<<

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325224465

Measurement of differential cross sections and W+/W− cross-section ratios for W boson production in association with jets at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector

Article in Journal of High Energy Physics · May 2018 DOI: 10.1007/JHEP05(2018)077

CITATIONS READS 11 3,153

2864 authors, including:

Baptiste Abeloos Nicola Abraham The French Aerospace Lab ONERA Helmholtz-Zentrum Hereon

459 PUBLICATIONS 14,446 CITATIONS 557 PUBLICATIONS 15,394 CITATIONS

SEE PROFILE SEE PROFILE

Heather Abreu Ricardo Abreu The Thomas Cooley Law School CERN

1,011 PUBLICATIONS 39,410 CITATIONS 433 PUBLICATIONS 14,984 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Tibet Asγ experiment View project

Quantum Shape Dynamics View project

All content following this page was uploaded by Gabriela Navarro on 01 August 2018.

The user has requested enhancement of the downloaded file. JHEP05(2018)077 Springer . Differen- May 11, 2018 1 April 30, 2018 : − : February 14, 2018 November 10, 2017 : : Published Accepted Revised Received boson production boson production cross section TeV with the W W bosons are measured separately. In Published for SISSA by W https://doi.org/10.1007/JHEP05(2018)077 = 8 s √ boson. For a subset of the observables, the differential the dominant systematic uncertainties cancel out, im- − W /W + W . 3 cross-section ratio, both in association with jets, in proton-proton col- 1711.03296 cross-section ratios for − = 8 TeV with the ATLAS experiment at the . The Hadron-Hadron scattering (experiments) − /W This paper presents a measurement of the , Copyright CERN, s + [email protected] √ W /W + E-mail: Article funded by SCOAP Open Access for the benefit of the ATLAS Collaboration. parton distribution functions of the proton. Keywords: ArXiv ePrint: the transverse momentum of the cross sections of positivelythe and cross-section negatively charged ratio of proving the measurement precisionselected by up for to this a paper factor provide of valuable nine. input The for observables the and up ratios quark, down quark, and gluon measurement is performed inmomentum final using states data containing correspondingtial one to cross electron an and sections integrated missing forobservables, luminosity including transverse events of jet with 20.2 transverse fb momenta atmomenta and of least rapidities, the one the visible scalar or particles sum two and of the jets transverse missing are transverse presented momentum for in the a event, range and of Abstract: and the lisions at The ATLAS collaboration ATLAS detector Measurement of differential crossW sections and in association with jets at JHEP05(2018)077 27 2 ≥ jets N 5 27 – 1 – 5 27 9 17 18 27 18 22 1 2 7 4 11 ≥ ≥ 15 44 jets jets 18 15 N N 15 7 17 cross sections 3 6 − 2 W 25 and + W A.1 Jet multiplicity andA.2 distributions for Pseudorapidity events of with theA.3 electron 8.1 Jet multiplicity8.2 distribution Distributions for 8.3 Distributions for 7.2 NLO predictions 7.3 LO predictions 7.4 Non-perturbative corrections 7.1 NNLO predictions 4.2 Jet selection 4.3 Event selection 4.4 Background estimation 4.1 Electron reconstruction and identification The ATLAS collaboration A Additional cross-section distributions 9 Conclusion 8 Cross-section results 6 Systematic uncertainties 7 Theoretical predictions 5 Correction for detector effects 3 Simulated event samples 4 Data selection and event analysis Contents 1 Introduction 2 ATLAS detector JHEP05(2018)077 ]. ]. ], 20 21 10 – , 9 boson. 17 W = 8 TeV, this s √ ). For events with at production and the ] and production in jets 1 − 22 − boson production [ N W W 2 fb . ), the transverse momentum and boson in association with jets T + H W W boson in addition to other observables ] and calculations for one additional jet W 3 boson production. Several new sets of pre- – ], as well as merging approaches for NLO 1 ] and new parton shower approaches [ 5 ] complement these results. All of the studies W , 8 4 – – 2 – 28 of the 6 – T ], the systematic uncertainties are larger than the 23 p 11 ] with proton-proton collisions at the LHC and from 16 + jets production in final states containing one electron – and rapidity of the most energetic jet (leading jet). These as a function of the number of jets ( production as well as for 11 T W p boson radiating from an energetic jet [ − = 7 TeV [ boson production and include distributions as a function of W s W /W √ W + + jets production presented here are a useful test of jet production W W boson, and the W and rapidity of the second leading jet, the dijet angular separation, and the dijet T The results for Using data corresponding to an integrated luminosity of 20 p ) of the T p ysis has improved eventan selections important to improvement reduce sinceis backgrounds the greater from increase for top in top quark cross quarkdictions production production section and than with new — for measurements centre-of-mass of energy provide the additional information about pQCD. and different matrix-element/parton-shower matching schemes. with energetic jets assurement using well data as at jetsstatistical with uncertainty of large the rapidities.dataset, data. at a As The higher in new centre-of-mass energy measurements a and are with previous larger based ATLAS integrated on mea- luminosity. an The anal- independent observables are sensitivedistribution to functions higher-order (PDFs). termssections in For are the events shown prediction withthe for as at well least as twoinvariant the mass. jets, parton the These differential observables are cross sensitive to hard parton radiation at large angles The data are measuredcross-section for ratio of at least one jet,of the the differential transverse momenta cross of( sections electron, are neutrino shown and as jets a ( function of the scalar sum mentioned here focus on jetpQCD production to over the a range statistical of limits energy of scales the and available attempt data. topaper probe presents the resultsand for missing transverse momentum, focusing on events with one or two additional jets. These results comprise aservables, wide which range are reconstructed of from measurementsDetailed jets of measurements and of differential leptonic specific cross decay processessmall-angle sections products such emission of as of of ob- electroweak the a association with heavy-flavour quarks [ at next-to-next-to-leading-order (NNLO) [ predictions of different jetThe multiplicities theoretical [ predictions have undergoneCMS rigorous and scrutiny using LHCb data experiments fromthe [ the CDF ATLAS, and DØ experiments with proton-antiproton collisions at the [ With the large samplesCollider of (LHC), proton-proton the measurement collision ofallows data the precise available production from tests of the a ofnumerous Large perturbative theoretical Hadron quantum advances chromodynamics haveditional been (pQCD). jets made In at including recent next-to-leading-order calculations years, (NLO) for [ up to five ad- 1 Introduction JHEP05(2018)077 . x denotes the It consists 1 E , potentially x . For events with 1 − )], where z production and their p asymmetry probes the 10 5. It consists of silicon ) are used in the transverse − . − − . 2 E r, φ W ( W 9. The muon spectrometer x . ]). The DIS measurements < / ) cross-section ratios presented | z . 31 p η − | ]. In previous measurements of and = 4 and -axis points from the IP to the centre 3 + x | − W 11 + + η coverage in solid angle. E | W W π ln[( and cross section ratio is new compared to 1 2 + − ], the W /W 29 + – 3 – W -axis. The pseudorapidity is defined in terms of the polar z . 2 , is defined as ) y φ , in the range of 10 x production, many of the experimental and theoretical + (∆ 2 − ) -axis along the beam pipe. The η z W (∆ ] at the LHC is a multi-purpose particle detector with a forward- ]. The valence quark PDFs in this range are currently best to p 32 30 ≡ -axis points upwards. Cylindrical coordinates ( boson cross sections and + 2). The rapidity, y 3 [ R the momentum component of the jet along the beam direction. Angular distance . W θ/ W z p 1–0 . 0 ln tan( 7). The endcap and forward regions are instrumented with LAr calorime- . cross sections as well as the 1 − ∼ − = < x η W | η being the azimuthal angle around the | as φ θ asymmetry measurements (see the discussion in ref. [ and In the ratio of ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in production for inclusive jet multiplicities [ 1  + the centre of the detectorof and the the LHC ring,plane, and the angle energy of the jetis and measured in units of ∆ system was used to selectused events. a The subset first-level trigger of75 was kHz. the implemented in This detector hardware was information and accepted followed to event by rate reduce two to software-based the 400 trigger Hz accepted levels on event that average rate depending together on reduced to the the at data-taking most conditions. granularity. A hadron (steel/scintillator-tile) calorimeterrange covers the ( central pseudorapidity ters for EM andsurrounds hadronic the energy calorimeters measurements and updetectors includes to for a triggering. system of Threeeight large precision coils, air-core tracking provide toroidal chambers the superconducting and magnets, magnetic fast each field with for the muon system. In 2012, a three-level trigger of an inner tracking2 detector T surrounded axial magnetic by field, a electromagneticeter. thin and superconducting hadronic The calorimeters, solenoid, inner and providing apixel, detector a muon covers silicon spectrom- the microstrip, pseudorapidity(LAr) and range sampling transition calorimeters provide radiation electromagnetic (EM) tracking energy measurements detectors. with high Lead/liquid-argon 2 ATLAS detector The ATLAS experiment [ backward symmetric cylindrical geometry and a near 4 include effects from the nuclearnucleon target PDFs that and require the model-dependent Tevatronwell results corrections as show to tension with obtain between the themeasurement DIS different of the experiments results. as Ithere, is in therefore PDF fits interesting to to improve include the new precision data, of valence such quark as and the gluon PDFs at high W momentum fraction of theat parton, least one jet,accessing a charge ratio measurementconstrained is from sensitive fixed-target to deep-inelastic scattering higher (DIS)W values experiments of and the Tevatron uncertainties cancel out, makingaddition, it differential a cross moreratio section precise are test measurements of sensitive of the toW theoretical the predictions. PDFs for In the up previous and ATLAS measurement down using quarks. data at The 7 TeV measurement [ of separate JHEP05(2018)077 , . 7 ] and WW ] event ]. The 49 samples Pythia samples, 47 35 tune [ samples, events r2129 [ Alpgen Sherpa and showered with event generator was Box - AUET2 5 GeV. Single top quark ] were used, respectively. -quarks are also included . Alpgen event generator uses the b v6.426 using the Perugia ] and the simulated events ]. The 41 ], where the parton shower [ matching scheme [ 34 42 Powheg 39 Alpgen - and Powheg c matrix element and the ] with the Sherpa Pythia MLM 48 in addition to the light-flavour jet Tauola ]. The b ¯ b parameter, which effectively regulates PDF set [ 37 Alpgen + , ] and ]. Massive 36 40 damp W [ 45 v6.520.2 [ h production. For the + jets production provide the best description boson production in association with massive – 4 – -channel production). Diboson processes ( W predictions are scaled to the NNLO calculation t ττ and events with associated jets were generated with ] is used to combine different parton multiplicities W ) interfaced to v1.4.1 [ ¯ CTEQ6L1 c Z 43 → c ee Photos Herwig Z + ]. → and ) was simulated with the ¯ t 46 -channel) using the Perugia 2011C tune. The PDF set is - channels was modelled by t W [ t Z and Powheg ] is performed using GEANT4 [ -ordered evolution variable. For electromagnetic final-state W , Sherpa ] and its own model of electromagnetic final-state radiation was set to the top quark mass of 172 T c W t PDF set. The 33 p τν 6 samples for 44 -leptons, + and τ CT10 → W eν - and t W CT10 → Powheg -, Pythia s ] and with ] was used for the parton showering, hadronisation and underlying event, + W 35 38 PDF set. ) were simulated using v2.14 [ ZZ matching scheme [ samples supply an alternative prediction and are used to estimate some of the Alpgen v6.426 (v6.427 for the v6.426 [ emission in (with a fixed 4-flavour scheme for T p and All simulated samples are normalised using their respective inclusive cross sections at Top quark pair production ( The Samples of CTEQ6L1 higher orders in pQCD. The Pythia CT10 WZ the generator (referred to here2011C as tune and the high- production in the based on the Yennie-Frautschi-Suura method [ and the PDF set used is of data and areSherpa used as thesystematic uncertainties. main signal prediction throughout this measurement. The events were produced with upelement to and four include additional partons a inevent. model the The of final ME+PS@LO the state prescription parton [ fromfrom the shower, the matrix the matrix hadronisation element andCKKW the and underlying the parton shower. The proton structure isinclude described a by matrix the elementheavy-flavour calculation partons, of production. Overlap betweenand heavy-flavour those quarks originating originating from from the the matrix parton element shower was removed. For the based on the Perugia 2011Cuses set a of dipole tuned shower parameters withradiation (tune) and a the [ decay of Double counting of parton emissions betweenparton the shower calculations was removed through the Alpgen also used to simulate were produced with up to fivePythia additional partons in the final state from the matrix element. Simulated event samples are usedof for the most signal yield of for the detectorATLAS background effects detector and estimates, simulation in for [ comparison the to the correction are measured cross reconstructed sections. and The analysedpredictions that using are the only compared same to analysis the chains final as measurements are for described data. in section Additional 3 Simulated event samples JHEP05(2018)077 > `` with m 1 25 GeV − ], to the > 59 T . The mean – 2 fb . p 1 7. After the . 53 − [ s ¯ t 2 t − ] (requiring = 20 of associated tracks trigger compensates 52 i cm 2 T T 2 around the electron µ p . h p 0 33 P 10 × R < 7 PDF set [ . MSTW2008 – 5 – trigger is sufficiently low to ensure that electrons T ] and the p 1 GeV in a cone of size ∆ 51 > , T 50 p ] for single top quarks, and for diboson production to the NLO ]. 25 GeV by the offline algorithms are selected with close to their 62 v1.5 [ 65 – > ]. production). The production of top quarks is normalised using the T 60 63 p ] with the average number of interactions per bunch crossing matched Z 64 52) and match the online electron, which passed the trigger criteria. Each greater than 400 MeV. The vertex with the largest Dynnlo . 1 T 47 (excluding the transition region between barrel and endcap calorimeters of p . < 2 | v8.160 [ η < | | η < | Events must have at least one reconstructed vertex with at least three associated tracks, Events are selected for analysis by requiring that they satisfy a set of single-electron The simulated events were overlaid with additional proton-proton interactions (pile- 37 . Electrons are reconstructed from energy clustersa in track the reconstructed EM calorimeter in that theand are inner matched to detector. The1 electron is required toelectron have must satisfy a set of identification criteria in order to suppress misidentification each with a is considered to be the primary vertex. 4.1 Electron reconstruction and identification isolated if the isolationtum. momentum is The less thresholdreconstructed than with 10% of of the the lower- maximum electron’s efficiency of transverse about momen- 96%for for central inefficiencies electrons. due to The higher- the isolation criteria applied. trigger criteria for anelectron isolated with electron transverse with momentum athe greater isolation transverse than momentum momentum is 60 above GeV. definedcharged-particle 24 as GeV tracks Within or the with this sum an of trigger(excluding the algorithm transverse the momenta track of of reconstructed the electron). An electron trigger candidate is considered to be at a centre-of-mass energy ofthe 8 TeV. collisions achieved Crossings a of peak protonnumber bunches instantaneous of occurred luminosity of every simultaneous 50 7 ns inelasticapplication and of proton-proton data-quality interactions requirements, was thean total uncertainty integrated of luminosity 1.9% is [ 20 4 Data selection and eventThe analysis data used in this analysis were recorded during the 2012 proton-proton collision run up) in the same andPythia neighbouring crossings of protonto bunches. that These measured were generated in with electron data. triggering, To reconstruction, achieve identification, betterfor and agreement the isolation, with tagging as data, or well theposition mis-tagging as efficiencies were of corrected the for in heavy- the efficiencies the and simulated light-flavour events. jets, and the simulated vertex 60 GeV in case of prediction at NNLO+NNLL precisioncalculations from in the refs. Top++2.0 [ programcalculations for in ref. [ obtained with JHEP05(2018)077 4 . = 0 , must 0 R d ]. These 74 – ] lying within 72 67 ] to account for must be less than 71 | θ 4. Jets from additional . sin lower than 50 GeV. Less 4 · is the polar angle of the T 0 < p z θ | -dependent factors that are | ], as well as a global sequen- η y | 75 ] with a radius parameter 5) and - and 70 , T < 400 MeV, excluding the electron track, p selection, following the definition pro- 69 0 > d 4, and have a . T 2 of the electron are removed. /σ 2 . p | tight 0 < d | | = 0 – 6 – η | ] are rejected. R algorithm [ 77 t ]. This requirement is applied to jets that are within . The calorimeter-based isolation is corrected for two k 78 T 30 GeV and a rapidity of p > T p 3 around the electron must be smaller than 7% of the electron’s . 3 around the electron centre and excluding the core area, must be ], and for high-energy electrons, the energy leakage of the electron’s . 0 = 0 is the longitudinal impact parameter and of the tracks associated with the jet must originate from tracks that are 68 ]. The latter corrects for differences between quark- and gluon-initiated 0 R T ]. This includes requirements on the shower shape in the electromagnetic z 76 p R < 66 Jets are required to have In order to further suppress background from misidentified objects such as jets, the . Furthermore, the sum of transverse energies of topological clusters [ 5 mm, where T . summed scalar associated with the primary vertexthe [ acceptance of the trackingthan detectors, 5% of non-pile-upwith jets the are selected misidentified electron, by jets this within criterion. ∆ To avoid double counting tial correction [ jets and the punch-throughdetector of noise a or jet non-collision into effects the [ muon system. Eventsproton-proton with interactions jets are arising suppressed from by requiring that more than 50% of the total ical clusters arethe calibrated hadronic with and the electromagneticthe local activity hadronic inside cluster the jet weighting clusters.determined energy method Jets from scale [ are a (JES), then combinationfactors by calibrated of include applying to corrections simulated for events inactivecontributions and material estimated in in using the situ detector, a methods out-of-cone jet-area-based [ effects, approach pile-up [ 4.2 Jet selection Jets are reconstructed using theand anti- topological clusters of energy depositions in the calorimeter as input. The topolog- a radius of ∆ smaller than 14% of theeffects: electron’s soft energy depositsdensity in approach the [ isolation coneenergy due from to the pile-up, core using into the an surrounding ambient energy isolation cone. electron is required to besum isolated of using the tracking-based transverse and momenta calorimeter-basedin of criteria. tracks a The with radius ofp ∆ gaussian sum filter track refitting algorithmparameters. is used The to improve electron thefollowing is estimated criteria electron required related track to to thebe originate electron smaller track. from than The the five transverse primary0 impact times vertex parameter, its by uncertainty using ( electron the with respect to the beam direction. vided in ref. [ calorimeter, the leakage ofmeasured the along shower the into track thetransition in hadronic the radiation inner calorimeter, tracker, detector, and theto the the number ensure amount of quality that of of hits the transition cluster-track reconstructed radiation matching electron in as does the well not as originate criteria from a converted photon. A of photons or jets. Electrons must pass the JHEP05(2018)077 . , ττ miss T E → ], as well Z 83 20 GeV and 4, otherwise . 0 and > T τν p ) and a transverse R > ), single-top-quark, → miss eν T 0 events, events with at ¯ q E W ¯ t t bq ¯ b -tagged jet veto reduces the b → identification criteria and has ], jets and muons [ . For the multijet background, ¯ t e 52), the event is rejected. This t 82 e . ¯ ν ]. 1 events and a less than 2% mis-tag τ ). Events in this analysis must have of the neutrino correspond to that ¯ t ν 11 t < ν | medium φ miss T → η | E (mainly τ boson. The missing transverse momen- -tagged jets must have -leptons [ b ¯ t τ < and t W , ν T 37 boson is defined as the absolute value of the p . – 7 – component. The transverse mass is defined as ττ W → miss T Z E production is performed by selecting events according , boson production. To remove events where a jet is near − )), where ee ν Z W φ boson production with decays into the electron plus neutrino → − 40 GeV. The set of selection criteria defines the signal region 47 (excluding 1 W e . and Z > 2 φ ), and multijet events. Most of these background events contain , + T -hadrons are identified using a neural-network-based algorithm < ], hadronically decaying τν b ZZ W m cos ( | , 81 η | → − from either a mismeasurement of the deposited energy or from neutrinos (1 WZ W , ν T miss T p E e T p -tagged jet are also rejected. The application of a ], which exploits information from the track impact parameters, secondary ver- ) consistent with the decay of a b WW 2 T 25 GeV and 79 ] is calculated as the negative vector sum of the transverse momenta of calibrated 5. p m . 20 GeV and > 2 80 = The transverse momentum of the Events are required to have a missing transverse momentum ( Jets containing > < background for events with three or more associated jets by more than a factor of about T | miss T T ¯ t η an electron can bemisidentified identified as in an the electron, a final bottom-or state or an via charm-hadron within electron three a from main jetalso a modes: decays contain into photon an a conversion electron light-flavour passes jetin the is heavy-flavour selection. decays. In all cases, the event must The major backgrounds to final state are diboson ( an isolated, energetic electronan in electron can the be final present state. in the In final the state case via of vectorial sum of the transverseThe momentum measurement component of of theto selected the electron charge of and the electron. 4.4 Background estimation are not associated withm any other from the vector of theE missing transverse energy ( for this measurement. mass ( tum [ electrons, photons [ as additional low-momentum tracks which are associated with the primary vertex but the electron, the selected electronthe must event be is separated not fromleast any considered. one jet by To ∆ suppresst the background from two compared to the previous ATLAS measurement [ 4.3 Event selection Events must contain oneevent electron contains satisfying a the secondp selection electron criteria that specified satisfies the above.reduces the If contribution the from (MV1) [ tex location and decayto topology. an overall The 60% operating efficiencyrate point for for used heavy-flavour light-flavour jets for jets in | this in analysis dijet corresponds events. The JHEP05(2018)077 20 1 % 1 %  < < events of -enriched ¯ t ¯ t t t 63 ]. background is 1 % 1 %  simulation was ¯ t < < 84 t ¯ t simulation agrees t ¯ t t 150 1 %  < 320 1 %  measurements [ < ¯ t -tagged jets, the t b 720 1 %  < 1700 simulation, an additional normalisation factor 1 %  – 8 – ¯ t t < 4000 1% 1% 1% 2% 2% 2% 1% 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 6 % 16 % 27 % 36 % 43 %  calculation to estimate the low-momentum contributions, . For the < < < < 3 miss T events dominate. An overview of the background contributions E ¯ t production in the simulation is cross-checked using a t 22 000 ¯ t 1 % 1% 3% 5% 6% 6% 6% 5% 5% 1 % 1 % 1 %  t 0 1 2 3 4 5 6 7 < 2% 2% 2% 2% 2% 1% 1% 1% 94 % 86 % 75 % 67 % 57 % 47 % 40 % 35 % . For events with one (two) jets, the multijet background constitutes 8% 1 t < τν eν ττ < ee < → → . Signal and background contributions in the signal region for different jet multiplicities as → → jets ¯ t < N Z Z Diboson W Single t Multijet 3 % 8 % 15 % 16 % 16 % 16 % 14 % 14 % W Data observed 56 342 232 7 735 501 2 070 776 486 158 120 943 29 901 7204 1641 Total predicted 54 310 000 7 611 700 2 038 000 478 640 120 190 30 450 7430 1735 For the multijet background, a data-driven method is used to determine both the total The modeling of All backgrounds with the exception of the multijet background are estimated using For events with less than four jets, the largest background is multijet events, whereas background alone is larger than the signal. However, compared to previous ATLAS + jets events is less than the sum+ jets of publications, all which backgrounds, did and not include for a seven veto or on more jets, the -tagged jet, and all other signal region selection criteria, and has a purity for ¯ t well with the data.determined with The this additional data normalisation sample. factor applied to the number of events in thedistribution. signal region The and number of the multijet shape background of events is the estimated background by for fitting, each for differential each jet data sample, which isb selected by requiringgreater than events 90%. with The fouras background in or contributions the are more signal estimated region. jets, using For at the the kinematic same least observables procedure studied one here, the reduced from more than 60% of events with fivesimulations jets and to less are than normalisedsections 30%. to as detailed the in integratedof section luminosity 1.086 of is the appliedrespect data to to account using the for the data; an cross this observed offset difference is in also the observed overall in normalisation other with instead of using soft energy depositsbackground, in the in calorimeter, substantially suppresses particular theW multijet for one-jet events.t At high jetW multiplicities, the number of for five jets andis above, given in table (15%) of the totalThe number use of of events tracks and in all the other backgrounds are less than 6% (10%). Table 1 percentages of the totalobserved number events. of The predicted uncertainty events, in as the well total as predicted the number total of numbers events of is predicted statistical and only. JHEP05(2018)077 T p 4 from . . Here, the = 0 2 R 1 cone around the . = 0 requirement, but all other R boson decay and includes event selection) where the W miss T − E W 4. If a jet is within ∆ . 4 algorithm with a radius parameter of t < is determined from the transverse mo- k | , and the transverse momentum and the y T | miss H T E – 9 – production selections. The fit results are used − boson decay and is also used in the calculation of W distribution with these multiplicities combined. For 30 GeV and W criteria, and the inverted isolation that the sum of the > and T miss T + 3 around the electron, excluding the electron track, is larger p . . To increase the number of events in the multijet-enriched E tight 10 mm as input and the dressed electron is excluded as a jet. electron). The T W p , = 0 W R cτ > distribution in the data (without the dressed miss T E , the data are compared to the signal and background predictions as a fit is performed in the range of 15 GeV to 75 GeV for each jet multiplicity + jets events is determined by subtracting the estimated background contri- 1 W miss T E criteria but fails the 4. The jets are clustered using final-state particles (except muons and neutrinos) . In figure The . Particle-level jets are obtained using an anti- = 0 T m R with a decay length of The jets are required tothe have selected electron, the event is not considered. butions from the event countscorrected in for data. detector Using effects simulated to samples, theelectron the fiducial definition distributions phase is are space that then based isthe on defined contributions final-state in from table electrons photons, fromelectron the which direction are ( radiatedmentum within of a the ∆ neutrino from the experimental uncertainties. 5 Correction for detectorThe effects yield of the multijet-enriched data sampleextracted from and the scaled fit. to the total numberfunction of of multijet the exclusive eventsrapidity jet as of multiplicity, the the leading jet. The data, in general, agree with the predictions within the to determine the numberevents of with multijet six eventsstatistical or in uncertainties more the in jets signalextracted the (five region from or multijet for a template more eachthe selection. are fit jets differential large, for of For distributions, the the the the multijet shape contribution of is the multijet contribution is determined from sample the electron impact parametersample criteria is are statistically not applied. independentsignal from The or multijet-enriched the other data signal backgrounds to region this and sample any is contribution subtractedand from using separately the simulation. for the trigger, an inverted electron identification criterion,electron and an trigger inverted isolation is criterion. equivalentan The to isolation the requirement. one The usedmedium inverted for identification requires the that signalof the region, tracks electron in but passes a does the conethan not of 7% ∆ contain of the electron’s signal region requirements applied)ground to and a another which sum includes of theof signal two and both templates: all templates other one backgrounds. is for allowed Thefrom the to normalisation data, vary multijet while freely. back- the Thedata shape second sample of template the used is multijet to obtained template extract from is the simulation. obtained multijet The template multijet-enriched is acquired using a dedicated electron multiplicity, the JHEP05(2018)077 [GeV] T -tagged H b ττ ττ Leading jet |y| ee/ ee/ → → + jets produc- 1 jets 1 jets (SHERPA 1.4) (ALPGEN+PY6) (SHERPA 1.4) (ALPGEN+PY6) ≥ ≥ , Z , Z ν ν ν ν ν ν W e e e e τ τ ) + ) + 1.4 (orange) as the ν ν → → → → → → (lower left), and the e e W W W W W W Data Syst. uncert. Multijet Top quark Diboson Data Syst. uncert. Multijet Top quark Diboson → → T p W( W( -1 -1 Sherpa 6 simulation of jets, R = 0.4 jets, R = 0.4 t t ALPGEN+PY6 SHERPA 1.4 ALPGEN+PY6 SHERPA 1.4 > 30 GeV, | < 4.4 > 30 GeV, | < 4.4 = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb = 8 TeV, 20.2 jet T jet jet T jet s s ATLAS ATLAS anti-k p anti-k p 6 (blue) or |y |y 0 0.5 1 1.50 2 0.5 2.5 1 3 1.5 3.5 2 4 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 1 5 4 9 8 7 6 5 4 3 2 9 8 7 6 1 1 -1 10 10 10

