(MPD) Thrustor for Space Applications
Total Page:16
File Type:pdf, Size:1020Kb
XXXX so NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-1196 A Critical Review of the Magnetop/asmadynamic (MPD) Thrustor for Space Applications Noble M. Nerheim Arnold J. Kelly .__'_ CFSTI PRICE(S) $ __ Hard copy (HC) J_°'_ M_crof_che (MF)___ t {5"- __ ff 653 July 65 JET PROPULSION LABORATORY CALIFORNIA INSTITUTi OF TICHNOLOeY PASADENA, ¢ALePORNIA February 15, 1968 i XXXX-O02 Nb, TIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-1196 A Critical Review of the Magnetoplasmadynamic (MPD) Thrustor for Space Applications Noble M. Nerheim Arnold J. Kelly Approvedby: _r D. R. Bartz,ManF/_er Researchand Advanced ConceptsSection JET PROPULSION LABORATORY CALIFORNIA INITITUTE OF TECHNOLOGY PASADENA, CALIFORNIA February 15, 1968 i XXXX-O03 _ m TECHNICAL REPORT32.1196 Copyright © 1968 Jet PropulsionLaboratory California Instituteof Technology Prepared UnderContract No. NAS 7-100 National Aeronautics& :SpaceAdministration -L ¢,' 4 i XXXX-O04 Contents Part h Applicationof the MPD Thrustorto SolarElectricSpaceMissions h Introduction ........................ I U. Purposeof the Survey .................... 2 llh Solar ElectricSpacecraftCharacteristics .............. 2 IV. Requirementsfor a Solar ElectricPropulsionSystemThrustor ...... 3 A. Lifetime......................... 3 B. Performance ....................... 3 C. ThrustLeveland Throttlability................. 4 i I Part II. Scopeof the Survey I. Sources of Information .................... 5 II. A Description of the MPD Thrustor ................ 5 IIh History .......................... 6 Part III. ExistingTechnology I. Early Development ...................... 9 II. Propellant Selection ..................... 10 III. Thrustor Configurations .................... 12 : IV. Test Facilities ........................ 17 _ A. PowerSupplies ...................... 17 B. VacuumSystems...................... 17 V. Test Proceduresand Performance Measurements .......... 18 A. EngineOperatingVariables .................. 18 B. TestProcedures ...................... 20 C. Measurementof OperatingVariables............... 20 JPL TECHNICAL REPORT32.1196 iii I XXXX-O05 Contents (contd) l VI. Environmental Factors .................... 20 A. Entrainment ....................... 21 B. InteractionsWith TestHardware ................ 24 i VII. Experimental Results ..................... 25 A. Performance ....................... 25 B. ThermalEfficiencies .................... 35 C. DiagnosticMeasurements................... 41 i Part IV. Theory _' h Introduction ........................ 49 Ih AElectrom. MPDEngiagnetineOcAcperationcelerationWithMechanismNo ExternaslM.............agneticField ........ 515' B. MPDEngineOperationWith a StrongExternallyApplied ! MagneticField ...................... 54 C. ThrustorOperatingCharacteristics................ 65 III. ElectrothermalAcceleration Processes............... 69 • A. Introduction ....................... 69 B. AnElectrothermalModelfor a Cesium-FedEngine .......... 69 C. AnElectrothermalModelfor Hydrogen .............. 70 IV. Summary ......................... 7i PartV. Discussion h Reliability of Performance Data ................. 73 A. Entrainment ....................... 73 B. InteractionsWith the Vacuuml_,_k Walk. ............. 83 C. VoltageMode Variations................... 83 Ih The Effectof FeedRate on Thrustor Performunce .......... 84 III. Statusof TheoreticalStudies .................. 85 A. Summaryof TheoreticalProblems................ 85 B. AccelerationMechanismsar,d EnergyAdditionProcesses........ 86 iv JPL TECHNICAL aPORT 32-1 I XXXX-O06 Contents (contd) C. CommonAssumptions .................... 88 D. ExperimentalVerificationof Theories............... 91 E. TheRoleof Hall CurrentsinMPDThrustors............. 94 IV. MPD Magnet Systems..................... 95 A. MagnetSystemsUsedWith ExperimentalEngines........... 95 B. FlightConfigurations ................... 95 Part VI. Conclusions I. High ThrustDensity ..................... 99 II. Favorable Current-Voltage Operating Characteristics ........ 99 III. Lifetime .......................... 100 IV. Throttlability ....................... 100 V. ThrustLevel ........................ 100 i VII.Vi. PerformanceSummary ................................................. 100102 References .......................... 102 Tables 1. Somepropertiesof commonlyusedpropellants ........... 11 _ 2. Nomenclatureusedto describevariousefficiencies .......... 12 3. Comparisonof MPDarc jet voltageandthrustfor propellantinjection : throughthe engineand propel!antinjectionoutsidethe engine ...... 21 • 4. Comparisonof thermalefficiencieswith predictedvalues ........ 38 = S. Comparisonof the observedand predictedslopesof the _* voltage--magneticfieldcharacteristics 67 '; 6. Ionizationfractionin theexhaustof thehydrogen-fedX-2C _ MPDengine ....................... 