reeder 1965, Keeley 1998). Vasey (1891:146) originally assigned the name Orcuttia greenei to this species, from a type specimen collected in 1890 “on moist plains of the upper Sacramento, near Chico, California,” presumably in Butte County (Hoover 1941, Crampton 1958). Citing differences in lemma morphology, arrangement of the spikelets, and other differences (see “Description” below), Reeder (1982) segregated the genus Tuctoria from Orcuttia and created the new scientific name Tuctoria greenei for this species. Subsequent research suggests that Tuctoria is intermediate in evolutionary position between the primitive genus Neostapfia and the advanced genus Orcuttia (Keeley 1998, L. Boykin in litt. 2000). Several other common names have been used for this species, including Chico grass (Scribner 1899), awnless Orcutt grass (Abrams 1940), Greene’s orcuttia (Smith et al. 1980), and Greene’s Orcutt grass (California Department of Fish and Game 1991, U.S. Fish and Wildlife Service 1985c). Description and Identification.—The basic characteristics pertaining to all members of the Orcuttieae were described above in the Neostapfia colusana account. The genus Tuctoria is characterized by flattened spikelets similar to those of Orcuttia species, except that the spikelets of Tuctoria grow in a spiral, as opposed to a distichous, arrangement. Tuctoria species have short-toothed, narrow lemmas. The juvenile and terrestrial leaves of Tuctoria are similar to those of Orcuttia, but Tuctoria does not produce the floating type of intermediate leaves (Reeder 1982, Keeley 1998). -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Natural Vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers
Natural vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers A report prepared for the Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources in partial fulfillments of contract D07042. By M. Forbes Boyle, Robert K. Peet, Thomas R. Wentworth, Michael P. Schafale, and Michael Lee Carolina Vegetation Survey Curriculum in Ecology, CB#3275 University of North Carolina Chapel Hill, NC 27599‐3275 Version 1. May 19, 2009 1 INTRODUCTION The riverine and associated vegetation of the Waccamaw, Lumber, and Little Pee Rivers of North and South Carolina are ecologically significant and floristically unique components of the southeastern Atlantic Coastal Plain. Stretching from northern Scotland County, NC to western Brunswick County, NC, the Lumber and northern Waccamaw Rivers influence a vast amount of landscape in the southeastern corner of NC. Not far south across the interstate border, the Lumber River meets the Little Pee Dee River, influencing a large portion of western Horry County and southern Marion County, SC before flowing into the Great Pee Dee River. The Waccamaw River, an oddity among Atlantic Coastal Plain rivers in that its significant flow direction is southwest rather that southeast, influences a significant portion of the eastern Horry and eastern Georgetown Counties, SC before draining into Winyah Bay along with the Great Pee Dee and several other SC blackwater rivers. The Waccamaw River originates from Lake Waccamaw in Columbus County, NC and flows ~225 km parallel to the ocean before abrubtly turning southeast in Georgetown County, SC and dumping into Winyah Bay. -
Ventura County Plant Species of Local Concern
Checklist of Ventura County Rare Plants (Twenty-second Edition) CNPS, Rare Plant Program David L. Magney Checklist of Ventura County Rare Plants1 By David L. Magney California Native Plant Society, Rare Plant Program, Locally Rare Project Updated 4 January 2017 Ventura County is located in southern California, USA, along the east edge of the Pacific Ocean. The coastal portion occurs along the south and southwestern quarter of the County. Ventura County is bounded by Santa Barbara County on the west, Kern County on the north, Los Angeles County on the east, and the Pacific Ocean generally on the south (Figure 1, General Location Map of Ventura County). Ventura County extends north to 34.9014ºN latitude at the northwest corner of the County. The County extends westward at Rincon Creek to 119.47991ºW longitude, and eastward to 118.63233ºW longitude at the west end of the San Fernando Valley just north of Chatsworth Reservoir. The mainland portion of the County reaches southward to 34.04567ºN latitude between Solromar and Sequit Point west of Malibu. When including Anacapa and San Nicolas Islands, the southernmost extent of the County occurs at 33.21ºN latitude and the westernmost extent at 119.58ºW longitude, on the south side and west sides of San Nicolas Island, respectively. Ventura County occupies 480,996 hectares [ha] (1,188,562 acres [ac]) or 4,810 square kilometers [sq. km] (1,857 sq. miles [mi]), which includes Anacapa and San Nicolas Islands. The mainland portion of the county is 474,852 ha (1,173,380 ac), or 4,748 sq. -
Herbage Dynamics and Forage Quality of Texas Cupgrass (Eriochloa Sericea)
Herbage Dynamics and Forage Quality of Texas Cupgrass (Eriochloa sericea) R.B. SHAW AND F.E. SMEINS munity of the Edwards Plateu, Texas. Dyksterhuis (1946) referred AbStnCt to this species as a secondary climax species of lowland sites on the Herbage dynamics and forage quality of Texas cupgrass (Eli- Fort Worth Prairie. Collins et al. (1975) described this species as a octi sericea) were monitored during the 1977 and 1978 growing climax dominant on the Blackland Prairies vegetation area of seasons on the Edwards Plateau, Texas. This species was dominant Texas, where it approached 25% of the herbaceous composition by on a shallow rocky range site wbicb bad been excluded from weight on some Blackland sites. Smeins et al. (1976) found Texas grazing for 30 years. Average herbage production was low (527 cupgrass had an absolute foliar cover in excess of 40% on deep soil kg/ha), and mulch constituted 85% of the total biomass. Peak live areas in grazing exclosures on the Edwards Plateau near Sonora. standing crop was only 145 kg/ha during the study. Green herbage Historical data showed that 10 years was required for Texas cup- production reflectedthe ability of this taxon to adjust phenologicai grass to become reestablished following protection from heavy stage in response to precipitation. Litterbag studies showed continuous grazing. However, it tripled in abundance during the decomposition rates of herbage held flat on the soii surface to be second IO-year period of protection (Smeins et al. 1976). twice as rapid as herbage held upright in clumps of Texas cupgrass. Taylor et al. -
Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).