Pythia

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

10 10

Events / GeV / Events Pred./Data Pred./Data Events / |y| / Events + + jets signal selection as a function of the exclu- Pythia + W – 10 – jets N Alpgen (upper right), the leading jet’s [GeV] T T ττ ττ Alpgen H ee/ ee/ → → 1 jets (SHERPA 1.4) (ALPGEN+PY6) (SHERPA 1.4) (ALPGEN+PY6) ≥ Leading jet p , Z , Z ν ν ν ν ν ν e e e e τ τ ) + ) + jets ν ν → → → → → → e e W W W W W W Data Syst. uncert. Multijet Top quark Diboson Data Syst. uncert. Multijet Top quark Diboson ] with two iterations. In addition corrections for events that are → → W( W( 86 , -1 -1 85 jets, R = 0.4 jets, R = 0.4 t t ALPGEN+PY6 SHERPA 1.4 ALPGEN+PY6 SHERPA 1.4 > 30 GeV, | < 4.4 > 30 GeV, | < 4.4 = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb = 8 TeV, 20.2 200 400 600 800200 1000 400 1200 1400 600 800 1000 1200 1400 jet T jet jet T jet s s . Distribution of events passing the 0 1 2 3 4 5 6 7 ATLAS ATLAS anti-k p anti-k p |y |y 1 8 7 6 5 4 3 2 5 4 3 2 9 9 8 7 6 1 1 -1 -2 11 12 10 13 10

The correction procedure uses the

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

10

10

10 10 10 Events Events / GeV / Events Pred./Data Pred./Data that occur during the reconstructionunfolding of method events are [ corrected foroutside using the an iterative fiducial Bayesian regionare but not reconstructed are due reconstructed toincludes detector within an inefficiencies the extrapolation are from signal included. the region The signal or correction region, procedure which events has that a veto on events with uncertainty in the predictiontainties, including as the the uncertainty hatched duepredictions to band. and the the luminosity, data-driven The and multijet latter the estimate. statistical consists uncertainties of from the the systematic uncer- tion and corrects for selection efficiencies and resolution effects. Migrations between bins Figure 1 sive jet multiplicity (upperleading left), jet’s the rapidity (lower right).plus background The lower to panels datasignal display simulation. using the The ratio either statistical of uncertainty the of predictions the for data signal is shown as black error bars and the total JHEP05(2018)077 - − c W and + final state in W 1, are obtained eν ≥ → 1. This reduces by jets ≥ W N are also included but are jets T N m compose a large part of the correc- 4 (otherwise event is removed) . 0 miss T E boson production in association with ≥ 25 GeV 5 4 W . . jet) bosons. 40 GeV > 25 GeV 30 GeV 2 4 e, − > ( criteria > > < < – 11 – T R | | miss T W -tagged jet veto because, in events with one jet, T T η y b Electron criteria | p W m E Jet criteria | p and + W cross sections is calculated from these unfolded distributions, − production are larger and these contributions are only slightly W c distributions are unfolded independently following the same proce- to + + − W T W W p and T p + Electron pseudorapidity Electron Transverse mass Missing transverse momentum Electron decay Exactly one electron Jet-electron distance ∆ Jet rapidity Jet W . Kinematic criteria defining the fiducial phase space for the -quarks is 18% of the combined fiducial cross section for b The For differential distributions, the unfolding is performed in two dimensions, one of and between the production of 6 Systematic uncertainties The dominant sources of systematic uncertainty inwith the at cross-section measurement least for events one jet are the jet energy scale (JES) and the jet energy resolution (JER). taking correlations into account.tistical All uncertainty uncertainties of the of data, abackground the statistical estimate, statistical nature, uncertainty or of such the simulated as uncertaintyused samples the from used in sta- in limited the the sample unfolding size areproduction. of treated All the as other signal uncorrelated systematic simulation between uncertainties bins are and treated as between fully correlated between bins for by the procedure. Othersmall. migrations, Differential for cross example sections those forby in a summing given over jet the multiplicity, such contributing as jet multiplicities in thedure. two-dimensional result. The ratio of corrections, such as the one accounting for the electronwhich identification is efficiency. always the jetwhich can multiplicity. be In large, this are way,tion considered. migrations in Migrations between and in jet out multiplicity of bins, the fiducial region, in particular for zero-jet events, and are accounted jets, to the fiducialand region, which doesonly not. 2% in thecontributions signal from region fromaffected the by this veto. The extrapolation therefore has a small effect compared to other Table 2 association with jets. JHEP05(2018)077 - 1 − η ≥ 1 to W 7 but ≥ jets ≥ and . N jets 4 + – N jets cross section 3 W N W -tagged jet energy 1 to b ≥ 30 GeV and decreases ], uncertainties due to > ]. For the jets 88 , T N p 89 , 87 , 66 ]. They are propagated through 79 6. 76 , ], and uncertainties in the electron ≥ 74 80 – jets 72 N 1 to – 12 – ≥ 100 GeV. For forward jets, the JES uncertainty calculation [ > jets T ] is negligible and is not included here. miss N T p E 90 of 30 GeV — but increases for jets in the forward region. T p cross-section ratio to below 1% and up to 17% for cross-section ratio, the impact of the JER uncertainty decreases − − /W -tagged jet identification efficiencies [ /W + b + ]. In the analysis, jet energies are shifted in simulated events by the cross-section ratio measurements are summarised in tables W W 73 , is re-evaluated. The full analysis chain, which includes the background − T and is approximately 3.5% for central jets with m /W 6. This method of propagating the systematic uncertainties is used for all η + ]. It is propagated through the analysis by smearing the energies of simulated + jets cross section, this translates to uncertainties of 9% to 20% for ≥ and W 72 ] in the integrated luminosity is applied to the signal predictions and all background 7. In the and W 65 ≥ jets T miss T The multijet background estimate is affected by uncertainties due to the choice of tem- Additional experimental systematic uncertainties considered in this analysis include The uncertainty of the JER is also determined through data-driven in situ techniques The JES systematic uncertainties are determined by a combination of data-driven in p N E jets 1.9% [ estimates that are determined fromof simulation. the The LHC effect proton of beam the small energy relative [ uncertainty plate and fit procedure. The uncertainty in the shape of the multijet template is estimated the low-momentum tracks inenergy the scale, energy resolutionidentification, and and isolation scale efficiencies factorscross in sections used and the to their simulation correct ratio,adjusted [ the trigger, by charge randomly misidentification reconstruction, flipping for the electronsthat charge in so in the that simulation the the is overall misidentification data. rate matches The uncertainty due to this correction is small. An uncertainty of In the N to values of less than 1% to 5% for uncertainties in the and includes a dedicatedpile-up estimate [ of effectsjets, from thereby electronic degrading noise the in— jet the about resolution. calorimeter 2% and for For central jets jets, with the a JER uncertainty is small uncertainties on the crossdecreases section for ranges the from 8%to to 55% for other uncertainties except forsystematic uncertainties uncertainty due is the the unfolding sum procedure in quadrature itself. of The the total individual uncertainties. size of the JESof uncertainty component, and theestimates event and selection, the including unfolding, ato is recalculation the repeated nominal and is thethe taken change up as in and the the down systematic variations cross is uncertainty. section taken For with as a respect the given symmetric source, uncertainty. the The impact average of of the JES muon system, effects due tocalibration the and light other smaller quark effects. orjet gluon The origin uncertainty in of the the JESto jets, varies as about a 1% function of foris the central almost jets twice with asintercalibration large [ as for central jets, mainly due to the uncertainties in the jet- and the situ techniques and simulation-based approaches [ the analysis as 18 independentin components and situ account for measurements, systematic pile-up-corrections uncertainties in to the the jet energies, jet punch-through to the The systematic uncertainties as a function of the number of jets in the JHEP05(2018)077 - c Alp- boson ]. The contri- b ¯ ] and for 93 [ W b 91 + cross section, production is W ¯ t 7% [ t W  ], for diboson pro- Herwig and + 62 ¯ c and single top quark – boson production are estimate, the normal- c ¯ t ¯ t cross-section ratio. The 53 Z t t + 7 for the − simulation instead of W -tagged jets, to the fiducial ≥ 8% [ b . /W 6 normalisation. 7; the largest contributions to cross-section ratio ranges from + jets MC@NLO  ¯ t -tagged jet identification efficien- t N − production in association with ≥ W b ]. For the Sherpa W /W jets 92 0 to + N cross section from these sources ranges ≥ W 5% [ 6 in the 6 and is larger than that of the W  jets 0 to ≥ background modelling uncertainties is cross- ≥ N ¯ t ≥ t prediction from jets – 13 – jets ¯ t + jets production. The impact due to statistical N t jets , is also removed and the difference is taken as an N background, the theoretical uncertainties only have W N 4 ¯ t t + jets generator, and, at higher jet multiplicities, the 0 to 0 to W ≥ ≥ distribution for events with 5–7 jets where jets N jets jets N N ) by simultaneously varying the cross section by fit is determined by using the ZZ , miss T E WZ 6 for the modelling of , 7 where this prediction is known to have large differences from the data in the 1% to 12% for contribution by a factor of 1.8 and the sum of the ≥  c WW + jets Pythia -quark jets is considered. This accounts for any mismodelling in the extrapolation N b In addition to the experimental uncertainties in the Uncertainties from the background estimates that are derived using simulation include + W production by varying the cross section by -enriched data sample. The combined impact of the non-multijet background uncertainty ¯ t and from the signal region,region, which which includes has no a such veto veto.the of The uncertainty events in with these crossbutions sections by is a applied factor by scaling of 0.5. These factors are obtained by comparing the data to the signal t sources ranges from less thanand 1% from to 22% for dominant sources of uncertainty are those related to the cies, a theoretical uncertainty in the cross section of a noticeable effect ina the significant contribution. Thechecked by impact comparing of to anresults alternative from this predictionwith are well covered by other uncertainties, except for in events isation factor, as discusseduncertainty. in Additional section uncertainties in thenot modelling considered. of the Backgrounds shape from ofsmall, single the and top the distributions impact quark, are of dibosonuncertainties the and cross-section are uncertainties negligible. is For minimal, the therefore any modelling theoretical uncertainties in theulated cross samples. section The andproduction theoretical by the simultaneously uncertainties varying statistical are the uncertaintyduction cross evaluated ( section of for by the sim- Z statistical uncertainties. The uncertaintyless in than the 1% tomeasurement 27% due for to statisticalidentification uncertainties and from the the fit fit range uncertainties as that well do as not the fully inverted cancel electron out in the ratio. procedure are estimated by varyingas the well lower as and changing upper the binningeters bound used of is in the also the fit fit. included. rangefrom The separately, The less statistical uncertainty uncertainty than in in 1% thethe the fit to uncertainty param- about are 12% duetron for to identification, the the fit choice range of variation, the modification of the inverted elec- the electron used totemplate select in the the multijet-enriched datagen sample. The influenceuncertainties of in the signal the templatesdrawn is from evaluated the by templates creating and a refitting the thousand data pseudo-data with samples each. Uncertainties due to the fit by varying separately both the inverted isolation criteria and the inverted identification of JHEP05(2018)077 b ¯ ¯ c, b c, c 1 6 2 2 . . . . -tagging 7 jets + b ≥ 6 5 1 8 7 8 W ...... 6 jets ≥ 1 2 8 12 7 2 9 7 9 4 . . . . . 6 jets Other backgrounds ≥ + jets) cross-section 2 17 0 4 4 17 5 0 5 6 0 12 7 2 8 2 4 13 1 1 ...... 5 jets − ≥ W 18 2 7 12 8 0 14 1 7 6 70 14 2 21 ...... 5 jets ≥ 9 9 6 3 2 9 5 0 8 5 9 15 27 3 7 7 1 3 1 4 6 5 1 ...... 4 jets ≥ + jets)/( 3 15 23 33 81 2 5 8 7 4 5 10 1 16 22 0 4 62 8 2 ...... -tagging includes the uncertainties + 4 jets b + jets cross sections in percent as a ≥ W 3 3 5 2 5 4 1 0 8 3 2 5 2 3 3 0 7 1 9 2 2 0 9 10 23 41 combines uncertainties in the pile-up W ...... 3 jets ≥ and diboson cross sections as well as the 85 8 5 1 6 7 5 2 5 3 0 4 4 17 4 1 ...... 3 jets Z Other ≥ 2 2 6 2 5 1 1 0 9 2 9 3 3 1 2 0 6 0 3 0 1 0 1 5 ...... 2 jets ≥ 95 12 3 14 15 18 20 42 1 1 5 8 2 2 2 0 9 4 04 2 0 ...... 2 jets – 14 – ≥ 3 1 7 1 2 0 1 0 8 1 2 2 1 0 1 0 5 0 1 0 8 4 ...... 1 0 . . 1 jet 0 ≥ < 5 10 14 18 27 38 55 85 9 1 32 2 0 46 1 4 1 0 1 4 8 1 2 0 ...... 1 jet ≥ 1 0 1 0 1 0 3 1 6 0 7 1 1 0 . 1 0 . . . 1 0 1 0 . 1 0 1 . -tagged jet identification and misidentification efficiencies as well ...... 0 b 0 0 0 0 0 0 < < < < < < combines uncertainties in the pile-up modelling and the impact of Inclusive 1 7 51 8 0 5 1 11 1 2 7 4 3 0 1 0 0 13 16 20 27 38 55 76 . . . . 11 0 0 ...... 1 and diboson cross sections as well as the statistical uncertainty in the cross sections in the extrapolation from the signal region to the fiducial 0 0 summarises the impact of b ¯ < < Inclusive Z ¯ c, b Other c, c + W miss T -tagging . Relative systematic uncertainties in the measured . Relative systematic uncertainties in the measured ( Other backgrounds Jet energy scale Jet energy resolution 0 b Electron 0 E Multijet background 0 Top quark background Other backgrounds Unfolding 0 Other Luminosity Total systematic uncert. 0 -tagged jet identification and misidentification efficiencies as well as the impact of b miss T -tagging 0 Jet energy scale 0 Jet energy resolution 0 b ElectronE Multijet backgroundTop quark background 0 1 Other backgrounds Unfolding 4 Other 0 Luminosity 0 Total systematic uncert. 5 includes the uncertainties in the as the impact of region. statistical uncertainty in themodelling background and estimates. the impact of matching jets to the primary vertex. Table 4 ratio in percent as a function of the inclusive jet multiplicity. The uncertainty from cross sections in the extrapolationsummarises the from impact the of signalbackground region to estimates. the fiducialmatching region. jets to the primary vertex. Table 3 function of the inclusive jetin the multiplicity. The uncertainty from JHEP05(2018)077 cross Pythia W ], which 5 for the . + 5 2 , BlackHat 4 . In general, generator in- < 2 | (and at around y | results. The size T Alpgen ]. The p 4 to events using a . 3 4 – jetti Sherpa program [ 1 by a factor of two. N < results to the data, the 6 sample and the change o | y µ jetti | + jets data sample, which 6 simulation as a function N jetti boson and of the jets as well W N W Pythia + Pythia + of the T p Alpgen Alpgen 1.4.1 generator. The theoretical uncertainties in – 15 – + jets production are compared to a number of theo- -tagged jet and one or two additional jets. The impact b W Sherpa and CT14 NNLO PDFs. All the kinematic selections listed 6 generator and also by using input from 2 ) j T predictions (abbreviated to BH+S in the figures) include NLO . These predictions, with the exception of the NNLO results, p cross-section ratio. 5 − Pythia + Σ( + /W 5 is estimated with the . 2 W + + jets production with up to five additional jets [ Sherpa 2 m + W W ). For the differential cross section as function of the second leading jet’s < q T and decreases to zero at around 200 GeV to 250 GeV in | y H = Alpgen | T o H are applied except for the jet rapidity requirement, which is µ 2 + jets predictions at NNLO are calculated using the W BlackHat The uncertainties due to the unfolding result from imperfections in the modelling of + jets predictions as well as the size of the simulated sample used. The impact of the the NNLO prediction are obtained by multiplying and7.2 dividing NLO predictions The calculations for of this correction isas around at 10% to low 15%500 at GeV low for rapidity, the correction is approximatelyfactor constant include at statistical 10%. uncertainties from Uncertainties the in in the this correction correction when using the in table leading jet for thisratio of calculation. events selected In usingcriterion order a of leading to jet compareof rapidity the criterion each of differential observable and applied as a correction to the The uses the so-calledof N-jettiness the subtraction final-state technique partons. tochoice This control of calculation the uses infrared a singularities renormalisation and factorisation scale are summarised in table are computed in the samethe phase NNLO space and NLO as predictions theand include measurement, the theoretical defined PDFs, uncertainties in due while table to the the LO choice predictions of7.1 include scale only statistical uncertainties. NNLO predictions 7 Theoretical predictions The measured cross sectionsretical for predictions at NNLO, NLO, and leading order (LO) in perturbative QCD, which former is evaluated by repeatingstead the of unfolding the using input6 from where the the true distributionscription in of the the data unfolding at matrix reconstructedsample level. is is reweighted The dependence to derived due provide using to auncertainty. the pseudo-experiments better The size of and de- impact the on the simulated the spread measured of cross the section ranges results from is 0.5% taken to as 3%. an requires events with aton least the one measured cross sectionsection is and below the 2% for all jet multiplicities and in bothW the and background predictions using a heavy flavour-enriched JHEP05(2018)077 0 ], T , H 94 jets N jet1,jet2 7 2. Four m / T and H 2, where / calculates the only only 0 T 7 7 H jet1,jet2 + 3-jets production R Including NLO EW cor- rections in figure Figure Figure Not shown∆ for W Sherpa + 1-jet production, the X X X X X X W ], MSTW 2008 and NNPDF X X X 97 + jets production at NLO for up + jets production with one jet at + 2-jets, and boson and the jets. The theoretical W W W W + 1-jet, + 3 more PDF set NPC PS Comments – 16 – W + 2-jet production is utilised. Through this approach, max partons W N at highest order and the choice of scales, which are evaluated in the same way S S α α LO 5 CTEQ6L1 (LO) matrix elements are also used in the exclusive sums approach [ NLO 1, 2 or 3 CT10 in NNLO 1 CT14 used in this analysis, the PDF set used, if non-perturbative corrections (NPC) 2.2.1 generator is used to calculate 8 NLO 1 CT14 6 LO 5 CTEQ6L1 (LO) S α Sherpa Sherpa ], with a second jet, if present, at LO accuracy as the real emission correction + + Pythia Herwig Pythia 96 + Sherpa 1.4.1 LO 4 CT10 2.2.1 LO 2 (3) NNPDF 3.0 2.2.1 NLO 2 CT10 + + , . Summary of theoretical predictions, including the maximum number of partons at the ], which are all at NLO. These predictions include uncertainties due to the PDF 95 only. 98 The The MCFM calculation in this paper predicts S jetti α Sherpa Alpgen Alpgen Sherpa Sherpa Powheg MCFM 6.8 NLO 1 CT10 BlackHat N Program Order error set, the valueas of above. to two associated jetsa and at parton LO shower, for hadronisation, a third and jet. modelling This of calculation the includes matching underlying with event. The PDF set NLO [ in the NLO calculation.choices Renormalisation of and PDF factorisation sets2.3 scales [ are are shown: set to CT10, HERAPDF 1.5 [ BlackHat in which NLO information from additional contributions from higherto multiplicity the final standard states fixed-order canhigher prediction. parton be This multiplicities. included is in useful contrast for observables that are sensitive to are used for theNLO corresponding PDF measured set jet and multiplicity. theis These choice the of predictions renormalisation scalar use and sum the factorisation ofuncertainties CT10 scale the considered is transverse include momenta uncertainties ofdue due the to to the choice the of PDF scale,and which error are factorisation set evaluated by scales and independently varying uncertainties up the renormalisation and down by a factor of two. For program provides the NLO virtualtree-level matrix diagrams element corrections and while provides theor phase-space two integration. jets, only Focusing on calculations events at with NLO one for Table 5 highest order in are applied and ifThe maximum a number of modelling partonsuncertainties of in in between the the parentheses NPC. parton is NLO only showerin electroweak used (PS) (EW) in corrections the is are estimate included applied of to systematic and the additional prediction at comments. NLO JHEP05(2018)077 − /W ] with + 48 [ W predictions . In addition 3 together with the Herwig ]. The CT14 PDF 6 Sherpa (version 1.4.1) are com- version is given in addition 1, as indicated in the figures, CTEQ6L1 bosons in association with one predictions of the overall cross ≥ Sherpa W ]. This is interfaced to the parton jets Sherpa ]. Only statistical uncertainties are 47 and N 49 6 (abbreviated to ALPGEN+PY6 in [ Powheg Alpgen Pythia AUET2 2. These predictions include uncertainties due – 17 – / 0 T H , and MCFM results do not include non-perturbative ef- ] combining matrix element calculations with up to two calculation, and the PDF set 37 2.2.1 with the same set-up as the NLO 2.2.1 predictions. ] and combined using the MiNLO technique [ Sherpa 2.2.1 [ + Powheg 100 Sherpa 8 [ ] for the parton shower. The 6, but a different tune: r2129 results (abbreviated to PWHG+PY8 in the figures) are calculated Sherpa predictions showered with 101 production in association with one jet [ Sherpa [ ]. The NLO EW corrections are determined with the same set-up as the 99 ] for the underlying event is shown. This prediction uses the same PDF as W BlackHat Pythia Pythia , Powheg 102 + [ Alpgen jetti ] is used for the AZNLO N The 31 predictions, no non-perturbative corrections areratio. required The as these impact effectsdefinition of cancel QED in out radiation, in the which the investigated measured is using cross considered as sections,described part on above of and the the found parton-level dressed-electron to theoretical be very predictions small. is No correction for this effect is applied. dynamic renormalisation and factorisationprocedure. scales The determined corrections by are typically theall around CKKW measured 2–3% and distributions. scale-setting are Statistical applied uncertainties touncertainty, defined in the predictions by these for the corrections envelope and of thethe variations systematic of recoil the scheme, starting the scalethe of mode the matrix of parton element, shower shower, are evolution included and in the the number of respective emitted theory partons uncertainties. from For the The fects from hadronisation andeach the bin underlying with event.parton emissions These at corrections are LO computed in for pQCD. The calculation uses the NNPDF 3.0 PDF set and Jimmy Alpgen shown. Theoretical uncertainties are large for LO calculations. 7.4 Non-perturbative corrections 7.3 LO predictions Predictions from the multi-leg LO generators pared to the data.to The the details of thesethe predictions figures), are a described prediction using in an section alternative parton shower model from tune section are corrected by ato factor of match 1.1 the for total events integratedare with number included. of events in the data. Only statistical uncertainties or two jets [ NLO QCD-only at NLO for shower of set [ to the PDFabove. error The set corresponding LO and predictionfor the from the choice comparison. same of In scale,Sizeable NLO the corrections which to figures, are the cross section evaluatedespecially the from at in electroweak LO large (EW) emissions transverse the prediction are momentum expected same of is the way produced shown as without any uncertainties. used is CT10 and the scale is set to JHEP05(2018)077 . T − − W 0 H W qq /W + → and Alpgen W + qq 1. For dis- calculation, W ≥ jetti predictions start jets N ). For the ratio of as a function of N A − . production, are shown 7 /W for different inclusive jet Sherpa − . At the largest measured + production are shown. All − − W W eν /W /W + and + → , contributions from additional jets W + W T ratio in the LO PDF. W W H predictions provide a much better de- u/d shows the differential cross section as a 4 production and the cross-section ratios of distribution is a very important test of pQCD as Sherpa eν boson is potentially sensitive to the parton dis- – 18 – , which both include multiple jets in the matrix predictions underestimate the data at large values T production and the cross-section ratio of H → 1, figure W W predictions are shown for two different parton shower ≥ . Overall the data agree with the predictions within 1 W production and the ratio of 2 Alpgen jets ≥ Sherpa of the W 1. The N + T ≥ p jets and boson emitted from one of the initial or final state quarks). The boson for Alpgen exclusive sums method and from the NNLO N jets production and the ratio of W W 2, only the cross sections for N W ≥ for Sherpa BlackHat 3 of the jets Sherpa cross-section ratio increases due to larger statistical uncertainties in the T N + p − , where the measured cross section is small, the total experimental uncertainty T /W cross-section ratio for events with one jet, which is outside of the experimental + H , agreement between the data and the predictions is much improved, indicating , obtained from separate measurement of − − − W . This is expected since, at these large values of T The distribution of the BlackHat /W /W /W + + + H in the data and some systematic uncertainties that do not fullytributions cancel in out the in proton. thefunction ratio. of For the of are important, which arethe only partially present inwhich this include calculation. an additional The jetThese predictions emission effects at from cancel NLO, out provide tovalues better a of large agreement extent with in the the data. ratio of the higher values are sensitive to(dijet higher production jet with multiplicities a and topologiesLO such as predictions of element calculation describe the data best,uncertainties. although these The predictions have large theoretical in the matrix element calculation or an incorrect 8.2 Distributions for The differential cross section for are shown in figure W that theoretical mismodelling related topredictions, jet which emission perform cancels very out well for inW the the cross-section ratio. measurement have The an offsetuncertainties. in This the is present for both parton shower models, thereby indicating a problem to diverge from thescription data, of while the the data.models, NLO The both ofties. which are The trends consistent for withcross all sections the predictions as are data well the within as same the the for exclusive experimental the jet distributions uncertain- multiplicities of (see the appendix 8.1 Jet multiplicity distribution The cross section for multiplicities are shown inthe figure experimental uncertainties. At higher multiplicities, the LO The measured crossW sections for for the jet multiplicitytributions distributions with as wellresults as are for compared distributions to with the set of predictions discussed in section 8 Cross-section results JHEP05(2018)077 ratio − jets N 6 [GeV] /W ≥ T H + ratio (right) -1 | < 4.4 -1 W jet | < 4.4 − 5 ≥ jet NNLO /W jetti N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 4 t + BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ≥ jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T > 30 GeV, |y = 8 TeV, 20.2 fb W anti-k p s jet T anti-k p 3 ≥ 1 jets) ≥ + 2 - ≥ + jets) - 1 1 jets)/(W Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ≥ ≥ Data BH+S SHERPA 2.2.1 LO ALPGEN+PY6 bosons (left) and the + + + jets)/(W + ATLAS (W ATLAS (W 0 W ≥ 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 8 6 4 2 0 1 1 1 8 6 4 2 0 1.1 1.1 1.1 1 1 1 0.9 0.9 0.9