76 "_ 7. Ionizationfractionin theexhaustof the ammonia-_edX.2C ._. MPDengine ....................... 79 _- 8. Estimatedweightsof cylindricalbarmagnetsto produce * the field far MPDthrustors................... 97 ' JPL TECHNICAL REPORT32-1196 v I XXXX-O07 Contents (contd) Figures 1. AVSSDX-2CMPDthrustorusedwith hydrogenand ammonia....... 12 2. Avco-EverettMc_gneticAnnular Arc:(a)Early (1961)configuration usedwith argon and helium and (b)prescnt MAARCused with hydrogen and ammonia .................. 13 3. Early (1964Jmodel of EOShydrogen-fed MPDacce',erator ........ 13 4. EOSH._-Ihydrogen-fedHall currentaccelerator ........... 13 5. Giannlni hydrogen-fedThemo-lonicAccelerator with tungsten-linedanode..................... 13 6. Giannini hydrogen-fed Thermo-lonicAccelerator ........... 14 7. Giannini hydrogen-fedMPDaccelerator .............. 14 8. Low-power(SkW) Gionnini hydrogen-fedaccelerator ......... 14 ! 9. Low-power (10kW) EOSH..-4hydrogen-fed Hall current accelerator .... 14 J i 10. AVSSDX-7CRradiation-cooledMPDthrustorusedwith ammonia 15 11. AVSSDX-7CMPDthrustor usedwith ammonia ............ 1S 12. AVSSDalkali metalMPDthrustorusedwith cesiumand lithium ...... 16 13. AVSSDradiation-cooled alkali metalMPDthrustor .......... 16 14. EOSlithium-fed Hall currentaccelerators ............. 16 15. EOSalkali metal Hall currentaccelerator ............. 16 16. EOSlithium-fed Hall currentaccelerator, Model LAJ-BF.1 ........ 17 17. EOSHall currentaccelerator,Model LAJ-AF-BG-1 .......... 17 18. Giannini lithium-fed MPDthrustor ................ 17 19. Accei_r,_terusedby NASA Langleyfor diagnosticstudieswith argon .... 18 20. PulsedMPDaccelerator investigatedby Lovberg ........... 19 21. Thrustvsinput power of thehydrogen-fueledAVSSDX-2Cengine ..... 23 22. Overall efficiencyvsspecificimpulseof hydrogen-fueledengines ..... 24 23. Overall efficiencyvs specificimpulseof Gianninithrustorsshowing anodethroatdiameter t the effectsof variationsof the and very strongapplied magneticfields ................. 28 24. Overall efficiencyvsspecificimpulseof ummonia.fedengines ...... 30 25. A comparisonof the overallperformanceof water-cooledand radiation-coo_edammonia-fedthrustors .............. 30 26. Overall efficiencyvsspecificimpulseof enginesoperatedwith alkali metalpropellants.................... 32 _J vi JPL TECHNICAL REPORT 32.119 XXXX-O08 Contents (contd) Figures (contd) 27. Overall efficiencyvsspecificimpulseof enginesoperatedwithLi-H2 andLi-N2 bipropellants ................... 33 28. Performanceof miscellaneouspropellants ............. 34 29. Correlationof the thermalefficiencyof the AVSSDhydrogen-fed X-2Cenginewiththe arc voltage ................ 36 30. Anodevoltagevsarc currentfor theX-7C-4engine .......... 37 31. Summaryof thethermalefficienciesvsinputpower,showingthe dependenceonvoltagemodes ................. 38 32. Correlationof the thermalefficiencyof the Gianninithrustorwith thespecificimpulse ..................... 39 33. Correlationof the thermalefficiencyof Gianninithrustorsand oneset of data fromtheAVSSDX-2Cenginewiththeplasmaspecificenthalpy 39 34. Effectof magneticfield strengthonanodepower lossfor sodium and potassium....................... 41 35. Hall-effectsensousedr to measurecurr_ntdensityinexhaustplume .... 42 36. Rogowskicoilusedby Avco-Eve:ttf to measurecurrentloopsinthe exhaustof theMAARC .................... 42 37. Axial and radial distributionsof axial currentdensityand applied magneticfield .................... 43 38. Variationof the cathodetip pressureandthe arc chamberpressure asa functionof the appliedarc current .............. 46 39. Variationof thecathodetip pressureandthearc chamberpressure of the AVSSDengin,,withincreasingappliedfield strength ....... 46 40. Schematicdrawingof theprobe usedto measurethe thrustprofiles inthe MAARCl,xperiments .................. 47 41. Profilesobtainedwith thepu: probe inthe exhaustof the Avco-Everett MAARC operatedon hydrogen ................. 47 42. Schematicdiagramof the pu probe u._edin the MAARC ........ 48 43. Schemahcof an MPDengine .................. 5?. 44. A modelforHall accelerationin an MPDengine ........... 58 45. An analyticalmodelof the magneticswirlmechanism ......... 60 46. One modelof themechanismsproposedfor the EOSALPHA ....... 62 47. Comparisonof thrustsobtainedfromthruststandmeasurementsand thrustdensityprofiles .................... 78 48. Thrustefficiencyvsspecificimpulsefor theAVSSDammonia-fed X-2Cenginefora numberof applied magneticfield strengths ...... 80 JP£ TECHNICAL REPORT32.1194 vii i XXXX-O09 Contenls (contd) Figures (contd) 49. Thru:,tefficiencyvsspecificimpulsefor the AVSSDammonia-fed X-7engine ........................ 81 50. Twoexamplesof the variationinthe performanceof the EOS