1.1 1.1 1.1

0.9 0.9 0.9

T T

/dH

Pred./Data Pred./Data

d / d / /dH Pred./Data

σ

σ

W

bosons (left) and the W

jets jets - +

Pred./Data Pred./Data Pred./Data ) +N (W / ) +N (W

σ σ - + 1. The last bin in the left figure includes values W ≥ – 19 – jets jets 7 N N ≥ [GeV] T H 6 ≥ 1 jets ≥ 5 ) + jets NNLO ≥ ν ) + Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG jetti e ν N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG e → → W( 4 ≥ W( for events with 3 ≥ T H -1 | < 4.4 -1 2 jet | < 4.4 ≥ jet 1 ≥ jets, R = 0.4 t jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T > 30 GeV, |y = 8 TeV, 20.2 fb ATLAS anti-k p s jet T 0 ATLAS anti-k p ≥ 1 8 7 6 5 4 3 2 -1 1 1 1 -2 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 . Cross section for the production of 10 . Differential cross sections for the production of 1 7 6 5 4 3 2 -1 1 1 1 -2 1.4 1.2 1.4 1.2 1.4 1.2 0.8 0.6 0.8 0.6 0.8 0.6 10 10 10 10 10 10 10 10 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

10 10 10 10 10 10 10 10

jets

Pred./Data Pred./Data

Pred./Data

) [pb] ) (W+N

σ

T

Pred./Data Pred./Data [fb/GeV] /dH d Pred./Data σ beyond the shown range.and For the the combined data, statistical theuppermost and statistical panel uncertainties systematic in are each uncertaintiesratios plot indicated are of shows as shown the the vertical by predictions differential bars, the to crossin the sections, hatched the data. while bands. text. the The The lower The theoretical arrows panels uncertainties on show on the the the lower predictions panels are indicate described points that are outside the displayed range. Figure 3 (right) as a function of bands. The uppermost panel inshow each plot the shows the ratios differential of crossare sections, the described while the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 2 for different inclusive jetvertical multiplicities. bars, For and the the data, combined the statistical statistical and uncertainties systematic are uncertainties indicated are as shown by the hatched JHEP05(2018)077 2 ratio 1.4.1) +dijet − tend to and LO W [GeV] for events /W T in figure + T -1 p . In the for- | < 4.4 W jet Sherpa 6 W boson p NNLO Sherpa 2.2.1 predictions Alpgen jetti N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 + jets, R = 0.4 t , Alpgen > 30 GeV, |y = 8 TeV, 20.2 fb s jet T anti-k p jetti N 1 jets) ≥ Sherpa NNLO and + - BlackHat . The jetti 1 jets)/(W − Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG N ≥ 6 compared to a smoothly falling bosons (left) and the + . + are shown in figure 3 ATLAS (W /W W − predictions vary slightly for different + 1. The last bin in the left figure includes 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 8 6 4 2 0 1 1 1 | ≈ 1.1 1.1 1.1 0.9 0.9 0.9 W ≥

y

/W

T T |

Pred./Data Pred./Data

d /dp /dp d / Pred./Data

σ σ

W W - W W + + jets and a dijet invariant mass greater than 500 W N T Alpgen p – 20 – for events with at least two jets. In that paper, the [GeV] T providing a better description of the data. In the ratio T p 1.4.1. The and consistent with the offset seen for 1 jets ≥ W boson p NNLO for events with ) + jetti ν N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG e T → Pythia W( W p Sherpa Alpgen production and the ratio of -1 | < 4.4 jet W distribution. These differences contrast with those observed in NNLO calculation. Both the NLO and LO production and the ratio of T p ] in the leading jet jets, R = 0.4 t jetti W > 30 GeV, |y 1 for = 8 TeV, 20.2 fb s jet T shows the differential cross section as a function of the leading jet 21 N ATLAS anti-k p , where the experimental precision is greatly improved, neither of these pre- 5 ≥ − 0 2000 400 200 600 400 800 600 1000 800 1200 1000 1400 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 1.4.1 predictions show fair agreement with the data for both distributions. The . Differential cross sections for the production of 2.2.1 calculations for both NLO and LO as well as 1 6 5 4 3 2 -1 1 1 1 -2 1 for 10 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

10 10 10 10 10 10

10

production, there is good agreement between the data and most LO predictions as jets

T /W

Pred./Data Pred./Data /dp d [fb/GeV] Pred./Data

σ ≥ W N + The differential cross sections as a function of the leading jet rapidity for events with Figure W W jets GeV. With thishighlights selection, how a the given predictions prediction tend can yield to very overestimate differentN results the in cross different section. phaseward spaces. region, This the data turn down more sharply at with Sherpa Sherpa predict a softer production [ event selection requires a larger leading jet dictions describe the dataoverestimate well. the Most predictions data (except betweenThis one effect is to largest almost for (right) four for times events with the one experimental jet. uncertainties. For well as the perform worse than LO parton shower models, with of The uppermost panelshow in the each ratios plot ofare shows the described the predictions in differential todisplayed the range. cross the text. sections, data. The while The arrows the theoretical on lower uncertainties the panels on lower the panels predictions indicate points that are outside the Figure 4 (right) as a function ofvalues beyond the the shown range.bars, For and the the data, combined the statistical statistical uncertainties and are systematic indicated uncertainties as are vertical shown by the hatched bands. JHEP05(2018)077 , − T p /W + Pythia W [GeV] + T boson -1 | < 4.4 W boson, where jet , NNLO T Leading jet p W jetti N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 Alpgen t H > 30 GeV, |y = 8 TeV, 20.2 fb s jet T anti-k p overpredicts the data 1. The last bin in the ≥ of the 1 jets) ≥ T + - p jets to NLO MCFM predictions N bosons (left) and the 7 Alpgen 1 jets)/(W Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ≥ W + + ATLAS (W 100 200 300100 400 200 500 300 600 400 700 500 800 600 900 700 1000 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 8 6 4 2 0 1 1 1 1.1 1.1 1.1

0.9 0.9 0.9

boson and at forward jet rapidities. In

T T

d /dp /dp d / Pred./Data Pred./Data

Pred./Data

σ σ

W W

- + jet1 jet1 W for events with T in the unfolding and the jet energy scale and p – 21 – of the T [GeV] T p Sherpa 1 jets ≥ NNLO ) + jetti Leading jet p ν N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG e and , resulting in good agreement with data. It can be noticed → − W( . In addition, different PDF sets can affect the predicted cross /W ). The mismodelling in the forward region, however, largely cancels + A -1 | < 4.4 W Alpgen jet cross-section ratios for the above four observables ( Herwig − + 4. jets, R = 0.4 . t and leading jet rapidity) are compared in figure underpredicts the ratio at high rapidities, and > 30 GeV, |y 2 /W = 8 TeV, 20.2 fb 200 400200 600 400 800 600 1000 800 1200 1000 1400 1200 1400 s jet T 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 T ATLAS anti-k p + p | ≈ . Differential cross sections for the production of W 1 7 6 5 4 3 2 -1 1 1 1 -2 in appendix y 10

| 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

10 10 10 10 10 10

10 10

T Alpgen

/dp d [fb/GeV] Pred./Data Pred./Data

Pred./Data

σ 24 jet1 Sherpa The set. As seenThese in variations the are figure, largest thethe for MCFM region the predictions of vary 200 dependingexperimental GeV uncertainties on to in the 400 the GeV PDF ratiothe in set are four the small used. (around PDF distribution 2% sets of to the differ 6%), the by predictions about from 2% to 5% and are, in some cases, up to 2–3 times that around leading jet with four different PDF sets:theoretical uncertainties CT10, for HERAPDF the 1.5, MSTW MCFM 2008, prediction and are NNPDF displayed 2.3. only The for the CT10 PDF section in the high6 rapidity and region, as seensection through at the high comparison jet of figure rapidities, but to aout smaller in extent the (as ratio can of be seen by comparing with distribution. The experimentaldifference uncertainties, which between in thisresolution region uncertainties, are cover dominated thissection by effect. for the forward Most jets theory thanimental calculations that uncertainties. predict observed a in The the larger parton data cross and shower lie model within strongly 1–2 influences times the the exper- calculated cross the hatched bands. Thethe uppermost lower panels panel show inthe the each predictions plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 5 ratio (right) as aleft figure function includes of values theindicated beyond as leading the vertical jet shown bars, range. and the For the combined statistical data, and the systematic statistical uncertainties uncertainties are are shown by JHEP05(2018)077 T H ratio − Powheg /W + in the latter -1 cross-section | < 4.4 Leading jet |y| W jet S − exclusive sums α NNLO , cancel out to a jetti N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 + 2 jets at NLO), jets, R = 0.4 t /W grow for increasing . Both fixed-order > 30 GeV, |y = 8 TeV, 20.2 fb 2.2.1, the latter in- + s jet T anti-k p QED W 8 ( α W Sherpa QED 1 jets) + ≥ α and + 1. For the data, the statistical - S Sherpa ≥ α Sherpa boson production as a function 1 jets)/(W Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG cross sections, are also shown in ≥ + jets bosons (left) and the + Z + − N ATLAS (W . These results should prove useful 8 and W W T BlackHat 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 p boson, resulting in a reduction of the 8 6 4 2 0 1 1 1

1.1 1.1 1.1 0.9 0.9 0.9 ). The inclusion of these corrections to

| /d|y d | / d / | /d|y

Pred./Data Pred./Data

σ

Pred./Data

σ and W W

- jet1 + W jet1 A production in figure + BlackHat Pythia W W + – 22 – of the T p in appendix 2 -1 | < 4.4 Leading jet |y| jet Powheg 23 ≥ – NNLO jetti and the N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 t 21 jets 8 parton shower in the former. Corrections to the differential > 30 GeV, |y ]. = 8 TeV, 20.2 fb T s jet T anti-k p p N cross-section ratios. The description of the ratio by the 105 − – + 1 jet at NNLO) and 103 /W W Pythia [ ( + 1 jets ≥ T ) + p and rapidity are shown for W Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ν jetti e → T , leading jet N ATLAS W( p T 8 predictions is similar to that from the H 0 0.50 1 0.5 1.5 1 2 1.5 2.5 2 3 2.5 3.5 3 4 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 boson . Differential cross sections for the production of 2.2.1 leads to a larger disagreement with the data. In the 9 8 7 6 5 4 3 1 1 1 10 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 for the

10

Z

/d|y | [fb] |

d Pred./Data Pred./Data

Pred./Data

σ 7 jet1 Additional predictions from Pythia 8.3 Distributions for For events with at leastleading two jets, jet the differentialpredictions, cross sections as a function of the second values of predicted cross section ofbutions are up shown to in 30%Sherpa figures to 80% dependingratio, differences on due the to distributionlarge these extent. (the higher-order distri- effects, both in figure + method. The impact ofis the balanced emission by of the across second section jet calculated from at electroweak NLO radiation in calculated at NLO in distribution and the distributionin of global the PDF leading fits jet asof a the counterpart to measurements of cluding NLO electroweak corrections to the sections, while theuncertainties lower on panels the show predictions the arepoints described that ratios in are of the outside the text. the predictions displayed The range. arrows to on the the data. lowerthe panels indicate experimental The uncertainty theoretical away from the data. Similar trends are visible in the Figure 6 (right) as a function of theuncertainties leading are jet indicated rapidity as for events verticalties with bars, are and shown the by the combined hatched statistical bands. and systematic The uppermost uncertain- panel in each plot shows the differential cross JHEP05(2018)077 [GeV] T 1. For the ) and of the -1 -1 5, similar to ≥ | < 4.4 | < 4.4 . Leading jet |y| jet jet 2 W boson p jets (top right), leading N MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum jets, R = 0.4 jets, R = 0.4 | ≈ jet1,jet2 t t y > 30 GeV, |y > 30 GeV, |y T = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb R | s s jet T jet T anti-k anti-k p p W p 1 jets) 1 jets) ≥ ≥ + + - - production. These observables 1 jets)/(W 1 jets)/(W Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 ≥ ≥ (top left), + + W + + T ATLAS ATLAS (W (W H 0 100 200 300 400 500 600 700 800 0 0.50 1 0.5 1.5 1 2 1.5 2.5 2 3 2.5 3.5 3 4 3.5 4 0 100 200 300 400 500 600 700 800 0 0.5 1 1.5 2 2.5 3 3.5 4 0 100 200 300 400 500 600 700 800 0 0.5 1 1.5 2 2.5 3 3.5 4 0 100 200 300 400 500 600 700 800 for 8 6 4 2 0 8 6 4 2 0 1 1 1 1 1 1 1.1 1.1 1.1 1.1 1.1 1.1

0.9 0.9 0.9 0.9 0.9 0.9

9

T T

| /d|y d | / d / | /d|y

Pred./Data Pred./Data Pred./Data Pred./Data

σ

d /dp /dp d / Pred./Data Pred./Data σ

σ σ

W W

W W - jet1 + - W jet1 W + distribution. The second leading jet’s rapidity – 23 – T p [GeV] [GeV] T T H -1 -1 | < 4.4 | < 4.4 jet jet Leading jet p ) are shown in figure MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T anti-k anti-k p p jet1,jet2 1 jets) 1 jets) cross-section ratio as a function of m ≥ ≥ + + - - − W 1 jets)/(W 1 jets)/(W Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 ≥ ≥ to + + + + + ATLAS ATLAS (W (W 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 , all other calculations tend to predict larger cross sections. 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 W 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 . 8 6 4 2 0 8 6 4 2 0 1 1 1 1 1 1

1.1 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9 0.9 0.9 0.9

T T

T

T (bottom left) and leading jet rapidity (bottom right) for events with

d /dp /dp d / /dH Pred./Data Pred./Data Pred./Data Pred./Data

d / d / /dH Pred./Data Pred./Data

σ σ σ

σ

W W

W W - + - jet1 jet1 + T The cross sections as a function of the dijet angular separation (∆ p Alpgen the modelling of the rapidityof for the leading jet. At large jet rapidities, with thedijet exception invariant mass ( test hard parton radiation at large angles and matrix-element/parton-shower matching panels indicate points that are outside the displayed range. predict the second jetthe at data NLO. for thedistribution Both is second have modelled leading a well jet’s similar by level most predictions of up agreement to with a respect rapidity to of Figure 7 jet data, the statistical uncertaintiessystematic are uncertainties are indicated shown as bythe vertical the differential bars, hatched cross bands. and sections, The the whileThe uppermost the combined theoretical panel lower statistical uncertainties in panels on and each show the plot the predictions shows ratios are of described the in predictions the to text. the data. The arrows on the lower JHEP05(2018)077 1.4.1 jet1,jet2 R Alpgen predictions -1 . | < 4.4 Sherpa jet A NNLO jetti Second leading jet |y| N SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T Alpgen anti-k p region. The describes the data well for 2 jets ≥ ) + Data BH+S SHERPA 2.2.1 LO ALPGEN+PY6 ν e jet1,jet2 of the leading jet. The → + jets as a function of second leading m ATLAS W( T Sherpa W p 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 + 0 0.5 1 1.5 2 2.5 3 3.5 4 2. The last bin in the left figure includes 4 3 9 8 7 6 5 1 1 1

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10

| [fb] | /d|y

d Pred./Data Pred./Data Pred./Data σ jet2 jets N – 24 – BlackHat 1.4.1, considerable improvement in the description [GeV] T 2.2.1 describe the data better, in particular, the dijet 2 jets ≥ ]. NNLO Sherpa ) + jetti ν N Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG 21 e → Sherpa W( cross section distributions are given in appendix Second leading jet p − W boson, which becomes larger for dijet invariant masses above 1 TeV, -1 = 8 TeV [ | < 4.4 jet s W and √ + distribution, which includes all higher values beyond the shown ∆ jets, R = 0.4 cross-section ratio as a function of the pseudorapidity of the electron, and t > 30 GeV, |y = 8 TeV, 20.2 fb W s jet T − ATLAS anti-k p 100 200 300100 400 200 500 300 600 400 700 500 800 600 900 700 1000 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 distribution, which is dominated by this low ]. The additional jet multiplicities for the displayed observables, the cross section 1 . Differential cross sections for the production of 6 5 4 3 2 -1 1 1 1 -2 /W 10 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 jet1,jet2

10 10 10 10 10 10 10

+

T

(left) and rapidity (right) for events with 106 /dp d [fb/GeV]

Pred./Data Pred./Data Pred./Data σ R jet2 W The cross sections for all distributions shown in this paper are available in Hep- T jet1,jet2 = 7 TeV and p s R √ Data [ and the separate of this observable ispredictions describe found large when invariant masses requiring well,separations but a between deteriorate larger for the small and leadingwith large two two angular different jets. parton showerproduction models Differences of are between the small the fora both dedicated distributions. measurement For with electroweak an optimised selection has been performed using data at generator predicts too manymasses. events at As large a angularthe result, separations ∆ this and prediction high greatlyrange. dijet overestimates Both invariant the LO data andinvariant in mass NLO distribution. the In highest bin of schemes. Jet productionof in the the underlying forward event’sboth region contribution. distributions can even at also largethan be dijet in very invariant masses, the sensitive with to data∆ a the at cross section tuning low slightly invariant higher mass. This leads to the small observed offset in the The uppermost panelshow in the each ratios plot ofare shows the described the predictions in differential todisplayed the range. cross the text. sections, data. The while The arrows the theoretical on lower uncertainties the panels on lower the panels predictions indicate points that are outside the Figure 8 jet values beyond the shown range.bars, For and the the data, combined the statistical statistical uncertainties and are systematic indicated uncertainties as are vertical shown by the hatched bands. JHEP05(2018)077 , − of 1 (left) /W − + Sherpa W [GeV] jet1,jet2 jet1,jet2 R and m 2 jets ≥ ) + ν Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG , jet rapidity, and e → T W( H Alpgen -1 | < 4.4 jet jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T + jets as a function of ∆ ATLAS anti-k p W 0 5000 1000 500 1500 1000 2000 1500 2500 2000 3000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 1 5 4 3 2 -1 1 1 1 -2 10 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10

2. The last bin in both figures includes values

jet1,jet2

Pred./Data Pred./Data Pred./Data [fb/GeV] /dm d σ worsens, but in many places improves for ≥ cross-section ratio can be measured to high production in association with one or two jets − jets N – 25 – W /W boson production cross sections and the + Alpgen jet1,jet2 W R W ∆ -1 | < 4.4 jet = 8 TeV recorded by the ATLAS detector at the LHC. The BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 s t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T √ anti-k p 2 jets ≥ cross-section ratios, additional features in the description of the data by ) + Data SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ν e − → 1 21 3 2 4 3 5 4 6 5 6 1 2 3 4 5 6 1 2 3 4 5 6 ATLAS W( 3 10 /W × cross-section ratio by about the experimental uncertainty. 0 + 1 1 1 80 60 40 20 . Differential cross sections for the production of 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 180 160 140 120 100

jet1,jet2

Pred./Data Pred./Data W Pred./Data [fb] R /d d ∆ σ The presented measurements will allow a better understanding of perturbative QCD Overall, the measured distributions show that NNLO and NLO predictions are able /W + and the parton distribution functions of the proton. In the the predictions emerge; agreementothers. for The choice of partonW distribution functions can, in some cases, modify the predicted cross sections. Inwhich many consider places, a multi-leg largermodel LO number the of generators, data parton such best, emissions as single although from prediction with the that large matrix is theoretical elementdijet able uncertainties. calculation, invariant to mass There describe distributions is, allbetter however, are distributions modelling no in well. of general events The with the energetic least jets well as well described, as suggesting jets with that large rapidities is needed. parton structure of the proton.precision as The many of the experimental and theoretical uncertaintiesto cancel describe out. the data.dijet However, angular at separations, high many transverse momenta, of large these jet predictions rapidities, underestimate or large or overestimate the This paper presents measurements of cross-section ratios, using dataproton-proton corresponding collisions at to anselected integrated differential luminosity distributions focus of on 20.2and fb are sensitive tests of perturbative QCD, the modelling of the parton shower and the uppermost panel in eachratios plot of shows the the predictions differential to crossin the sections, the data. while text. the The The lower theoretical arrows panels uncertainties on show on the the the lower predictions panels are indicate described 9 points that are outside Conclusion the displayed range. Figure 9 and dijet invariant mass (right) for eventsbeyond with the shown range.and For the the combined data, statistical the and statistical uncertainties systematic are uncertainties indicated are as shown vertical by bars, the hatched bands. The JHEP05(2018)077 ]. ˇ S, Slovenia; DST/NRF, South 107 – 26 – The crucial computing support from all WLCG partners is acknowledged gratefully, We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- (Italy), NL-T1 (Netherlands),(U.S.A.), PIC the Tier-2 (Spain),jor facilities ASGC contributors worldwide of and (Taiwan), computing resources large RAL are non-WLCG listed (U.K.) resource in and ref. providers. [ BNL Ma- programmes co-financed by EU-ESF andBRF, the Greek Norway; NSRF; CERCA BSF,Spain; GIF Programme and the Generalitat Minerva, Royal Israel; Society de and Catalunya, Leverhulme Trust, Generalitat United Kingdom. Valenciana, in particular from(Denmark, CERN, Norway, Sweden), the CC-IN2P3 (France), KIT/GridKA ATLAS (Germany), Tier-1 INFN-CNAF facilities at TRIUMF (Canada), NDGF members have received supportCompute Canada, from FQRNT, and BCKDF, theERDF, the Ontario Innovation FP7, Canada Trust, Canada; Horizon Council, EPLANET,vestissements ERC, 2020 CANARIE, d’Avenir and CRC, Labex Marie andlodowska-Curiele Idex, Sk Actions, Savoir, ANR, France; European R´egionAuvergne DFG and Union; and Fondation AvH Partager In- Foundation, Germany; Herakleitos, Thales and Aristeia FCT, Portugal; MNE/IFA, Romania;JINR; MES MESTD, of Serbia; Russia MSSR,Africa; and Slovakia; NRC MINECO, ARRS KI, Spain; and RussianCantons MIZ SRC of Federation; Bern and and Geneva, WallenbergKingdom; Switzerland; Foundation, MOST, DOE Taiwan; Sweden; and TAEK, Turkey; NSF, SERI, STFC, United United SNSF States and of America. In addition, individual groups and and NSFC, China;Czech COLCIENCIAS, Republic; DNRF Colombia; and DNSRC,SRNSFG, MSMT Denmark; Georgia; CR, IN2P3-CNRS, BMBF, CEA-DRF/IRFU, HGF, MPO France; andSAR, MPG, CR China; Germany; ISF, and GSRT, Greece; I-COREJapan; VSC RGC, and CNRST, Hong CR, Benoziyo Morocco; Kong NWO, Center, Netherlands; Israel; RCN, INFN, Norway; MNiSW Italy; and MEXT NCN, and Poland; JSPS, We thank CERN for thefrom very our successful institutions operation without of whom the ATLAS LHC, could as not well be astralia; the operated support efficiently. BMWFW staff andFAPESP, Brazil; FWF, NSERC, NRC and Austria; CFI, Canada; ANAS, CERN; CONICYT, Azerbaijan; Chile; CAS, SSTC, MOST Belarus; CNPq and Acknowledgments JHEP05(2018)077 T ), 27 – ) and cross- W p . 20 − 25 ), 15 – – 11 /W 16 14 + ), and 2. W 10 2 ≥ (figure ≥ T jets H N ), corresponding to the jets 24 N – 21 . A.1 cross-section ratio as a function of production (figure − 1 are presented in figures W ) for events with ≥ /W + 13 jets W ratio as a function of N cross-section ratios, where they have not been − − – 27 – (figure /W /W T , and 0 and + p + shown in appendix ≥ W 8.2 W – 13 – jets cross-section ratio as a function of the pseudorapidity of the 8.1 N 11 − /W + cross sections and the cross sections W − − cross sections, which have been used to calculate the W W − ), and the leading jet for events with W cross sections for all and cross section and the η 12 and − + W and + W W + , W corresponding to figures In the presence ofthe at MCFM least predictions one with jet, differentfigures the PDF shown default sets in (figures set sections of predictions (figures in the presence of at least two jets, the default set of predictions (figures the (figure The exclusive jet multiplicity distribution for W W and • • • • + the electron A.3 The section ratio distributions shown before, are given for the following jet multiplicities: A.2 Pseudorapidity ofThe the electron A.1 Jet multiplicity andThe following distributions additional for multiplicities events are with measured: This appendix includes cross-section resultscross for section additional and jet the multiplicities, themeasured differential electron in the presenceW of any jet andshown of earlier. at least one jet, as well as the separate A Additional cross-section distributions JHEP05(2018)077 ratio − [GeV] /W T H + -1 | < 4.4 W jet BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T anti-k p 2 jets) ≥ + - jets N 2 jets)/(W Data SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ≥ bosons (left) and the + + ATLAS (W W ) + jets 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 ν 8 6 4 2 0 1 1 1 Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG e 1.1 1.1 1.1 0.9 0.9 0.9

T T

/dH Pred./Data Pred./Data d / d / /dH Pred./Data σ

W( σ W W - + 2. The last bin in the left figure includes values + jets as a function of exclusive jet multiplicity. ≥ W jets -1 – 28 – | < 4.4 N jet [GeV] T H jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T ATLAS anti-k p 2 jets 0 1 2 3 4 5 6 7 ≥ ) + 1 ν 8 7 6 5 4 3 2 -1 1 1 1 -2 Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG 10 e 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10

10 10

jets

Pred./Data Pred./Data Pred./Data (W+N ) [pb] ) for events with σ W( T H -1 | < 4.4 jet jets, R = 0.4 t > 30 GeV, |y = 8 TeV, 20.2 fb s jet T ATLAS anti-k p . Cross section for the production of . Differential cross sections for the production of 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 1 6 5 4 3 2 -1 1 1 1 -2 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10

T

Pred./Data Pred./Data [fb/GeV] /dH d Pred./Data σ beyond the shown range.and For the the combined data, statistical theuppermost and statistical panel systematic uncertainties in are each uncertaintiesratios plot indicated are of shows as shown the the vertical by predictions differential bars, the to crossin the sections, hatched the data. while bands. text. the The The lower The theoretical arrows panels uncertainties on show on the the the lower predictions panels are indicate described points that are outside the displayed range. Figure 11 (right) as a function of the shows the differential cross sections,data. while the The lower theoretical panels uncertainties showlower on the panels the ratios indicate predictions of points are the described that predictions in are to the the outside text. the displayed The range. arrows on the Figure 10 For the data, the statistical uncertaintiesand are systematic indicated as uncertainties vertical are bars, shown and by the combined the statistical hatched bands. The uppermost panel in each plot JHEP05(2018)077 − ratio /W + − W [GeV] [GeV] /W T T + -1 -1 | < 4.4 | < 4.4 W jet jet W boson p Leading jet p BH+S SHERPA 2.2.1 LO ALPGEN+PY6 BH+S SHERPA 2.2.1 LO ALPGEN+PY6 jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T anti-k anti-k p p 2. The last bin in the ≥ 2 jets) 2 jets) ≥ ≥ + + - - jets bosons (left) and the N 2 jets)/(W 2 jets)/(W Data SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG Data SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG ≥ ≥ W bosons (left) and the + + + + ATLAS ATLAS (W (W W 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 2. The last bin in the left figure includes 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 8 6 4 2 0 8 6 4 2 0 1 1 1 1 1 1

1.1 1.1 1.1 1.1 1.1 1.1

0.9 0.9 0.9 0.9 0.9 0.9

T T

T T

d /dp /dp d / Pred./Data Pred./Data Pred./Data Pred./Data

d /dp /dp d / Pred./Data Pred./Data

σ σ

σ σ

W W

W W - + - W W + jet1 jet1 jets for events with N T p – 29 – [GeV] [GeV] T T 2 jets 2 jets ≥ ≥ W boson p for events with ) + ) + Leading jet p ν ν Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG e e T → → W( W( W p -1 -1 | < 4.4 | < 4.4 jet jet jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb 200 400200 600 400 800 600 1000 800 1200 1000 1400 1200 1400 s s jet T jet T 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 ATLAS ATLAS anti-k anti-k p p . Differential cross sections for the production of . Differential cross sections for the production of 0 2000 400 200 600 400 800 600 1000 800 1200 1000 1400 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 1 1 6 5 4 3 2 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

/dp d [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dp d [fb/GeV] Pred./Data Pred./Data

σ σ

W jet1 left figure includes valuesindicated beyond as the vertical shown bars,the range. and hatched the For the bands. combined statistical data, Thethe and the uppermost lower systematic statistical panels panel uncertainties uncertainties are show inthe are shown the each predictions by plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 13 ratio (right) as a function of the leading jet bars, and the combinedThe statistical uppermost and systematic panelshow uncertainties in are the each shown ratios plot by ofare the shows the described hatched the predictions bands. in differential todisplayed the range. cross the text. sections, data. The while The arrows the theoretical on lower uncertainties the panels on lower the panels predictions indicate points that are outside the Figure 12 (right) as a function ofvalues beyond the the shown range. For the data, the statistical uncertainties are indicated as vertical JHEP05(2018)077 | | η η for events η -1 -1 (bottom left), | < 4.4 | < 4.4 jet jet + Dressed electron | Dressed electron | W PWHG+PY8 ALPGEN+PY6 jets, R = 0.4 PWHG+PY8 (scaled, 1.2) ALPGEN+PY6 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T anti-k anti-k p p 0 jets) ≥ + - 0 jets ≥ ) + ν

- 0 jets)/(W Data SHERPA 1.4 LO ALPGEN+HERWIG Data SHERPA 1.4 LO ALPGEN+HERWIG ≥ e bosons (top left), → + ( + - ATLAS ATLAS W (W W 0 0.5 1 1.5 2 2.5 00 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 1 7 6 5 4 3 2 0 1 1 1 1 1 1 1.1 1.1 1.1

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 0.9 0.9 0.9 800 600

1800 1600 1400 1200 1000

σ σ σ η η η d d | / d / | /d| | [pb] | /d| | /d|

Pred./Data Pred./Data Pred./Data Pred./Data

Pred./Data Pred./Data

W W W el el el - - + – 30 – | | η η ratio (top right) as a function of the electron -1 -1 | < 4.4 | < 4.4 − jet jet Dressed electron | Dressed electron | /W + jets, R = 0.4 PWHG+PY8 (scaled, 1.2) ALPGEN+PY6 jets, R = 0.4 PWHG+PY8 (scaled, 1.2) ALPGEN+PY6 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T W anti-k anti-k p p 0 jets ≥ 0 jets ≥ ) + ν ) + + Data SHERPA 1.4 LO ALPGEN+HERWIG Data SHERPA 1.4 LO ALPGEN+HERWIG ν e e → ( → + 0. For the data, the statistical uncertainties are indicated as vertical bars, and the ATLAS ATLAS W( W ≥ . Differential cross sections for the production of 00 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 1 1 1 1 1 1 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6

2400 2200 2000 1800 1600 1400 1200 1000 4000 3500 3000 2500 2000 1500

jets

η σ | [pb] | /d|

σ η d | [pb] | /d| d

Pred./Data Pred./Data Pred./Data Pred./Data

Pred./Data Pred./Data

W el el + N (bottom right) and the − The arrows on the lower panels indicate points that are outside the displayed range. Figure 14 W with combined statistical and systematic uncertaintiespanel are in shown each by plot the shows hatchedpredictions the bands. to differential cross The the sections, uppermost data. while The the lower theoretical panels uncertainties show on the the ratios predictions of the are described in the text. JHEP05(2018)077 | | η η for events η -1 -1 (bottom left), | < 4.4 | < 4.4 jet jet + Dressed electron | Dressed electron | W PWHG+PY8 ALPGEN+PY6 jets, R = 0.4 PWHG+PY8 (scaled, 1.1) ALPGEN+PY6 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T anti-k anti-k p p 1 jets) ≥ + - 1 jets ≥ ) + ν

- 1 jets)/(W Data SHERPA 1.4 LO ALPGEN+HERWIG Data SHERPA 1.4 LO ALPGEN+HERWIG ≥ e bosons (top left), → + ( + - ATLAS ATLAS W (W W 0 0.5 1 1.5 2 2.5 00 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 1 7 6 5 4 3 2 0 1 1 1 1 1 1

80 60

1.1 1.1 1.1 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 0.9 0.9 0.9 200 180 160 140 120 100

σ σ σ η η η d d | / d / | /d| | [pb] | /d| | /d|

Pred./Data Pred./Data Pred./Data Pred./Data

Pred./Data Pred./Data

W W W el el el - - + – 31 – | | η η ratio (top right) as a function of the electron -1 -1 | < 4.4 | < 4.4 − jet jet Dressed electron | Dressed electron | /W + jets, R = 0.4 PWHG+PY8 (scaled, 1.1) ALPGEN+PY6 jets, R = 0.4 PWHG+PY8 (scaled, 1.1) ALPGEN+PY6 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T W anti-k anti-k p p 1 jets ≥ 1 jets ≥ ) + ν ) + + Data SHERPA 1.4 LO ALPGEN+HERWIG Data SHERPA 1.4 LO ALPGEN+HERWIG ν e e → ( → + 1. For the data, the statistical uncertainties are indicated as vertical bars, and the ATLAS ATLAS W( W ≥ . Differential cross sections for the production of 00 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 1 1 1 1 1 1 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 260 240 220 200 180 160 140 120 100 450 400 350 300 250 200 150

jets

η σ | [pb] | /d|

σ η d | [pb] | /d| d

Pred./Data Pred./Data Pred./Data Pred./Data

Pred./Data Pred./Data

W el el + N (bottom right) and the − The arrows on the lower panels indicate points that are outside the displayed range. Figure 15 W with combined statistical and systematic uncertaintiespanel are in shown each by plot the shows hatchedpredictions the bands. to differential cross The the sections, uppermost data. while The the lower theoretical panels uncertainties show on the the ratios predictions of the are described in the text. JHEP05(2018)077 jets N 6 ≥ [GeV] T H 5 1 jets ≥ ≥ ) + jets ) + NNLO ν ν

- - jetti e e N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG 4 ≥ → → (right) as a function (right) as a function ( ( - - W W − − 3 ≥ W W 2 -1 -1 ≥ | < 4.4 | < 4.4 jet jet 1 ≥ (left) and (left) and jets, R = 0.4 jets, R = 0.4 t t + + > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T ATLAS ATLAS anti-k anti-k p p 0 W W ≥ 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 1 1 3 2 7 6 5 4 8 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

T

jets

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data /dH d Pred./Data Pred./Data

) [pb] ) +N (W

σ σ W - - – 32 – jets N 6 ≥ [GeV] T H 5 1 jets ≥ ≥ 1. For the data, the statistical uncertainties are indicated as ) + jets ) + NNLO ν ν + + jetti ≥ e e N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG 4 ≥ → → ( ( + + W W jets 3 N ≥ 2 -1 -1 ≥ | < 4.4 | < 4.4 jet jet 1 ≥ jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T ATLAS ATLAS anti-k anti-k p p 0 ≥ for events with . Differential cross sections for the production of . Differential cross sections for the production of 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 1 1 7 6 5 4 3 2 8 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 T 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

T

jets H

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dH Pred./Data Pred./Data

) [pb] ) +N (W

σ

σ W + + vertical bars, and thebands. combined statistical The uppermost and panel systematic inshow each uncertainties plot the are shows the shown ratios differential by of crossare the sections, the described while hatched the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 17 of the The uppermost panelshow in the each ratios plot ofare shows the described the predictions in differential todisplayed the range. cross the text. sections, data. The while The arrows the theoretical on lower uncertainties the panels on lower the panels predictions indicate points that are outside the Figure 16 of the inclusive jetbars, multiplicity. For and the the data, combined the statistical statistical and uncertainties systematic are uncertainties indicated are as vertical shown by the hatched bands. JHEP05(2018)077 [GeV] [GeV] T T 1 jets 1 jets ≥ ≥ ) + ) + W boson p NNLO NNLO ν ν

- - jetti jetti Leading jet p e e N N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG → → (right) as a function (right) as a function ( ( - - W W − − W W -1 -1 | < 4.4 | < 4.4 jet jet (left) and (left) and jets, R = 0.4 jets, R = 0.4 t t + + > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T ATLAS ATLAS anti-k anti-k p p 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 W W 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 3 2 6 5 4 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

/dp d [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dp d [fb/GeV] Pred./Data Pred./Data

σ

σ

W W - - W jet1 1. For the data, the statistical uncertainties are – 33 – ≥ [GeV] [GeV] jets T T N 1. For the data, the statistical uncertainties are indicated as 1 jets 1 jets ≥ ≥ ) + ) + ≥ W boson p NNLO NNLO ν ν + + jetti jetti Leading jet p e e N N Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S Excl. Sum BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG → → ( ( jets + + W W N for events with -1 -1 | < 4.4 | < 4.4 jet jet T p jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T for events with ATLAS ATLAS anti-k anti-k p p 100 200 300100 400 200 500 300 600 400 700 500 800 600 900 700 1000 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 T . Differential cross sections for the production of . Differential cross sections for the production of 0 1000 200 100 300 200 400 300 500 400 600 500 700 600 800 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 7 6 5 4 3 2 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

d /dp [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dp [fb/GeV] W p Pred./Data Pred./Data

σ

σ

W

W W + + jet1 indicated as vertical bars,the and hatched the bands. combined statistical Thethe and uppermost lower systematic panels panel uncertainties are show inthe shown the each predictions by plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 19 of the leading jet bands. The uppermost panel inshow each plot the shows the ratios differential of crossare sections, the described while the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 18 of the vertical bars, and the combined statistical and systematic uncertainties are shown by the hatched JHEP05(2018)077 [GeV] T H -1 | < 4.4 1 jets Leading jet |y| jet ≥ ) + ν

NNLO - e jetti Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 → jets, R = 0.4 (right) as a function (right) as a function t ( - > 30 GeV, |y = 8 TeV, 20.2 fb W − − s jet T anti-k p W W -1 | < 4.4 jet 1 jets ≥ ) + ν

- (left) and (left) and Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG e jets, R = 0.4 t → + + ( > 30 GeV, |y = 8 TeV, 20.2 fb - s jet T ATLAS ATLAS W anti-k p W W 0 0.5 1 1.5 2 2.5 3 3.5 4 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 1 3 2 3 2 7 6 5 4 9 8 7 6 5 4 -1 1 1 1 1 1 1 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10

10

T

| [fb] | /d|y d

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dH d Pred./Data Pred./Data σ

σ W

- W - jet1 1. For the data, the statistical uncertainties are ≥ – 34 – jets N [GeV] T H -1 | < 4.4 1 jets Leading jet |y| jet ≥ 1. For the data, the statistical uncertainties are indicated as ) + ν NNLO + ≥ e jetti Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) N BH+S SHERPA 2.2.1 LO ALPGEN+PY6 → jets, R = 0.4 t ( + > 30 GeV, |y = 8 TeV, 20.2 fb W s jet T jets anti-k p N -1 | < 4.4 jet 1 jets ≥ ) + ν + Data BH+S Excl. Sum SHERPA 2.2.1 NLO SHERPA 1.4 LO ALPGEN+HERWIG e jets, R = 0.4 t → ( > 30 GeV, |y = 8 TeV, 20.2 fb + s jet T ATLAS ATLAS anti-k p W for events with . Differential cross sections for the production of . Differential cross sections for the production of 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 0.50 1 0.5 1.5 1 2 1.5 2.5 2 3 2.5 3.5 3 4 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 1 7 6 5 4 3 2 9 8 7 6 5 4 3 -1 1 1 1 1 1 1 -2 10 T 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10

10

T

/d|y | [fb] | H d

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dH Pred./Data Pred./Data σ

σ

W

W + jet1 + vertical bars, and thebands. combined statistical The uppermost and panel systematic inshow each uncertainties plot the are shows the shown ratios differential by of crossare the sections, the described while hatched the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 21 of the the hatched bands. Thethe uppermost lower panels panel show inthe the each predictions plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 20 of the leading jetindicated rapidity as for vertical events bars, with and the combined statistical and systematic uncertainties are shown by JHEP05(2018)077 [GeV] [GeV] T T 1 jets 1 jets ≥ ≥ ) + ) + W boson p ν ν

- - Leading jet p e e Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) → → (right) as a function (right) as a function ( ( - - W W − − W W -1 -1 | < 4.4 | < 4.4 jet jet (left) and (left) and jets, R = 0.4 jets, R = 0.4 t t + + > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T ATLAS ATLAS anti-k anti-k p p 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 W W 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 3 2 6 5 4 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

/dp d [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dp d [fb/GeV] Pred./Data Pred./Data

σ

σ

W W - - W jet1 1. For the data, the statistical uncertainties are – 35 – ≥ [GeV] [GeV] jets T T N 1. For the data, the statistical uncertainties are indicated as 1 jets 1 jets ≥ ≥ ) + ) + ≥ W boson p ν ν + + Leading jet p e e Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) Data MCFM, CT10 NLO MCFM, HERAPDF NLO MCFM, MSTW08 NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO SHERPA 2.2.1 NLO EW BH+S Excl. Sum PWHG+PY8 (scaled, 1.1) → → ( ( jets + + W W N for events with -1 -1 | < 4.4 | < 4.4 jet jet T p jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T for events with ATLAS ATLAS anti-k anti-k p p 100 200 300100 400 200 500 300 600 400 700 500 800 600 900 700 1000 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 T . Differential cross sections for the production of . Differential cross sections for the production of 0 1000 200 100 300 200 400 300 500 400 600 500 700 600 800 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 7 6 5 4 3 2 7 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

d /dp [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dp [fb/GeV] W p Pred./Data Pred./Data

σ

σ

W

W W + + jet1 indicated as vertical bars,the and hatched the bands. combined statistical Thethe and uppermost lower systematic panels panel uncertainties are show inthe shown the each predictions by plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 23 of the leading jet bands. The uppermost panel inshow each plot the shows the ratios differential of crossare sections, the described while the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 22 of the vertical bars, and the combined statistical and systematic uncertainties are shown by the hatched JHEP05(2018)077 [GeV] T H -1 | < 4.4 2 jets Leading jet |y| jet ≥ ) + ν

- e Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum → jets, R = 0.4 (right) as a function (right) as a function t ( - > 30 GeV, |y = 8 TeV, 20.2 fb W − − s jet T anti-k p W W -1 | < 4.4 jet 1 jets ≥ ) + ν

- (left) and (left) and Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 (scaled, 1.1) e jets, R = 0.4 t → + + ( > 30 GeV, |y = 8 TeV, 20.2 fb - s jet T ATLAS ATLAS W anti-k p W W 0 0.5 1 1.5 2 2.5 3 3.5 4 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 1 3 2 3 2 6 5 4 9 8 7 6 5 4 -1 1 1 1 1 1 1 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10

10

T

| [fb] | /d|y d

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dH d Pred./Data Pred./Data σ

σ W

- W - jet1 1. For the data, the statistical uncertainties are ≥ – 36 – jets N [GeV] T H -1 | < 4.4 2 jets Leading jet |y| jet ≥ 2. For the data, the statistical uncertainties are indicated as ) + ν + ≥ e Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG MCFM, CT10 NLO MCFM, MSTW08 NLO SHERPA 2.2.1 NLO BH+S Excl. Sum → jets, R = 0.4 t ( + > 30 GeV, |y = 8 TeV, 20.2 fb W s jet T jets anti-k p N -1 | < 4.4 jet 1 jets ≥ ) + ν + Data MCFM, HERAPDF NLO MCFM, NNPDF 2.3 NLO SHERPA 2.2.1 NLO EW PWHG+PY8 (scaled, 1.1) e jets, R = 0.4 t → ( > 30 GeV, |y = 8 TeV, 20.2 fb + s jet T ATLAS ATLAS anti-k p W for events with . Differential cross sections for the production of . Differential cross sections for the production of 00 500 1000 500 1500 1000 2000 1500 2500 2000 2500 0 0.50 1 0.5 1.5 1 2 1.5 2.5 2 3 2.5 3.5 3 4 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 0 500 1000 1500 2000 2500 0 0.5 1 1.5 2 2.5 3 3.5 4 1 6 5 4 3 2 9 8 7 6 5 4 3 -1 1 1 1 1 1 1 -2 10 T 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10 10 10

10 10

10

T

/d|y | [fb] | H d

[fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dH Pred./Data Pred./Data σ

σ

W

W + jet1 + vertical bars, and thebands. combined statistical The uppermost and panel systematic inshow each uncertainties plot the are shows the shown ratios differential by of crossare the sections, the described while hatched the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 25 of the the hatched bands. Thethe uppermost lower panels panel show inthe the each predictions plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 24 of the leading jetindicated rapidity as for vertical events bars, with and the combined statistical and systematic uncertainties are shown by JHEP05(2018)077 [GeV] [GeV] T T 2 jets 2 jets ≥ ≥ ) + ) + W boson p ν ν

- - Leading jet p e e Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG → → (right) as a function (right) as a function ( ( - - W W − − W W -1 -1 | < 4.4 | < 4.4 jet jet (left) and (left) and jets, R = 0.4 jets, R = 0.4 t t + + > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T ATLAS ATLAS anti-k anti-k p p 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 W W 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 3 2 5 4 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

/dp d [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

/dp d [fb/GeV] Pred./Data Pred./Data

σ

σ

W W - - W jet1 2. For the data, the statistical uncertainties are – 37 – ≥ [GeV] [GeV] jets T T N 2. For the data, the statistical uncertainties are indicated as 2 jets 2 jets ≥ ≥ ) + ) + ≥ W boson p ν ν + + Leading jet p e e Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG Data BH+S SHERPA 2.2.1 NLO SHERPA 2.2.1 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+HERWIG → → ( ( jets + + W W N for events with -1 -1 | < 4.4 | < 4.4 jet jet T p jets, R = 0.4 jets, R = 0.4 t t > 30 GeV, |y > 30 GeV, |y = 8 TeV, 20.2 fb = 8 TeV, 20.2 fb s s jet T jet T for events with ATLAS ATLAS anti-k anti-k p p 100 200 300100 400 200 500 300 600 400 700 500 800 600 900 700 1000 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 T . Differential cross sections for the production of . Differential cross sections for the production of 0 1000 200 100 300 200 400 300 500 400 600 500 700 600 800 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 1 1 6 5 4 3 2 6 5 4 3 2 -1 -1 1 1 1 1 1 1 -2 -2 10 10

1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 10 10 10 10 10 10 10 10 10 10

10 10 10 10

T

T

d /dp [fb/GeV] Pred./Data Pred./Data Pred./Data Pred./Data

d /dp [fb/GeV] W p Pred./Data Pred./Data

σ

σ

W

W W + + jet1 indicated as vertical bars,the and hatched the bands. combined statistical Thethe and uppermost lower systematic panels panel uncertainties are show inthe shown the each predictions by plot ratios are shows of described theoutside the in the differential predictions the displayed cross text. to range. sections, the The while data. arrows on The the theoretical lower panels uncertainties indicate on points that are Figure 27 of the leading jet bands. The uppermost panel inshow each plot the shows the ratios differential of crossare sections, the described while the predictions in lower panels todisplayed the range. the text. data. The The arrows theoretical on uncertainties the on lower the panels predictions indicate points that are outside the Figure 26 of the vertical bars, and the combined statistical and systematic uncertainties are shown by the hatched JHEP05(2018)077 ]. D C ] 10 , B 741 ] SPIRE 07 collisions D 88 IN (2017) JHEP ][ pp , (2012) 061 Phys. Rev. ]. , JHEP 12 D 95 Eur. Phys. J. , ]. Phys. Lett. , TeV , SPIRE Phys. Rev. boson in IN , arXiv:1507.02850 -jet distributions at JHEP ][ SPIRE TeV = 13 [ W , IN s + 3 arXiv:1504.02131 ][ √ Phys. Rev. = 7 [ , s W arXiv:1409.8639 ]. [ √ (2012) 092002 8 TeV SPIRE = D 85 (2016) 022001 IN s ][ (2015) 82 arXiv:0907.1984 √ (2015) 062002 jet production at the Large Hadron [ 117 ]. arXiv:1009.2338 + 4 C 75 [ ]. A simple shower and matching algorithm 115 ]. MINLO: Multi-Scale Improved NLO -jet production at the LHC Phys. Rev. W SPIRE , ]. ]. IN + 5 – 38 – ]. SPIRE ][ ]. SPIRE W IN IN (2009) 074036 ][ SPIRE SPIRE ][ arXiv:0707.3652 SPIRE Phys. Rev. Lett. IN IN Precise QCD predictions for the production of a Z boson in [ SPIRE (2011) 092001 IN Eur. Phys. J. , ][ ][ IN , ]. ]. ][ Merging meets matching in MC@NLO D 80 ), which permits any use, distribution and reproduction in Phys. Rev. Lett. ][ , 106 The midpoint between dipole and parton showers Study of jets produced in association with a Measurements of the W production cross sections in association with -boson production in association with a jet at next-to-next-to-leading SPIRE SPIRE IN IN Measurements of differential cross sections for associated production of Differential cross section measurements for the production of a W Measurement of the differential cross sections for the associated W boson and jets in proton-proton collisions at Next-to-leading order QCD predictions for Precise predictions for arXiv:1707.05979 ][ ][ (2008) 014026 [ Phys. Rev. CC-BY 4.0 The automated computation of tree-level and next-to-leading order W , arXiv:1304.1253 arXiv:1506.05057 Next-to-leading order [ [ This article is distributed under the terms of the Creative Commons arXiv:1206.3572 arXiv:1405.0301 D 78 arXiv:1406.7533 TeV with the ATLAS detector [ [ [ Phys. Rev. Lett. collaboration, collaboration, ]. ]. arXiv:1610.04222 , [ = 7 collaboration, collaboration, collaboration, s (2017) 072005 (2015) 461 √ SPIRE SPIRE arXiv:1201.1276 IN arXiv:1209.6215 IN CMS a W boson and052002 jets in proton-proton collisions at CMS boson in association with jets(2015) in 12 proton–proton collisions at at [ CMS production of a 96 Phys. Rev. ATLAS jets with the ATLAS detector ATLAS differential cross sections and their(2014) matching 079 to parton shower simulations 75 [ (2012) 155 [ (2013) 014025 order in perturbative QCD [ association with a hadronic jet hadron colliders Collider W.T. Giele, D.A. Kosower and P.Z. Skands, J. Alwall et al., S. and H¨oche S. Prestel, K. Hamilton, P. Nason and G. Zanderighi, R. Frederix and S. Frixione, R. Boughezal et al., A. Gehrmann-De Ridder et al., C.F. Berger et al., C.F. Berger et al., Z. Bern et al., [8] [9] [6] [7] [4] [5] [1] [2] [3] [14] [15] [13] [10] [11] [12] Attribution License ( any medium, provided the original author(s) and source are credited. References Open Access. JHEP05(2018)077 ]. B , 06 ]. 2008 , SPIRE pp ¯ p (2011) 31 IN boson decay p B 765 (2014) 068 D 77 JHEP SPIRE ]. ][ − , (2017) 92 µν IN 05 as a collisions at Phys. Lett. W ][ , → T B 701 pp p (2017) 474 SPIRE boson in C 77 W ]. TeV IN JHEP W Phys. Lett. jets production rates ][ production in , Phys. Rev. 96 , . + , ¯ C 77 c c W SPIRE + = 1 ]. TeV IN Phys. Lett. s boson in association with a (2016) 131 (2014) 025 [ ]. arXiv:1302.6508 , W 96 √ [ . W 05 02 Eur. Phys. J. production and constraints on SPIRE and , arXiv:1610.08142 = 1 boson production in association SPIRE IN [ b ¯ s b IN Eur. Phys. J. Z ][ √ TeV W jj JHEP , JHEP + ][ , , (1993) 4042 arXiv:1506.07443 and [ W TeV with the ATLAS detector = 8 collisions at , s 70 charge asymmetry in the ¯ TeV t (2013) 092001 ¯ p t W √ cross sections at large boson p (2017) 110 = 7 ]. W ]. boson angular distributions in events with high s Z = 8 ]. √ s collisions at D 88 ]. W Measurement of the cross section for TeV with the ATLAS detector – 39 – ¯ √ p Studies of W boson plus jets production in Measurements of inclusive and SPIRE B 767 p TeV using the ATLAS detector SPIRE IN arXiv:1310.1138 (2016) 033006 IN = 7 W SPIRE Measurement of jet multiplicity in W events produced in ][ [ SPIRE s boson production in association with beauty and charm = 8 ][ IN arXiv:1505.04051 collisions at TeV with the ATLAS detector IN √ s [ ][ Phys. Rev. Lett. W ]. ]. ]. ][ pp √ , D 93 Phys. Rev. ]. ]. ]. collisions at = 7 , ]. s Phys. Lett. Ratios of pp TeV , √ (2014) 013 SPIRE SPIRE SPIRE 8 TeV The ATLAS experiment at the CERN Large Hadron Collider Measurement of the Measurement of Measurement of the production of a Measurement of the cross-section for W boson production in Measurements of electroweak . SPIRE SPIRE SPIRE IN IN IN Measurement of forward Study of Measurement of forward IN IN IN TeV Measurement of the production cross section of a Measurement of associated W + charm production in 02 96 SPIRE . ][ ][ ][ = 1 collisions at ][ ][ ][ IN Phys. Rev. s -jets in (2015) 052001 [ b arXiv:1106.1457 , = 8 = 1 pp √ New parton distribution functions from a global analysis of quantum arXiv:0711.4044 [ s s [ JHEP √ √ , arXiv:1609.07045 arXiv:1302.2929 collisions at D 92 [ [ S08003 collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, pp TeV 3 collaboration, collaboration, collaboration, T. Aaltonen et al., collaboration, F. Abe et al., (2011) 200 collaboration, V.M. Abazov et al., collaboration, V.M. Abazov et al., = 7 collisions at s ¯ p arXiv:1304.2424 arXiv:1103.2929 arXiv:1608.07561 arXiv:1402.6263 arXiv:1703.04362 arXiv:1605.00951 [ chromodynamics ATLAS JINST Phys. Rev. ATLAS mode in [ constraint on PDFs and background to new physics CMS √ collisions at association with (2013) 084 CMS association with two b[ jets in transverse momentum jets at (2017) 132 ATLAS charm quark in [ ATLAS 705 ATLAS anomalous gauge couplings with[ the ATLAS detector ATLAS (2008) 011108 D0 collisions at D0 as a function of jet transverse momentum in with jets in proton-proton[ collisions at CDF p CDF production in association with jets in S. Dulat et al., S.A. Malik and G. Watt, LHCb collaboration, LHCb collaboration, LHCb collaboration, [31] [32] [29] [30] [26] [27] [28] [25] [23] [24] [21] [22] [19] [20] [17] [18] [16] JHEP05(2018)077 , Z , , ]. ]. 05 (2010) (2010) (2011) SPIRE SPIRE Nucl. (2010) IN IN , JHEP ][ ][ C 70 D 82 A 26 , ]. ]. D 82 (2007) 222002 , SPIRE IN 98 (2009) 007 SPIRE (2001) 010 ][ Phys. Rev. IN ]. , 02 01 ][ Eur. Phys. J. Phys. Rev. , , ]. ]. ]. arXiv:0903.2120 arXiv:0709.2092 SPIRE [ [ Int. J. Mod. Phys. JHEP JHEP IN , , , Parton distributions for the LHC ][ SPIRE SPIRE SPIRE decay library TAUOLA: version 2.4 IN QCD matrix elements + parton IN IN τ Phys. Rev. Lett. ][ [ QCD matrix elements + parton showers ]. ][ , ]. arXiv:1207.5030 (2007) 070 hep-ph/0506026 The [ GEANT4 — a simulation toolkit [ 11 (2009) 082001 ]. The infrared divergence phenomena and SPIRE SPIRE PYTHIA 6.4 physics and manual IN IN [ (1961) 379 – 40 – ][ 103 ]. hep-ph/0201195 SPIRE JHEP Matching NLO QCD computations with Parton Shower ]. ]. 13 [ (2006) 97 (2013) 027 IN , ]. [ ]. hep-ph/0206293 SPIRE 04 arXiv:0901.0002 [ [ IN SPIRE SPIRE C 45 (1993) 361 ]. ][ IN IN An NNLO subtraction formalism in hadron collisions and its SPIRE ]. ]. (2011). SPIRE ][ ][ 76 IN (2002) 012 JHEP IN PHOTOS Monte Carlo: a precision tool for QED corrections in ][ , (2003) 250 The ATLAS simulation infrastructure ][ New ATLAS event generator tunes to 2010 data SPIRE Annals Phys. hep-ph/0109231 07 Phys. Rev. Lett. ALPGEN, a generator for hard multiparton processes in hadronic Squark and gluino hadroproduction SPIRE SPIRE , [ (2003) 001 , IN (2009) 189 Event generation with SHERPA 1.1 IN IN ][ HERWIG 6: An Event generator for hadron emission reactions with New generation of parton distributions with uncertainties from global 07 ][ ][ Vector boson production at hadron colliders: a fully exclusive QCD New parton distributions for collider physics A 506 Eur. Phys. J. JHEP C 63 , , Tuning Monte Carlo generators: the Perugia tunes hep-ph/0603175 collaboration, S. Agostinelli et al., [ JHEP (2001) 063 , collaboration, arXiv:1007.2241 arXiv:1005.3457 decays 11 [ [ arXiv:1105.1110 arXiv:1005.4568 [ W [ hep-ph/0703012 hep-ph/0011363 arXiv:0811.4622 application to [ production at the LHC Eur. Phys. J. interfering gluons (including supersymmetric[ processes) ATL-PHYS-PUB-2011-008 calculation at NNLO 074024 simulations: the POWHEG method 2637 JHEP high-energy processes Comput. Phys. Commun. QCD analysis (2006) 026 074018 and [ showers: The NLO case 823 GEANT4 Instrum. Meth. collisions ATLAS S. Catani and M. Grazzini, A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, ATLAS collaboration, S. Catani et al., H.-L. Lai et al., S. Frixione, P. Nason and C. Oleari, G. Corcella et al., S. Catani, F. Krauss, R. Kuhn and B.R. Webber, D.R. Yennie, S.C. Frautschi and H. Suura, S. Jadach, Z. Was, R. Decker and J.H. Kuhn, J. Pumplin et al., W. Beenakker et al., P.Z. Skands, P. Golonka and Z. Was, T. Gleisberg et al., S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, T. Sj¨ostrand,S. Mrenna and P.Z. Skands, M.L. Mangano et al., [51] [52] [49] [50] [46] [47] [48] [44] [45] [41] [42] [43] [39] [40] [36] [37] [38] [34] [35] [33] JHEP05(2018)077 ]. ]. ]. ]. ]. D ] , ]. SPIRE SPIRE SPIRE SPIRE 04 SPIRE IN IN IN ] IN collisions (2012) IN ][ ][ ][ Comput. ][ ][ , pp SPIRE Phys. Rev. TeV using the JHEP IN , (2012) 132001 C 72 , ][ = 8 ]. 109 s √ arXiv:1111.5869 [ SPIRE (2014) 2930 IN arXiv:1005.4451 [ arXiv:1109.1536 ][ arXiv:1303.6254 ]. arXiv:1103.2792 Eur. Phys. J. arXiv:1608.03953 arXiv:1603.02934 [ (2017) 195 [ [ [ , (2012) 012003 [ 185 arXiv:1207.0236 (2012) 612 SPIRE [ C 77 Phys. Rev. Lett. D 85 IN , jet clustering algorithm ][ X (2012) 695 ]. t (2016) 653 (2017) 490 k Hadronic top-quark pair production with + (2010) 054018 B 710 ¯ t ]. t (2013) 252004 (2011) 091503 Vector boson pair production at the LHC (2012) 054 SPIRE , ATL-LARG-PUB-2009-001-2 (2008). arXiv:1210.6832 → C 76 B 855 C 77 Percent level precision physics at the Tevatron: [ A brief introduction to PYTHIA 8.1 D 82 IN Phys. Rev. ¯ q 110 12 q , SPIRE Eur. Phys. J. ][ ]. D 83 FastJet user manual The anti- – 41 – , IN Total top-quark pair-production cross section at hadron ][ Phys. Lett. , ]. JHEP SPIRE arXiv:0710.3820 Comput. Phys. Commun. , (2013) 080 [ , IN Phys. Rev. Nucl. Phys. ]. ][ , , Eur. Phys. J. Eur. Phys. J. ]. ]. ]. 01 Phys. Rev. , − SPIRE , , Top++: a program for the calculation of the top-pair NNLO corrections to top-pair production at hadron colliders: the NNLO corrections to top pair production at hadron colliders: the IN H Phys. Rev. Lett. ][ SPIRE Measurement of the isolated di-photon cross-section in Luminosity determination in pp collisions at Electron efficiency measurements with the ATLAS detector using Topological cell clustering in the ATLAS calorimeters and its or ), SPIRE SPIRE SPIRE arXiv:1105.0020 IN JHEP (2008) 852 4 S [ − IN IN IN , α ][ ( Top-pair production at hadron colliders with next-to-next-to-leading arXiv:1001.5034 ][ ][ ][ Local hadronic calibration W [ O 178 NNLL resummation for s-channel single top quark production Two-loop soft anomalous dimensions for single top quark associated Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel arXiv:0802.1189 TeV with the ATLAS detector [ (2011) 018 collaboration, collaboration, collaboration, collaboration, ]. ]. 07 = 7 arXiv:1111.6097 s [ (2010) 054028 √ SPIRE SPIRE arXiv:1107.0581 arXiv:1612.01456 IN arXiv:1112.5675 arXiv:1204.5201 IN (2008) 063 1896 ATLAS performance in LHC Run 1 ATLAS at [ Phys. Commun. ATLAS ATLAS detector at the LHC ATLAS 2012 LHC proton–proton collision[ data production with a [ JHEP 81 single top quark production colliders through cross-section at hadron colliders [ [ all-fermionic scattering channels quark-gluon reaction logarithmic soft-gluon resummation [ NNLL threshold resummation first genuine NNLO QCD corrections to M. Cacciari, G.P. Salam and G. Soyez, M. Cacciari, G.P. Salam and G. Soyez, T. Barillari et al., J.M. Campbell, R.K. Ellis and C. Williams, T. Sj¨ostrand,S. Mrenna and P.Z. Skands, N. Kidonakis, N. Kidonakis, N. Kidonakis, M. Czakon, P. Fiedler and A. Mitov, M. Czakon and A. Mitov, M. Czakon and A. Mitov, M. Czakon and A. Mitov, M. Beneke, P. Falgari, S. Klein and C. Schwinn, P. B¨arnreuther,M. Czakon and A. Mitov, M. Cacciari et al., [69] [70] [71] [67] [68] [65] [66] [63] [64] [60] [61] [62] [58] [59] [56] [57] [54] [55] [53] JHEP05(2018)077 C , , ]. (2014) 2016 , P07004 TeV collisions ]. 8 pp Eur. Phys. SPIRE Nucl. C 74 = 8 , , IN s SPIRE Eur. Phys. J. ][ √ , IN JINST ][ and light-flavour . leptons with the c τ 2013 , (2015). Eur. Phys. J. (2015). , (2016) 581 ATLAS-CONF-2014-004 ATLAS-CONF-2015-037 , , (2016) 666 -tagging for arXiv:1407.5063 C 76 b [ C 76 (2014). arXiv:1010.0632 arXiv:1512.05955 , [ ]. ]. TeV using the ATLAS detector ]. (2014) 3071 SPIRE ]. Eur. Phys. J. SPIRE = 8 IN , Eur. Phys. J. IN (2016) 295 s -jet identification in the ATLAS experiment ][ ATLAS-CONF-2015-002 , b – 42 – , √ ][ ATLAS-CONF-2015-057 SPIRE C 74 -tagging using dileptonic top pair events in a , b SPIRE IN IN TeV C 76 ][ ]. [ TeV = 8 ]. ]. ATLAS-CONF-2014-046 = 8 , s ]. SPIRE s √ collisions at IN √ (2014). (2015). Eur. Phys. J. ][ SPIRE SPIRE (1995) 487 Electron and photon energy calibration with the ATLAS detector Reconstruction of hadronic decay products of Measurements of top-quark pair differential cross-sections in the Performance of Performance of algorithms that reconstruct missing transverse Measurement of the photon identification efficiencies with the Characterisation and mitigation of beam-induced backgrounds Performance of pile-up mitigation techniques for jets in Measurement of the muon reconstruction performance of the ATLAS pp , Calibration of Calibration of the performance of Tagging and suppression of pileup jets with the ATLAS detector Determination of the jet energy scale and resolution at ATLAS using Jet global sequential corrections with the ATLAS detector in Monte Carlo calibration and combination of in-situ measurements of Data-driven determination of the energy scale and resolution of jets TeV proton-proton collisions in the ATLAS detector SPIRE IN IN arXiv:1511.04716 IN Eur. Phys. J. ][ ][ arXiv:1512.01094 [ , ][ [ = 8 s A 362 arXiv:1609.09324 Improved iterative bayesian unfolding A multidimensional unfolding method based on Bayes’ theorem √ [ P04008 TeV using the ATLAS detector collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, (2016) 538 11 = 8 arXiv:1407.3935 s [ -jet events in data at (2017) 241 √ C 76 arXiv:1606.01813 arXiv:1303.0223 arXiv:1510.03823 (2014). jets in the 2012 ATLASATLAS data using LHC Run 1 data J. Instrum. Meth. combinatorial likelihood approach with the ATLAS experiment ATLAS detector using 2011 and3130 2012 LHC proton–proton collision data ATLAS lepton+jets channel in ATLAS ATLAS detector using LHC Run-1[ data ATLAS ATLAS experiment ATLAS-CONF-2014-018 ATLAS JINST ATLAS momentum in 77 proton-proton collisions at ATLAS observed in the ATLAS detector[ during the 2011 proton-proton run Z/γ ATLAS at [ jet energy scale, jet(2015). energy resolution and jet mass in ATLAS reconstructed in the ATLAS calorimetersATLAS-CONF-2015-017 using dijet and multijet events at ATLAS collaboration, G. D’Agostini, G. D’Agostini, ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, [88] [89] [85] [86] [87] [83] [84] [81] [82] [79] [80] [77] [78] [75] [76] [73] [74] [72] JHEP05(2018)077 , , and − (2015) W , ]. ]. + 191 , Eur. Phys. J. (2017) 367 W , SPIRE ]. , SPIRE distributions of (2003) 094021 (2013) 244 IN IN ∗ η C 77 ][ φ ]. ][ ]. SPIRE (2014) 145 D 68 IN B 867 09 ][ SPIRE SPIRE IN ]. ]. IN TeV with the ATLAS detector ATL-GEN-PUB-2016-002 ][ , ][ . JHEP Eur. Phys. J. , , = 8 Phys. Rev. SPIRE SPIRE s , hep-ph/9601371 IN Nucl. Phys. IN Comput. Phys. Commun. Multiparton interactions in [ ]. √ , , ][ arXiv:1511.08692 ][ [ boson transverse momentum distribution Combination of measurements of inclusive Next-to-leading order QCD predictions for ∗ ]. SPIRE arXiv:1605.04295 IN [ [ Z/γ arXiv:1301.6754 (1996) 637 hep-ph/9905386 [ [ SPIRE The SM and NLO multileg and SM MC working (2016) 021 – 43 – IN https://hepdata.net ][ , C 72 04 hep-ph/0204244 (2016) 133 [ ]. arXiv:1512.02192 The NNLO QCD corrections to Z boson production at large An update on vector boson pair production at hadron [ (2013) 291 Matching NLO QCD computations and parton shower 07 ]. JHEP ]. ]. , ]. 63 Z. Phys. (1999) 113006 (2017). (2017). SPIRE TeV with the ATLAS detector , arXiv:1203.6803 IN , SPIRE Measurement of the Measurement of the transverse momentum and Precision measurement and interpretation of inclusive JHEP (2002) 029 ][ Progress in the determination of the partonic structure of the proton ATLAS computing acknowledgements ATLAS simulation of boson plus jets processes in Run 2 Multi-boson simulation for 13 TeV ATLAS analyses SPIRE SPIRE = 7 , IN jet production at the CERN LHC SPIRE D 60 IN IN s (2016) 291 ][ An introduction to PYTHIA 8.2 06 IN scattering cross sections and QCD analysis of HERA data ][ ][ √ NLO QCD+EW predictions for V + jets including off-shell vector-boson arXiv:1506.06042 ][ + 2 p Parton distributions with LHC data [  Z C 76 e JHEP collaboration, H. Abramowicz et al., , Phys. Rev. collaboration, collaboration, collaboration, , jet and (2015) 580 collisions at production cross sections with the ATLAS detector arXiv:1410.3012 ∗ [ + 2 pp arXiv:1406.3660 arXiv:1207.1303 hep-ph/0308195 arXiv:1612.03016 High Energy Physics Data repository (2016). Eur. Phys. J. Ann. Rev. Nucl. Part. Sci. transverse momentum [ photoproduction at HERA ATLAS Drell-Yan lepton pairs in proton-proton collisions at decays and multijet merging 159 ATLAS in ZEUS, H1 deep inelastic C 75 [ colliders W [ simulations SM MC Working Group,collaboration, SM J. and Alcaraz NLO Maestre MULTILEGgroups: et Working al., summary Group report Z/γ [ ATL-PHYS-PUB-2017-005 ATL-PHYS-PUB-2017-006 ATLAS ATLAS collaboration, S. Forte and G. Watt, A. Gehrmann-De Ridder et al., J.M. Butterworth, J.R. Forshaw and M.H. Seymour, T. Sj¨ostrandet al., R.D. Ball et al., S. Kallweit et al., J.M. Campbell and R.K. Ellis, J.M. Campbell, R.K. Ellis and D.L. Rainwater, S. Frixione and B.R. Webber, ATLAS collaboration, ATLAS collaboration, [97] [98] [99] [95] [96] [93] [94] [91] [92] [90] [106] [107] [104] [105] [102] [103] [100] [101] JHEP05(2018)077 , , , , , , , , , 31 16 , 60a ,c 13 , , , , 23 , , , , ,e , , 122 , 118 , , , 71 111 , 80 56 130 130 134a 56 166 178 , , , , 26a 176 19 41a 36c 25 , , 179 132 23 39 , 110 20a , 32 , , , , 22b , , 35a , 146a 17 , 103 , , 161 , , B. Ali 109 , , , , V. Andrei 57 22a , 97 , 88 , J. Beringer , P. Bechtle 42 , , A. Bellerive 32 19 , M. Bosman , T. Berry 20e ∗ , T. Bold , 115 155 , F. Anulli , 106b 94b 25 118 , 13 , ,i , B.W. Allen 23 165 , R.L. Bates 22a , L. Beresford , N. Andari , S. Akatsuka 22a , K. Augsten , M. Arik , D. Boerner 28c , K.T. Bauer , G. Barone , E.M. Baldin 166 155 , O. Arslan ,f , A. Borisov 94a 168 52 151 , S.L. Barnes 66 51 106a 109 , Sw. Banerjee , G.J. Besjes , M. Aleksa , A.A. Alshehri 143 30 138 109 , J. Adelman 135b 30 119 138 , 136a 23 45 , T. Blazek , S. Bethke 108 140 6 , T. Bisanz 41a , S.H. Abidi , V. Araujo Ferraz 87 135a , M.J. Baca , N. Anjos , R. Abreu , M. Barbero 22b 119 , G.J. Bobbink , E. Benhar Noccioli , , 128a ,c , D. Biedermann , M. Bahmani , M. Alhroob , G.L. Alberghi , A.J. Beddall 60a 92 154 , P. Bokan 53b , T.R.V. Billoud , A. Ashkenazi , O. Benary 34a 155 22a 10 , 98 , L.J. Bergsten , L.S. Ancu 111 102 , F. Bauer , T.A. Beermann 80 112 5 , D.J. Antrim 45 134b , M. Boehler , D. Boscherini , , M. Arratia , N.B. Atlay 100 ∗ , N. Barlow 53a , L. Bellagamba , 136a 141 , A. Andreazza , P.J. Bakker , M.G. Alviggi 150 , A. Bassalat 51 134b , S. Bentvelsen 102 , R.E. Blair , C. Bertsche 62a , G. Aielli , F.U. Bernlochner , P.H. Beauchemin , 169 145 155 33 , C. Agheorghiesei 134a 100 , A. Baroncelli , C. Alpigiani ,b 179 25 170 24 75 , S. Argyropoulos , A. Bethani 125 83 145 , M. Boonekamp 74 68 , L. Adamczyk , B.M.M. Allbrooke 154 97 134a 36a , B. Abeloos 138 , H. Abreu 79 ∗ , A.E. Baas , S. Biondi 38 , , D. Amidei , J.P. Araque , S. Blunier 157 , C. Becot , O. Biebel ,d , A. Bandyopadhyay , N. Asbah , N. Berger 12 , S.C. Alderweireldt 155 25 69 79 86 97 , V. Boisvert , C.P. Bee 42 , C. Bock 127 134b , J. Barreiro Guimar˜aesda Costa , A.V. Akimov 74 , 157 , G. Bella 168 , D. Barberis , H. Arnold , M. Biglietti 48 85 , T. Alexopoulos 52 , T. Beau , Y. Benhammou , N.L. Belyaev 109 81 , Y. Afik 91 , A.V. Anisenkov 148a , T. Barklow , P. Bagnaia 134a 75 161 10 32 , A. Antonov , M. Atkinson 155 , O.K. Baker , F. Alonso 38 , K.M. Black , M. Bauce , V. Bortolotto , C. Bernius 126b , M. Bona – 44 – , A. Basalaev 139 , 50 118 122 , N. Besson , C. Anastopoulos , I.A. Bertram 39 39 , K.J. Anderson , Y. Arai , J-F. Arguin 83 83 , F. Ahmadov , S. Adachi 145 139 , J.R. Bensinger , S.P. Alkire 122 146a 45 32 ´ 77 Alvarez Piqueras , S. Asai 93 74 146a ,a 126a 24 52 , E. Banas 33 , M. Becker 148b , 86 , O. Abdinov , C. Amelung , A. Bocci , G. Azuelos , E. Akilli , C. Bini 124 , A.S. Bell 122 167b , C. Bohm 84 , D. 84 , 115 , F. Barreiro 26a , R.M. Bianchi 35a 148a 45 , H. Abramowicz 20b 32 , O. Arnaez 111 , U. Blumenschein , N. Benekos , M. Bajic 170 103 167a 79 151 , M. Backes , E.L. Barberio , A. Alonso , M. Bedognetti , Z. Barnovska-Blenessy , M.D. Beattie 56 , A. Angerami , G. Alexander , S. Artz 102 , J.E. Black 133 , R. Astalos 68 , P. Bartos 16 , J. Alison , O. Beltramello , M. Antonelli , M. Bomben , A.A. Affolder , G. Bernardi , M. Bessner 155 76b 113 , S. Amoroso , M. Benoit , J.T. Barkeloo 48 , , S.P. Ahlen ˚ Akesson 106b 27 109 75 , M. Battaglia , J.K. Anders , F.A. Arduh 122 28b , , G. Arabidze 89 , N.V. Biesuz , D. Bortoletto 94a 100 60a 48 65 133 60b , M.J. Alconada Verzini 30 80 76a , K. Becker 32 148b 86 32 128c 128f 60b , , E. Bergeaas Kuutmann , B. Abbott , , 50 , J.K. Behr , G. Bertoli 106a 57 , A. Bingul , J. Beyer 88 , A. Blue 27 109 , M.K. Ayoub , W.K. Balunas 57 35a 79 148a 128a 128a , S.S. Bocchetta 25 16 , T.P.A. ,c , L. Barak 138 , M. Bender , B.S. Acharya , J.T. Baines , C. Alexa , L.J. Armitage , T. Adye , C. Antel , G. Artoni , N.L. Abraham 111 178 148b 68 , A.E. Bolz ∗ 32 , , R.M. Barnett , , I. Angelozzi 137a 144 , A.E. Barton 102 , K. Bachas 148b , G. Aad , Y. Amaral Coutinho , , G. Alimonti , J.B. Beacham 139 , J.R. Batley 126b , K. Belotskiy 99 , R.E. Ardell 37 , A.G. Bogdanchikov , B. Alvarez Gonzalez , M-S Barisits 101 , A. Aloisio , , N.R. Bernard , V.A. Bednyakov , H.C. Beck , K. Assamagan , J. Bortfeldt 133 ,g , M. Begel 16 , D. Berge 145 148a , D.M. Bjergaard 138 , M. Bindi , C.F. Anders 48 , L. Barranco Navarro 88 19 76b , D.P. Benjamin 58 , P. Albicocco ,h 161 , K. Bierwagen 154 75 , B. Axen , 102 137d 148a 103 , F. Balli 50 47 151 50 20b 11 145 26a 126a , C. Bertella , L. Aperio Bella , A.J. Bevan 66 18 , C. Blocker 87 32 122 172 76a 175 86 69 23 45 H. Bilokon C. Bittrich I. Bloch V.S. Bobrovnikov D. Bogavac A.S. Boldyrev G. Borissov M. Beretta S. Berlendis P. Berta O. Bessidskaia Bylund A. Betti R. Bielski H.P. Beck A. Beddall M. Begalli M. Bellomo D. Benchekroun J. Benitez A.A.E. Bannoura T. Barillari B.M. Barnett A.J. Barr R. Bartoldus S.J. Batista H.S. Bawa A. Artamonov L. Asquith G. Avolio H. Bachacou H. Bahrasemani P. Balek S.P. Amor Dos Santos T. Andeen S. Angelidakis A. Annovi M. Aoki A.T.H. Arce A.J. Armbruster J. Albert I.N. Aleksandrov M. Aliev P.P. Allport M.I. Alstaty B.T. Amadio M. Aaboud O.S. AbouZeid Y. Abulaiti M. Adersberger J.A. Aguilar-Saavedra H. Akerstedt The ATLAS collaboration JHEP05(2018)077 , , , , , , , 85 , , , , 119 32 , , , 29 77 150 8 , , 169 32 , , , , , 59 27 35d , , 58 , , , 167c 36c , 86 , , 52 68 80 , 46 63 , , , , 31 26a 87 6 , , 35a , 22a , , 135b , 156 , , 52 8 30 , , 167a 168 , ,o 33 108 32 , 23 ,j 122 23 , 90 , V. Dao , , A. Cueto 56 146a , 135a 170 13 77 , 32 , , , H. Chen , 138 , A. Brandt , J. C´uth 40b 20d , , ,c , S. Camarda 110 67 , K. De 58 , A. Clark , S.K. Chan , M.F. Daneri 19 , 50 28b 90 , V. Cavaliere 33 , C. Bourdarios , G. Cowan , S. Campana , M. D’Onofrio 40a , G. Bruni 111 , K. Cheung 141 110 28b , C.C. Chau 124 118 , T. Carli 23 37 30 58 83 7 , N. Calace , S. Caron , M. Cobal , L.P. Caloba , H.J. Cheng , M. Cano Bret , P. Bryant , I.A. Budagov 22a 19 , I. Burmeister , S. Chekanov , W. Davey , T. Dado 4a , R. Brenner 88 131 , I.A. Connelly 92 56 , F.M. Brochu , S. Chouridou 93 40b 127 , I.A. Cioara 45 , L. Cerrito 148b , 133 , S. Burdin , 106b 41a 109 45 37 , , S. Cr´ep´e-Renaudin , F. Corriveau , E. Celebi 78 , C. Chen , C.M. Buttar , E. Brost 147b , J. Collot 151 40a , M.P. Casado 110 31 84 24 148a 36a 106a 19 34b , J. Bracinik 109 , A.S. Chisholm , M. Caprini , E. Cheu 126b , , M. Curatolo , I. Dawson , J.E. Brau , G. Crosetti , G. Cottin , I. Carli 80 , A. Bruni , O. Cakir , J. Caudron 76a 28b , L. D’eramo 91 89 , A.M. Cooper-Sarkar 51 , A.J. Chuinard 179 137e , J.R. Dandoy 112 141 126a , V. Castillo Gimenez 32 , S. Burke , Y. Coadou 56 16 , M. Ciubancan , A.R. Buzykaev , C. Camincher 40b , M. Dano Hoffmann 39 146b , , H.C. Cheng 129 42 , A. Cerri , D. Boumediene , G. Cree , D. Chakraborty , R. Camacho Toro 109 , N. Bruscino , L. Brenner , D.G. Charlton , V. Cindro , T. Daubney , G. Callea 94a 153 70 , D. Britzger 169 , A.G. Buckley 171 148b 40a 75 , C. Chen , 88 91 30 46 26b 124 , T.J. Burch 64 56 22a 118 , V. Canale , A. Chegwidden 137a , S.H. Connell 32 , W. Dabrowski 8 143 , J.M. Butler , D. Casadei , A.R. Chomont , A.P. Colijn , B. Brau 51 , E. Dawe 87 148a 56 , E.E. Corrigan 143 32 64 , V. Croft , W.K. Brooks , I. Caprini 38 167c 81 , A.J. Bozson , 158 , M. Dam , R.M.D. Carney , A. Cattai , F. Cardillo 23 80 , G. Chiodini 32 , M. Cooke 68 , S. D’Auria , K. Burka 134b 89 ,n , D. Costanzo , , Y. Chen , J. Cummings 121 94b , V. Cavasinni 167a , D. Bruncko , , J. Chudoba 135a , D. Cinca 126b , A. Buzatu 22b 110 ,m , 13 , 42 170 , R. Castelijn , M. Citterio 145 134a , V.M. Cairo 106a 94a 4a – 45 – 27 , D. Britton 62a , T.P. Calvet , A. Chafaq , M. Bruschi , K. Choi 35c , P. Calfayan , D. Bullock , B. Cole 22a 166 175 , M. Danninger 49 126a 37 , A.J. Brennan , R.A. Creager 169 , C. Da Via , P. Bussey , P. Buchholz 30 68 83 20d , J.D. Chapman , C. Clement 87 , A.S. Cerqueira 100 108 45 56 86 , A. Dattagupta , P. Davison , E. Coniavitis , T. Brooks 144 16 3 , U. Bratzler 128b 169 170 48 , , I.R. Boyko 38 , R. Cherkaoui El Moursli 45 , M.A. Chelstowska , A. Campoverde 32 128b , ,l , M. Cristinziani , R. Caminal Armadans , H. Cai 132 128a , X. Chen , S. Cheatham , E.V. Bouhova-Thacker , M.J. Costa , J.R. Catmore 94b , M.C. Chu 68 , R. Cardarelli , C. Dallapiccola , , M. Corradi , A.K. Ciftci , S. Calvet , F. Conventi 121 128a 130 32 81 157 , G. D’amen 113 38 127 97 94a 148b , B. Burghgrave , BH Brunt , L. Carminati , 37 , W. Buttinger 32 , Z.H. Citron 94a 161 , Q. Buat 5 117 , G. Chiarelli , S.A. Cetin 32 , G.D. Carrillo-Montoya , N.S. Dann , D.W. Casper , O. Bulekov 32 , G. Calderini , V. B¨uscher , T.M. Bristow 15 127 , A.R. Cukierman , P. Chang 50 , M. Cavalli-Sforza 19 135b 13 , J. Boyd 22b , M.V. Chizhov 148a , L. Colasurdo , S.J. Crawley , 106b 94b 88 , 51 19 , F. Braren , R.N. Clarke , , , D.R. Davis 121 , J. Dassoulas 141 62a 94a 67 8 , K. Brendlinger 49 113 172 , M.D.M. Capeans Garrido 112 22a 60a , S. Che 94a 135a 131 56 106a , S. Chen , G. Brooijmans 155 , G. Costa 151 , G. Conti , D. Caforio 93 , D. Calvet 35b , P. Butti , F. Dallaire , L. Cerda Alberich 32 , G.A. Chelkov , L. Chytka , D. Cameron , J. Boudreau 85 28b 170 81 15 , A. Catinaccio 42 , T. Buanes , P.A. Bruckman de Renstrom , A. Camplani , A.M. Burger 29 , R.M. Carbone ,k 136b , E. Cheremushkina 163a 135b 45 , , V. Chiarella 19 81 , P. Conde Mui˜no , , P. Czodrowski , D. B¨uscher , B.T. Carlson , D. Cavalli , M. Casolino , S. Carr´a , K.J.R. Cormier , A. Calandri , Y.L. Chan 109 , A. Boveia 68 , V. Christodoulou , D.L. Briglin , T. Cao , W.A. Cribbs , P.J. Clark , S. Bruno , A.C. Daniells 40b , J. Cochran , Y.H. Chiu , M.K. Bugge , 42 13 , S. Darmora , O. Brandt 138 , A. Cervelli 166 16 128a 56 122 83 136a 161 38 , F. Cirotto 52 , K. Cranmer 171 135a 34b 109 , T. Davidek 51 62a , S. Chen 106a 175 116 109 176 57 16 , R. Brock 28b 40a 53a 16 87 45 , O. Dale 23 36a 92 S. Czekierda M.J. Da Cunha SargedasT. De Dai Sousa N.P. Dang G. Darbo C. David S. Constantinescu F. Cormier A. Cortes-Gonzalez B.E. Cox F. Crescioli T. Cuhadar Donszelmann Y.S. Chow J.J. Chwastowski A. Ciocio M.R. Clark A. Coccaro T. Colombo W.S. Chan C.A. Chavez Barajas S.V. Chekulaev J. Chen A. Cheplakov L. Chevalier A. Chitan E. Carquin A.F. Casha N.F. Castro E. Cavallaro F. Ceradini F. Cerutti P. Calafiura S. Calvente Lopez P. Camarri M. Campanelli J. Cantero M. Capua G. Carlino L. Bryngemark F. Buehrer C.D. Burgard J.T.P. Burr J.M. Butterworth S. Cabrera Urb´an S.K. Boutle G. Brandt W.D. Breaden Madden S. Bressler I. Brock J.H Broughton L.S. Bruni J.D. Bossio Sola JHEP05(2018)077 , , , , , , , , 7 , , , 32 , , 102 155 53b , 52 , 68 97 , , 58 16 , 56 , , 93 , , 3 , 92 , 83 , , 22b 53a 10 , , 126b 24 , 56 , 166 , , 108 178 39 16 , , , , , 13 , 28b 102 92 , 22a , , ,q , , , 126a , , 35a 28b , , 22b 170 133 46 , 45 126b , 33 , 5 125 168 108 161 32 , , E. Etzion 157 , 169 22a , M. Dris , 88 , G. Duckeck , F. Derue , , 126a 138 , C. Ferretti , 168 , M. Frate 57 32 , L.G. Gagnon , M.H. Genest , M. Demichev , C.M. Delitzsch 9 , D. Froidevaux , W.C. Fisher 175 , E.M. Duffield , D. della Volpe , A.K. Duncan 52 , S. Farrell 54b 59 137d , S. Dita 134a , M. Dobre , K.D. Finelli 97 , G. Galster , A. Gaudiello , M.J. Fenton , Y. Fang 86 53a 53b 93 179 138 , E.B. Diehl 178 , N. Dehghanian , , B.M. Flierl , S. Donati , N. De Groot 28b 50 48 32 , A. Gabrielli 106b 26c , F. Ellinghaus , F.A. F¨orster 28b 172 , C. Garc´ıa 130 , 68 83 , G. Geßner 5 34a , Y. Enari 53a 178 , C. Eckardt , A. Ferrari , C.N.P. Gee 26d , S. Errede , V. Fabiani , O.L. Fedin 154 138 13 34a , R. Di Sipio 42 45 10 133 106a 27 , L. Di Ciaccio , T. Ekelof 51 22b 119 , R.W. Gardner , 16 16 , P.O. Deviveiros , D. Ferrere , E. Drechsler , A.I. Etienvre , F. Deliot , P. Dita 22a 135b , B. Freund , P. Francavilla , M. Feng , C. Gatti , N. Giangiacomi , , J. Fischer , E. Duchovni , M. Franklin 29 , S. Demers , S. Elles 56 , C. Gemme 23 , D. De Pedis 170 32 , P. Gallus , T. Flick , J. Faltova 170 32 45 119 , D. Fassouliotis 13 , B. Di Girolamo 52 141 , T. Farooque , J.E. Derkaoui , A. Durglishvili 121 57 161 168 , M.A. Diaz 135a 81 134b 32 32 133 , 124 42 148b 55 , S. De Cecco , A.Chr. Dudder , , M. Ernst 39 , A.E. Dumitriu , G. Gagliardi , A. Formica , O. Gabizon 123b , E.N. Gazis , , M. Donadelli 32 , L. Fayard , D.V. Dedovich 18 , J. Ferrando , M.A.B. do Vale 80 22b , D. Gerbaudo 134a 87 , 175 23 148a , B.S. Dziedzic 170 , M. Fincke-Keeler 131 80 122 , L. Fabbri 139 , K. De Vasconcelos Corga 170 60a 123a , A. Di Simone , D. Emeliyanov 45 22a , M. Della Pietra , A. Ferrer 108 , K. Einsweiler 59 32 , E.J. Feng 151 22b , F.M. Garay Walls , A.T. Doyle , , C. Fischer , M. Ellert 15 , D. Delgove , M.R. Devesa ,g 60b 2 , S. Fracchia , R.J. Falla 74 , J. Dingfelder , A. Dubreuil 126b 36b 88 , M. D¨uren , L. Franconi , 22a 85 , F.A. Dias , K. Gasnikova 75 , A. De Maria , B.J. Gallop 161 14 98 145 , P. Fassnacht 4a 32 , S. Giagu , M. Garcia-Sciveres , A. Di Ciaccio 45 134a 67 , D.A. DeMarco , J. Fuster 161 , D. Derendarz – 46 – 126a 122 , A. Dudarev 52 22a , S. George 58 , A. Di Girolamo , A. Ereditato , Z. Dolezal 35a , O. Estrada Pastor 137e , G. Gaycken , S. Gadomski , R.R.M. Fletcher 104 138 109 , G.T. Forcolin , M. Dyndal 46 50 , M. Dumancic , M. Elsing 156 32 , E.M. Farina 1 92 131 , K. Gellerstedt 171 , G. Eigen , F. Filthaut , W.J. Fawcett , H. Fox , C. Feng 106b , S. De Castro , 27 103 , J.I. Djuvsland 178 , A. Fischer 32 45 , C. Debenedetti , A. De Santo 88 , F. Fabbri 60a , M.T. Dova , K. Dette 53b 119 136a , Y.S. Gao , 115 27 , S.M. Fressard-Batraneanu 54b , J. Del Peso 106a 170 45 , D. Francis , K.F. Di Petrillo , F. Dubinin 77 135b , F. Fassi 137e 81 53a , S. Falciano , 106a , V. Ellajosyula 32 40b , E.J. Gallas , 60a 32 155 , D. Duda , C. Gay 88 , M. Diamond 132 , M. Dell’Orso , P. Fernandez Martinez , F. De Lorenzi ,p , A. Dimitrievska , B. Giacobbe 135a , P.A. Delsart , J. Dolejsi 98 40a 8 , F.A. Di Bello 88 , H. Duran Yildiz , T. Fusayasu 24 , D. Denysiuk 128c , C. Gentsos 93 , B. Esposito 97 , J. Erdmann 45 , T. Eifert 23 , 84 , A. Gascon Bravo , D. Duvnjak 25 , S. Gadatsch 88 , C. Dulsen 119 , D.E. Ferreira de Lima 48 , Y. Gao 158 92 , A. Farilla 132 45 170 , R. Debbe 32 , L. Feligioni 8 121 , M. Ezzi 134b , M. Filipuzzi 41a , L. Fiorini 128a 37 , , D. Fournier , P. Fleischmann , J. Elmsheuser , M.P. Geisler , A. Doria , C. Deterre , T. Djobava ,r 123a 78 119 121 19 , J.A. Garc´ıaPascual 125 32 86 , M.J. Flowerdew 23 88 143 , A. Favareto 133 , C. Di Donato 134a , D. Freeborn 128c , R. Di Nardo 170 , A. De Benedetti 49 , 62a , S. Franchino , P. Farthouat 124 , C. Diaconu 123b , R. El Kosseifi , , O.A. Ducu 136b , B. Dutta 22b , L. Dell’Asta , C. Doglioni 128a 173 106a 31 , U. De Sanctis , , , S. Dhaliwal , L. Feremenga 83 , A. Farbin , C. Delporte , A. Duperrin , S. Feigl , R.C. Edgar 47 , I.L. Gavrilenko , M. Ghneimat , C. Escobar 32 , M. Del Gaudio 25 , N. Ellis 5 , G.P. Gach 137c , H. De la Torre 123a , I. Fleck , M.B. Epland , C. Fukunaga 22a , S.P. Denisov , V. Garonne 133 , S. Ganguly 132 , S. D´ıezCornell , R. Ferrari 136a , M. D¨uhrssen 134a 94b , K. Desch , A. Filipˇciˇc 60a 16 171 , B. Galhardo 103 , 143 119 109 , J. Dopke 45 , F. Djama , M. Geisen , R.M. Fakhrutdinov , A. Ezhilov 172 83 17 109 123a , S. Gentile 173 122 , A.G. Foster 77 145 86 113 109 37 32 57 81 119 , J. Duarte-Campderros 64 108 94a 92 87 36b J.E. Garc´ıaNavarro N. Garelli G. Gaudio J. Geisen C. Geng S. Ghasemi M. Franchini M. Fraternali J.A. Frost A. Gabrielli C. Galea K.K. Gan P. Ferrari F. Fiedler M.C.N. Fiolhais N. Flaschel L.R. Flores Castillo A. Forti H. Evans G. Facini M. Fanti S.M. Farrington M. Faucci Giannelli W. Fedorko A.B. Fenyuk D. Duschinger K.M. Ecker M. El Kacimi A.A. Elliot J.S. Ennis M. Escalier F. Dittus D. Dodsworth J. Donini Y. Du A. Ducourthial L. Duflot M. Dunford P. Dervan A. Dewhurst W.K. Di Clemente B. Di Micco D. Di Valentino J. Dietrich P. de Jong A. De Salvo J.B. De Vivie DeI. Regie Deigaard A. Dell’Acqua M. Delmastro A. Demilly R. de Asmundis JHEP05(2018)077 , , , , , , , , , 42 84 , 145 93 , 31 129 164 , 178 , 121 , 48 , , , , 178 , 59 , 32 ,x , , , 19 87 , 46 , , , , 105 19 3 , 168 141 81 , 36a , 81 , 177 , , , , N. Ilic , 112 , , F. Ito 130 , 39 164 57 173 59 84 43 93 , , , , 156 102 101 20a , 171 5 5 , , 75 , 32 , D. Hayden , G. Jarlskog , , , , , G. Gilles 32 , J. Godlewski 52 , 125 , 32 , T. Jakoubek 69 ,z 32 128a , K. Han 31 , Y. Horii 41a 25 , V. Ippolito , K. Hamacher , L. Gonella 137c 65 , R.F.H. Hunter 45 , B.K. Gjelsten 171 , S. Jabbar , L. Goossens , A.T. Goshaw 45 , J. Howarth 129 , A. Haas 38 , S.J. Hillier 118 88 , M. Homann 51 32 , V. Herget 52 78 , P. Hodgson 77 , S. Istin 60b 45 33 25 , R. Gupta 106a 137a , K. Gregersen , Z. Hubacek , D. Iliadis , R. Hauser , P.O.J. Gradin 141 , P.H. Hansen , P. Giromini , M. Hagihara , V. Hedberg ,w 122 23 18 , K. Grimm ,ab , P.F. Harrison 35a 23 , D.M. Handl 23 41a 86 , L. Hervas , P. Iengo , T. Hryn’ova 138 36a , J. Guenther 11 , T. Guillemin 95 , L.K. Gladilin , A. Held 139 139 102 119 , R. Gon¸calo , P.A. Janus 10 , S. Henkelmann , J. Grosse-Knetter , D. Gillberg , G. Iacobucci , V. Gratchev 32 137e 176 , O. Hladik , S. Higashino 53b , , N.G. Gutierrez Ortiz , V. Izzo , S. Jakobsen 57 16 92 17 78 , R.J. Hawkings 43 176 , G. Gonella 175 , D. Goujdami , H. Herde , A. Goriˇsek 44 128d 51 , M. Giulini 53a 115 , , B. Heinemann 19 , K.H. Hiller , S. Haug , M. Huhtinen , P.G. Hamnett , C. Grefe 17 , K. Iordanidou 138 , T. Heck 119 , W.H. Hopkins , C. Issever 76b , Y. Guo , G.D. Hallewell 16 , T.R. Holmes 30 103 38 ,u , , Y. Huang , C.B. Gwilliam 138 141 , M. Goblirsch-Kolb 128b 92 93 23 , 82 133 169 159 , A. Hoummada 136a 76a 45 36c , S. Hageb¨ock 122 , M. Hance , Y. Ilchenko , Z. Idrissi , P.F. Giraud , B. Hiti , M.C. Hansen , L. Helary , W. Guan , A.A. Grillo , S. Gonzalez-Sevilla , S. Harkusha , J. Hrivnac 153 88 128a 8 , M. Janus , Y. Heng 69 , E. Gross 39 92 , M.C. Hodgkinson 157 119 22a 17 178 129 , J.M. Izen 23 75 170 119 , E. Guido 86 , K. Jakobs , R. Hyneman , T. Heim 69 , J.C. Hill , I. Grabowska-Bold , M. Gilchriese 163a , R. Hertenberger 86 , S. Hu , P. Gkountoumis 113 , W. Guo , P. Gutierrez 59 45 , J.W. Hetherly , D. Hohn , S. Grancagnolo 51 27 , C. Giuliani , C.M. Hawkes 172 13 , S. Hassani 154 171 , G.H. Herbert , M. Iodice , C.R. Goudet , S. Hou , E. Gorini 36c 154 ∗ , A. Glazov 102 49 , E.W. Hughes 121 , – 47 – 122 23 , G.N. Hamity 163a 130 32 , A. Hadef , M. Ikeno 119 , M. Ishitsuka 9 , L. Guan 140 45 , G. Halladjian , A. Gomes , C. Gwenlan , S. Groh , S.J. Haywood 122 , J. Hejbal 69 , J. Griffiths , F. Hariri , B. Gui 157 , I. Hristova 5 , N. Hod 107 , K. Hanawa 147a 77 , J. Janssen 116 137e 55 132 41a , Z.D. Greenwood , J.D. Hansen , Q. Hu 119 , F.M. Giorgi , J. Huth , B.H. Hooberman , E. Hill ,y , S. Heim 178 32 52 , H. Iwasaki 155 16 39 150 , J. Guo 93 33 69 51 140 , D. Hirschbuehl 127 , G. Herten , K.B. Jakobi 167c 32 , E. Gozani , , F. Giuli 2 , M. Gignac , A. Hasib 51 162b ,t 86 , F. Hoenig , , B. Gorini 80 94a 142 , R.C.W. Henderson 167a , P. Ioannou 27 , A. Hostiuc 107 , N.P. Hessey , J. Haley , E. Gramstad 147b 162a , C. Heinz , M. Ishino , M. Havranek 32 , Y. Ikegami , B.J. Gutelman , L. Iconomidou-Fayard 58 81 45 , S. Gonz´alezde la Hoz , C.A. Gottardo , E.L. Gkougkousis 38 , N. Haddad 123b 166 , J. Hobbs , O. Gueta , M.P. Guzik , K. Grevtsov 112 , 120 , R. Jansky , J. Hrdinka 8 , T.B. Huffman , A. Hamilton 174 59 115 ,s 143 , A. Grummer 68 , V. Jain , J.-F. Grivaz , J. Huston , D. Golubkov , P.C.F. Glaysher , S.-C. Hsu , H.M. Gray 49 9 , H.S. Hayward 82 , H. Herr 23 ,b , S. Henrot-Versille 81 166 , J.B. Hansen 138 145 23 37 , T. Harenberg 117 52 13 63 172 , T.M. Hong 56 123a 79 , M. Hirose , K. Hanagaki 68 32 , C. Gumpert 69 , J. Goncalves Pinto Firmino Da Costa 60a , K. Hildebrand 147c 16 176 , D. Giugni 56 , K.K. Heidegger 35d , R. Iuppa , , S.M. Gibson 26a 170 23 , C. Helsens , Y. Hasegawa 167c 62a , H.A. Gordon 35a , , M. Haleem , N. Govender , T. Iizawa , M.P. Giordani , X. Hoad 126b ∗ 99 102 , , , N. Ishijima , I. Gkialas , L. Heinrich , Ph. Gris , C. Gray ,d , J. Gramling , G.G. Hesketh , P.J. Hsu , D. Guest 148b , J.L. Gonski , J-Y. Hostachy , C. Guyot , ,aa 140 , D.K. Jana 3 , L.B. Havener 167a , I. Ibragimov ,v , P. Grenier , J. Glatzer , Z.J. Grout , T. Golling , M.I. Gostkin 77 147c 96 , U. Gul , G. Gustavino 180 , M.R. Hoeferkamp 68 28f 81 168 , J.M. Hays 156 102 47 124 , F. Huegging , G. Introzzi 126a , P. Hanke , K. Hamano , T. Honda 27 144 13 45 85 109 82 116 , R.M. Jacobs 91 46 163a 32 , H.K. Hadavand 32 148a , A.S. Hard , S. Heer 1 88 47 20a 122 , S. Han , N. Huseynov 8 , M. Hrabovsky 124 , I. Hinchliffe 117 164 16 164 74 47 36a 150 O. Igonkina F. Iltzsche M.F. Isacson J.M. Iturbe Ponce P. Jackson D.O. Jamin A.J. Horton J. Hoya A. Hrynevich F. Hubaut P. Huo G. Iakovidis T.C. Herwig E. Hig´on-Rodriguez M. Hils D.R. Hlaluku A. Hoecker S. Honda L. Hauswald C.P. Hays L. Heelan J.J. Heinrich S. Hellman A.M. Henriques Correia Y. Hern´andezJim´enez H. Hakobyan P. Hamal L. Han B. Haney K. Hara N.M. Hartmann S. Grinstein G.C. Grossi F. Guescini S. Guindon S. Gurbuz C. Gutschow C. Haber P.A. Gorbounov C. G¨ossling A.G. Goussiou E.C. Graham P.M. Gravila I.M. Gregor D.M. Gingrich G. Giugliarelli S. Gkaitatzis C. Glasman S. Goldfarb R. Goncalves Gama A. Gongadze P. Giannetti JHEP05(2018)077 , , , , , , , 5 , , , , , 27 , 46 36a , , 68 , , 79 , , 5 70 , 133 , , , 139 34a ,ag 23 , ,w 16 146b , 88 , 172 , , 156 , 95 161 60a , 175 , , , , 112 36a 12 35d ,ac , , 103 103 , 88 35a , , 145 , 176 94a , 172 , 8 30 54a 35a , 101 , 52 , , J. Kirk , R. Lafaye , F. Lanni 178 , Y. Jiang 131 , 123b , , 46 176 47 , B. Li , 68 , 67 , G.R. Lee 86 159 166 , A.T. Law , , , I. Koletsou , K. Kawade 79 32 , H. Kr¨uger 132 , 27 , R. Keeler , S.N. Karpov , C. Leggett 16 , E. Kladiva 174 123a , K. Kordas 45 ,c 68 175 5 , T. Lari , K. Kroeninger 10 60b , Z. Liang , M.P.J. Landon 170 , D. Lellouch 126b , 102 42 , , D. Krauss 16 111 51 138 , M. Kocian , H.Y. Kim , Y. Kulchitsky , A. La Rosa 143 , J. Jongmanns , R. Konoplich 32 131 140 , J. Jejelava , H. Keoshkerian , L.S. Kaplan , T. Kosek 47 80 88 , F. Khalil-zada , C.G. Lester 77 , T.J. Khoo 126a , H. Jiang 141 , E.B.F.G. Knoops , M.G. Kurth ,af , L. Kashif , E. Le Guirriec 16 19 , T. Kupfer 112 , R. Kowalewski 103 , T. Kaji , D. Lewis 169 138 65 95 69 160 83 , E. Ladygin , C.A. Lee 150 164 , J.T. Kuechler 42 , J. Katzy 129 88 19 , Y. Li , M. Kolb 83 58 , O. Jinnouchi 4b , D. Kirchmeier 52 , A.J. Lankford , F. Legger , V.A. Kramarenko 36c , K. Korcyl , K. Kleinknecht 145 , W. Lavrijsen , K. Krizka , C. Lacasta 77 , O. Kivernyk 28b , M.K. K¨ohler 32 , E. Karentzos 77 50 172 , U. Kruchonak , S. Leone 132 ,v 45 41a , R. Kukla , J. Jia , R. Leitner , M. Kobel 161 40b , U. Landgraf 7 , , J.F. Laporte , T.J. Jones , T. Klioutchnikova , L. Jeanty 14 , C.R. Kilby 13 , V.F. Kazanin 68 , A. Kamenshchikov , T. Kono 7 27 176 163b 26d 157 83 , J Kendrick 23 70 , B. Kaplan , X. Li , W.J. Johnson 40a 77 , M. Levy , S. Kortner 43 138 , M. Khader , A. Kupco 108 80 , T. Koi , S.J. Kahn 69 48 64 , D. Lacour , O. Le Dortz , A. Katre , S. Kuday 90 , E. Kneringer , A. Khodinov 175 103 71 , A. Krasznahorkay , K. Kasahara , A.A.J. Lesage 17 91 81 103 ,c 145 157 , U. Klein , A. Jinaru , H. Ji , B.T. King , D. Kyriazopoulos 83 103 , Y.A. Kurochkin 5 , V. Kitali 132 161 77 111 17 , R. Leone , P. Laurelli , J. Krstic , S. Li , P. Krieger 172 , S. Jones 35b , S. Kido , S. Koperny , A.B. Kowalewska , M. Lefebvre 41a 32 , A.S. Kozhin 163a 23 55 , T. Klingl 62a , E. Lan¸con , S. Kama , E.F. Kay 64 , F. Ledroit-Guillon 36a 27 , V. Kukhtin , S. Laplace 83 151 , B. Le ,ae ∗ , A. Kourkoumeli-Charalampidi 7 6 , 86 138 57 , R.J. Langenberg 45 , F. La Ruffa 10 , M.A.L. Leite , M.J. Kareem 46 , J. Kanzaki 53b – 48 – , T. Kobayashi 94b , A.C. K¨onig 54b , F. Jeanneau , A. Juste Rozas 13 , , R. Les , C. Kato , , T. Kunigo , H. Lacker , S. Jin , R.A. Keyes 45 , H. Kucuk 10 , O. Kortner , S. Kluth , M. Kagan 40b 73 51 51 97 , 100 , C.A. Johnson , J.J. Kempster 11 87 53a 176 94a , Q. Li 91 , M. Klein 157 7 , L.J. Levinson 170 178 141 , N.M. K¨ohler , T. Kwan 109 , S. J´ez´equel 113 84 , B. Lenzi 40a 92 , O.M. Kind 92 35d , T.S. Lau , M.W. Krasny , 23 109 117 173 , T. Kuhl 156 32 , W. Lampl , S.D. Jones 100 35a , T. Kharlamova , J. Kroseberg , A. Kaluza , G. Lefebvre , A.N. Karyukhin , X. Ju 64 75 177 , D. Kisielewska ,c 84 , K. Kreutzfeldt , V. Kouskoura 90 75 , J. Khubua , T. LeCompte , C. Leroy 124 , J.C. Lange , M. Kuna , A. Koulouris , R. Kopeliansky 7 , W. Kozanecki , G. Kawamura , P. Kluit 77 163a 157 68 , K. K¨oneke 111 45 , L.L. Kurchaninov 141 , W.A. Leight 48 , T. Kubota 84 151 , H. Kagan , D. Levin , S. Kersten 169 , T. Lenz , Q. Li , R. Klingenberg 7 , Y. Kataoka , D.P.J. Lack , K.A. Johns 157 157 60a 70 36c , D. Kobayashi , J. Kvita 5 , M. Javurkova , C. Jeske 48 , N. Karastathis , A. Lapertosa , M.H. Klein , M. Lazzaroni 78 81 27 45 119 36c 51 149 141 10 157 , V.A. Kantserov ,ad 159 51 59 , N. Kimura , M. Lassnig , E. Kellermann , E.V. Korolkova , E. Koffeman , L. La Rotonda 123a , F. Kuger 78 51 , J. Kroll , J. Jimenez Pena 33 31 13 31 22b , X. Lei 81 , S. Lammers , 60a 26d 129 , B. Lefebvre , L. Li 32 , R.W.L. Jones , V.S. Lang 57 , B. Konya , G. Lerner , M. LeBlanc 59 , J. Jovicevic , A. Kotwal 22a , E. Khramov , J. Lacey 52 , E. Kourlitis 150 81 , C.W. Kalderon 49 ∗ , T. Kishimoto , D. Krasnopevtsev , M. Kado 23 , C. Kozakai 9 , J. Levˆeque , 138 , M. Kuze , E.-E. Kluge 148b , V. Kartvelishvili , M.C. Kruse , , J. Kretzschmar 78 42 128b , Y.P. Kulinich 99 , P. Jenni 154 , H. Kurashige , T. Jav˚urek , 103 , T. Kawamoto 41a 68 134b , A. Lanza 125 , A.G. Kharlamov 67 , L. Kanjir , 172 102 , K.J.C. Leney ,b , A. Kastanas , T. Lazovich , A. Klimentov 41a , S. Lai , B.P. Kerˇsevan , J. Kroll , Y.K. Kim 73 , P. Johansson 23 , T. Koffas 173 34b 148a 155 , N. Kondrashova , J.S. Keller , L. Lee , A. Kobayashi , A. Kugel 57 68 , H. Li , S. Jiggins 128a 77 116 157 , K. Karakostas 83 113 , I. Korolkov 110 134a 69 129 43 103 164 32 131 153 147c 103 36a 81 145 147c S.C. Lee G. Lehmann Miotto B. Lemmer C. Leonidopoulos M. Levchenko C.-Q. Li B. Laforge M.C. Lanfermann K. Lantzsch F. Lasagni Manghi P. Laycock E.P. Le Quilleuc S. Kuehn S. Kuleshov O. Kuprash E.S. Kuwertz J.L. La Rosa Navarro F. Lacava V.V. Kostyukhin C. Kourkoumelis T.Z. Kowalski G. Kramberger J.A. Kremer H. Kroha N. Krumnack F.F. Klitzner A. Knue P. Kodys T. Kondo N. Konstantinidis A. Korn O. Kepka A. Khanov V. Khovanskiy S.H. Kim A.E. Kiryunin T. Klapdor-Kleingrothaus P. Klimek N. Kanaya D. Kar Z.M. Karpova R.D. Kass K. Kawagoe R. Kehoe A. Jelinskas Z. Jiang H. Jivan K. Jon-And P.M. Jorge A. Kaczmarska E. Kajomovitz N. Javadov JHEP05(2018)077 , , , , , , , , , , 44 75 , 74 , 91 68 36b 119 30 , ,c , , , , , 128b , , , 102 ,o 157 , , 92 32 , , 102 111 150 , 145 , , , , 133 , , , 124 , 172 , 26a 25 , 26a 83 , 128b , 156 , 51 93 , 59 , 83 , 97 133 124 36a , Y. Ma , , 173 , 92 113 , 62b , 102 103 148b , , 93 75 , 128a , 81 , , P.A. Love 36b , H. Liu , M. Milesi 174 18 , , B. Meirose 6 70 , M. Mineev , C. Malone 124 67 78 130 32 6 , N. Makovec , , F. Monticelli 148a 106b 60a , J. Lorenz , K. Lin , , L. Morvaj , R. Mount 41a , 69 57 32 83 30 79 , M. Morii 69 , I. Maznas , T. Masubuchi , Y.L. Liu 159 , P.M. Luzi , K.M. Loew , R.S.P. Mueller 106a , C. Meyer , C.Y. Lo , C. Luedtke , J.A. Mcfayden 157 , A. Mann 89 51 , G. Marchiori 153 , L.L. Ma , J. Love , S. Menke 79 36a , B. Liu 58 40b , A. McCarn , F. Marroquim 91 127 , 166 , R.E. Long 84 , K. Mochizuki , C.B. Martin , T. Mitani 27 , F. Meloni , J. Maneira , W.J. Murray , J. Maeda , A.L. Maslennikov , C. Maidantchik 92 92 , 122 119 , R.A. McPherson 22b 139 , 40a , M. Mikuˇz , E. Lipeles , R.P. Middleton , D. Malon 78 87 47 169 87 , K. Meier , M. Myska ,v 170 124 119 148b 52 146a 173 66 , 58 13 22a , C.Y. Lin 129 , B. Mindur 151 , J. Machado Miguens ,ak , Y. Makida , A.C. Martyniuk , M.C. Mondragon , M. Liu 78 , T. Mori 152 , L. Merola , D.A. Milstead , H. Ma , J.D. Morris 112 148a 132 , M. Mantoani 118 23 , A. Loesle 28b , M.S. Lutz 52 , R. Mazini , A. Mizukami 169 68 32 144 , A. Lopez Solis 90 , S.L. Lloyd 175 87 , A.S. Mete , M. Moreno Ll´acer , J. Mueller , A. Lucotte ,c , K. Motohashi 6 13 149 , A. Lounis 141 , J. Masik 21 35a , I. Mandi´c 103 ,aj , J.D. Long , A.M. Litke , M. Melo 111 98 , S.P. Mc Kee , D.E. Marley , L. Marchese 134b , N. Madysa , C. Maiani , U. Mallik 35a , 50 , F. Miano 24 57 , E.F. McDonald , K.P. Mistry , J. Montejo Berlingen 145 37 52 45 , K.H. Mankinen 171 , A.E. Lionti 51 , T. Moa 58 , T. Meideck , L. Liu 161 81 , B. Maˇcek , M. Martinez 60a 47 , C.J. McNicol 134a 77 150 76b 88 , D. Mori 150 , A. Mengarelli , 131 , S. Marti-Garcia 15 91 , A. Milov , A.I. Mincer 141 , A. Limosani 32 92 , M. Mikestikova , S. Majewski , P. Mermod 76a 49 168 , R. Mantifel 15 , A. Mastroberardino , V.S. Martoiu , X. Lou 54b 18 , A.G. Myagkov , F.J. Munoz Sanchez 5 , J. Metcalfe , R. Moles-Valls 175 , D. Moreno , G. Mornacchi , F. Mueller , J. Moss 146a 35a , V. Lyubushkin , I. Lopez Paz 18 133 102 32 , A. Lister , K. Liu , L. March , F.K. Loebinger – 49 – 88 , F. Malek , B.A. Long 119 , C. Luci 147a , G. Mancini 134b 148b , V. Magerl 7 141 , P.S. Miyagawa , 35a , , A. Madsen 34b 29 , B. Lund-Jensen ,ah , A. Mehta 36a , D.A. Maximov 125 129 18 140 47 , R. Mashinistov 170 101 , C. Mills 77 134a 148a 169 , A. Mirto , M. Marjanovic 102 , J.D. Mellenthin , J. Llorente Merino 134a 157 , X.T. Meng 33 , W. Liebig , G. Mc Goldrick 13 32 58 , L.I. McClymont , A. Montalbano , B.E. Lindquist 77 147c , F. Lyu , M. Mlynarikova 62c 107 , P. Loch 88 , P.J. L¨osel 64 , S. Morgenstern 103 , P.C. McNamara 84 , C.M. Macdonald , C. Merlassino 45 , S. Muanza 21 , G. Mikenberg , J.B. Liu , C. Mwewa , O. Majersky , H.J. Moss 180 , I.A. Minashvili , G.A. Mullier , J. Manjarres Ramos 109 , A.K. Morley , N. Morange , J.D. Mansour 133 17 , P. Mastrandrea , J.A. Lopez 89 49 78 , A. Miucci 103 3 , G. Marceca 56 36b 54b , B. Martin dit Latour 157 , M.U.F Martensson 26b 128d 121 , T.M. Liss 138 , V.P. Maleev , J. Mamuzic 32 , 113 , H.J. Lubatti , S. Martin-Haugh 170 , W.F. Mader , K. Lie 49 , A. Messina , M. Lokajicek 135b 16 , L.M. Mir , A. Lleres , , L. Meng 42 32 , S. Molander , S. Mehlhase 63 , H. Meyer Zu Theenhausen 37 , L. Luminari , S.J. Maxfield 60b 33 , A.S. Maevskiy 169 , D.W. Miller , T. Mashimo 87 161 141 128b 38 176 51 , 65 27 135a 123b 79 86 109 28b , , J. Liu , E. Lytken , R.A. Linck , E. Monnier , M. Losada 86 128a 39 5 122 129 , L. Mijovi´c , P. Mullen 123a , C.A. Marin Tobon , T. Mkrtchyan , T.G. McCarthy 75 , N.C. Mc Fadden , Y. Minami , Y.J. Lu , M. Mosidze , M. Muˇskinja , R.W. Moore , L. Mapelli 53b , A. Macchiolo , , E.J.W. Moyse , S.J. McMahon 84 92 , V. Morisbak 129 , R. Madar 10 32 , Y. Ming , S. Mergelmeyer 150 , Z. Marshall 132 , K.A. Looper , V.J. Martin 94b , M. Morgenstern , B. Mansoulie , V.A. Mitsou 50 , M. Lisovyi , B.R. Mellado Garcia , 94b 94b 27 , E.M. Lobodzinska 57 , Pa. Malecki , , 53a , W. Lukas , J. Meyer , L. Massa , A. Liblong , S. Malyukov , T.J. Megy 87 , T. Maeno 32 174 , F.S. Merritt 170 157 15 43 , J. Maurer 40b 173 ,ai 83 53a 76b , L. Masetti 102 , 64 94a 91 , S.B. Menary , , A. Maio 10 , J. Monk 94a 94a 15 , T.H. Lin , D.A. Millar 138 , K. Lohwasser 140 , S. Mohapatra , R. Lysak 32 94a 135a 23 178 45 170 , M. Livan 40a 76a 102 17 , N. Lu , J.K.K. Liu 51 182 27 161 27 36a 62a P. Morettini M. Morinaga P. Moschovakos E. Mountricha D. Muenstermann H. Musheghyan Y. Minegishi J. Mitrevski J.U. Mj¨ornmark P. Mogg K. M¨onig S. Monzani E. Meoni C. Meroni J-P. Meyer S. Miglioranzi A. Milic A.A. Minaenko P. M¨attig S.M. Mazza R.L. McCarthy G. Mchedlidze S. Meehan D. Melini A. Melzer M. Marcisovsky S.P. Marsden T.A. Martin V.I. Martinez Outschoorn A. Marzin L.H. Mason S. Maeland T. Maier B. Malaescu S. Maltezos L. Manhaes de AndradeA. Filho Manousos S. Manzoni N. Lorenzo Martinez H. Lu F. Luehring D. Lynn G. Maccarrone D. Madaffari S.C. Lin A. Lipniacka H. Liu Y. Liu F. Lo Sterzo T. Lohse L. Longo B. Liberti JHEP05(2018)077 , , , , , , , , , , ∗ 11 , , 178 57 87 93 , , , 175 138 121 , , 106b 29 , , , , 53b , 87 , , , , 13 122 , , , 28d , 61 174 , 51 67 , , 32 , , 128b , 106a , 32 , 53a , 103 26b 98 56 166 60a 149 124 , 57 , 34b 111 , , , 20a , , Y. Qin , , 28b , H. Potti , 128a 19 70 , , M. Pitt , 79 92 , , 33 69 , J. Rieger 177 30 124 179 , , 45 45 , 94b , H. Oppen , , R. Piegaia , S. Prell 52 80 121 117 178 134a , T. Nitta 32 , J.A. Raine , F.H. Phillips ,ab , M. Neumann 16 94a 46 122 , R. Nicolaidou , V. Radescu 11 , , S. Perrella , S. Palestini , U. Parzefall 181 , R. Richter 169 , A. Nelson 34b , Y. Nagasaka 27 , B. Osculati , C.C. Ohm , A. Ochi 52 122 32 38 , J. Qian 97 , R. Pedro 57 , A. Olariu 69 , I. Pokharel , B.S. Peralva , C.S. Pollard , M. Raymond 40b 48 83 , , G.A. Popeneciu 161 , V.E. Ozcan 69 , F. Prokoshin 23 64 87 , T. Nooney 119 170 22a , C. Padilla Aranda 19 , E.D. Resseguie , C.J. Potter , P.Yu. Nechaeva , J. Reichert 40a , P. Podberezko , L. Nozka 27 62c 134a , H. Pirumov 68 92 , E. Petrolo 17 67 , K. Nakamura , A. Redelbach , Fr. Pastore 69 3 138 , C.J. Riegel 94a , M.J.R. Olsson , D.I. Narrias Villar , I. Nitsche , K. Nikolopoulos , A. Pranko , C.E. Pandini , A.A. O’Rourke , G. Rahal , R. Pezoa , M.G. Ratti 119 27 11 105 53a 83 88 103 5 , B.A. Petersen 123b , F. Ould-Saada 103 10 , S.H. Oh , , V. Radeka , C. Nellist 144 138 94b , D. Pohl , J. Ocariz , R.S. Orr 87 , L. Paolozzi , P. Puzo , 87 , P.U.E. Onyisi , K. Nagano , R. Rezvani , M.A. Pickering 93 23 121 , A. Polini 137d 108 , J.A. Parsons , H. Pernegger , J. Penwell 123a , M.S. Neubauer 62b 94a 28b 169 89 ,af 105 131 , D. Paredes Hernandez 32 , S. Palazzo , R.B. Nickerson , R.E. Owen , D. Pluth , T. Okuyama 6 ,al 36a 53b 94b , J.H. Rawling 69 , H.A. Neal , , 64 97 56 , M. Nozaki 68 7 , S. Resconi , I.N. Potrap 32 , P. Rieck 157 , K. Prokofiev , L. Rehnisch , J.L. Pinfold , P. Petroff 175 , M.A. Nomura , A. Oh 47 53a 94a 45 , L. Pontecorvo , R. Nisius 83 44 , R. Narayan 31 , S. Pedraza Lopez 69 100 134a 156 , S. Passaggio , A. Peyaud 100 36c 135b , S. Raspopov 45 , A. Puri , P. Pralavorio , , Y. Nakahama , D.C. O’Neil 103 89 , I. Panagoulias 32 , K. Onogi 32 , S. Raddum , D. Pantea , H. Peng , M. Ouchrif , F. Ragusa 119 , I. Nikolic-Audit 25 41a 134a , A. Picazio , R.F.Y. Peters , R. Polifka , N. Orlando , R. Nagai 10 135a 56 27 73 91 , P. Reznicek , M. Owen , T. Obermann , I. Pogrebnyak , M. Nessi 45 ,ak 35d , D.M. Rebuzzi 128e 173 , L. Pacheco Rodriguez , ,c , R. Nayyar 40b – 50 – , , S. Nektarijevic 122 , L. Perini , , G. Palacino , D. Oliveira Damazio , F. Parodi , M. Ridel 136b 35a 103 13 119 112 , 21 132 17 76b , S. Odaka , A. Paramonov , K. Reeves 35a 111 27 , 22a , Y. Okumura 45 , E. Plotnikova 23 40a 128a , I. Nomidis 34a , N. Nishu ,s 73 , I. Ravinovich 9 86 , N. Proklova 136a , C. Petridou 76a 164 , M. Rescigno 147c 86 120 , T. Nguyen Manh 1 , K. Potamianos , B. Pearson 90 134a , O. Novgorodova , T. Rashid 17 , P. Rados , A.M. Nairz 35d 32 , H. Otono , D. Quilty , 130 , K. Peters , K. O’connor , F. Peri 122 88 168 , K. Nagai ∗ , S. Panitkin 29 45 , E. Pianori , 118 , D. Ponomarenko , C. Peng 35a 91 , N.E. Pettersson 27 , F. Paige , M. Przybycien , S. Oda 52 32 , E. Pasqualucci , M. Pinamonti 68 32 6 , Q. Ouyang , L. Poggioli 150 , O. Ricken , G. Navarro 129 , P. Nemethy 87 , A. Onofre , H. Oberlack , M. Negrini 179 34a , S. Rave 139 , R.F. Naranjo Garcia , M. Reale 136b 45 ,d 109 , K.A. Parker , , V. Pleskot 42 , H. Okawa 41b , V. Nikolaenko , S. Prince 123b 129 , Y.S. Ng , A. Nisati 58 , R.G. Reed , 102 , A. Policicchio 31 30 114 , O.L. Rezanova 27 , A. Petridis 123b , D. Orestano , T. Pauly 11 , 69 53b , M.E. Pozo Astigarraga , M. Nomachi , E. Nagy 45 136a 62c 76a , , A. Pacheco Pages , H. Ren 19 58 139 , F. Nuti 87 , S. Pospisil , P. Pani , E.St. Panagiotopoulou 123a 155 32 71 51 32 , P. Radloff 81 , K. Papageorgiou 83 123a 53a 80 144 , S.A. Olivares Pino 37 , O. Penc 10 ,c 150 , K. Pomm`es 128a , J. Proudfoot 27 111 , C. Rangel-Smith , M. Paganini , J.M. Pasner , O. Nackenhorst 27 , G. Piacquadio , I. Nakano , E. Petit , T.Y. Ng , D.V. Perepelitsa , A. Poley , T. Naumann 27 , S. Nemecek 16 , N. Norjoharuddeen , J. Olszowska , R. Reece , G. Otero y Garzon , Y. Oren 16 , F. Rauscher , R. Poggi 161 39 19 , A.D. Pilkington , K.P. Oussoren , M.A. Parker , H. Oide 133 , M.-A. Pleier 157 , M. Nagel , N.P. Readioff , J.R. Pater , F. Petrucci 32 138 42 , V.D. Peshekhonov , E. Nurse 27 , A. Negri , J. Poveda , N. Nikiforou 33 125 122 45 , F.G. Oakham 84 , D. Pallin , Y. Ninomiya , E. Richter-Was 123a 36a 33 , E. Reynolds 75 , M. Queitsch-Maitland , K. Pachal 86 , Y. Noguchi 45 84 138 168 , J.P. Ochoa-Ricoux 164 121 56 , M. Primavera , C. Rembser 8 122 27 81 166 138 139 146a 57 41b 171 38 87 157 86 D.M. Rauch A.L. Read G. Redlinger A. Reiss S. Rettie S. Richter T. Poulsen D. Price S. Protopopescu A. Quadt S.K. Radhakrishnan S. Rajagopalan J.E. Pilcher L. Plazak R. Poettgen G. Polesello V. Polychronakos D.M. Portillo Quintero S. Pataraia S.V. Peleganchuk M.M. Perego R. Peschke T.C. Petersen M. Petrov P.W. Phillips S. Pagan Griso M. Palka J.G. Panduro Vazquez Th.D. Papadopoulou A.J. Parker V.R. Pascuzzi H. Ohman L.F. Oleiro Seabra A. Olszewski M.J. Oreglia R. Ospanov A. Ouraou N. Ozturk P. Nilsson T. Nobe M. Nordberg K. Ntekas V. O’Shea I. Ochoa K. Nagata T. Nakamura I. Naryshkin T.J. Neep M.E. Nelson P.R. Newman J. Nielsen B.P. Nachman JHEP05(2018)077 , , , , , , , 92 , , , 56 5 165 115 , , , 98 , 149 100 , 130 32 23 153 , , , 16 60b , , 51 , , 13 , 119 43 , 157 87 , , , , , , 23 , , 128a , I. Siral , , 34b , , , , H. Son , , 86 51 151 92 , 23 32 , 170 , , , 60b 177 103 70 31 139 , 149 146a 132 125 141 14 ,ao 32 , 84 52 , E. Sauvan , A. Robson , , , D.A. Soh , D.R. Shope 68 , 45 60a 164 106b , , T. Slavicek 22a 49 , , G. Ripellino , M. Shapiro 94b , M. Saito 21 , 167b , S. Schaetzel , 19 , A.A. Snesarev , , M. Ronzani 167c , , P. Seema , K. Schmieden , , A. Romaniouk 24 45 , S.J. Sekula 22a , H. Santos , L.K. Schildgen 32 106a 77 94a 92 , D. Rousseau 170 130 59 92 37 , E. Simioni 103 , R.T. Roberts 123b 167a , D. Sammel 167a , 139 , C.Y. Shehu , A. Sfyrla , A. Sciandra , P. Schacht 140 , S. Shimizu 13 , J. Smiesko , A. Ryzhov , U. Soldevila 32 , Dj. Sijacki 119 , G. Siragusa , K. Sato , P. Sommer , T.A. Schwarz , P.E. Sidebo 5 6 , A. Schoening 165 138 47 123a 140 ,an , O. Smirnova 148b , J. Schovancova 69 100 , A. Rodriguez Perez , , C. Sbarra 22b 125 145 169 , N. Ruthmann , 138 , A. Søgaard , J. Salt , M. Slater 7 ,u ,ap , M. Shiyakova 153 108 , E. Rossi , V.A. Schegelsky , J.E. Salazar Loyola 170 , A. Ruiz-Martinez 22a 148a , L. Rinaldi 82 , J. Roloff , C. Sandoval , J. Searcy 73 , S. Shojaii 57 , J.T. Shank 155 145 115 , S. Schaepe 101 51 150 , L. Serkin , S. Schier , K. Smolek 18 , H.F-W. Sadrozinski , K. Sekhon 91 , M. Saimpert , S. Ryu , J.E.M. Robinson , C. Rizzi 33 , C. Santoni 136b 121 178 86 , , N. Rompotis 169 75 29 30 79 , S. Simion 119 50 53b 60a 119 , , F. Sforza , L. Shi 106a , J. Rothberg 170 68 , F. Siegert , O. Sasaki 136a , B.H. Smart , H.-C. Schultz-Coulon 78 81 53a , A. Salzburger 28b , M. Sioli 23 22b 175 , V. Solovyev , , L. Schoeffel 128d , A.M. Sickles , A. Soffer , F. R¨uhr , , J. Schwindling 62c , L. Sawyer , P. Skubic , , A. Sanchez Pineda , S. Shirabe 118 , S. Sottocornola 51 , F. Scutti , E.Yu. Soldatov 22a 132 47 93 75 , A. Salnikov 129 , O. Røhne 145 , J. Schaarschmidt , L. Serin , E. Rizvi , R. Shang 133 62b , A. Schwartzman 170 128a , M. Rimoldi 122 , N.-A. Rosien , 130 59 , J. Schaeffer 126b , J.P. Rutherfoord , L. Simic 126b 103 , , M. Sandhoff 166 121 , , A. Sansoni 116 35a , L.N. Smirnova , M.J. Shochet , G. Rybkin 138 , S. Sacerdoti 139 62a , A. Shcherbakova 90 , D. Robinson , K.R. Schmidt-Sommerfeld 45 123b 124 , T. Sfiligoj , M. Sahinsoy 97 130 , M. Smizanska , , C. Schiavi – 51 – 105 , S. Rodriguez Bosca 100 87 169 126a 90 109 32 126a , J.F.P. Schouwenberg , M. Rotaru 38 , R.D. Schamberger , P. Sherwood 115 110 , G. Sekhniaidze 166 , G. Salamanna 86 123a ,am , P. Sicho , A. Sidoti 24 140 , F. Socher , V. Smakhtin 7 , N.B. Sinev 102 , F. Rubbo , U. Schnoor 88 26a , E. Romero Adam ,o , M. Solar 174 , M.J. Schultens , C. Sawyer 177 , J. S´anchez , P. Rose 131 86 161 37 32 86 , C. Serfon 172 , M.B. Skinner , J.G. Saraiva , L.Y. Shan 147c , C.S. Rogan 103 51 , Y. Sano 156 37 , V. Simak , I.P.J. Shipsey , F. Scuri , D. Salihagic , Ph. Schune 68 32 , A. Salvucci , R. Schwienhorst , P. Saha , O.V. Solovyanov , M. Rybar , L. Schaefer , H.L. Russell , G. Sabato 53b , S.M. Shaw 148b , C.O. Sander 148b , , Y. Smirnov 104 , 168 68 40b , 139 , F. Rizatdinova 33 , 151 138 148a 68 , S. Schlenker 125 , M. Schott , H. Severini 79 , R.W. Smith 134a 152 13 , R. Rosten , A. Rimoldi 53a , D.A. Scannicchio 100 , D. Schaile 167b 23 40a 148a 38 , , M. Schernau 148a , Y. Rodina 40b 30 172 81 , , Y. Sakurai , M.A. Shupe , D. Shoaleh Saadi , R. Slovak , R. Sobie , J.M. Seixas 150 , N. Savic 17 , X. Ruan , S. Roe , P. Sinervo 119 , S. Schmitz , A. Schulte , A.D. Sherman 98 , C.L. Sotiropoulou ,d 27 167a 40a , S. Senkin 157 100 86 165 126b 45 139 86 , 31 154 170 , K. Rosbach , I. Riu 60b 161 , O. Sidiropoulou 22b , 32 , A. Sapronov 126a 134a , J. Sj¨olin , D. Schaefer 22a , A. Robichaud-Veronneau 147c , E. Schopf , F. Salvatore 151 , D. Sampsonidou , S.M. Romano Saez , M. Sannino , Y.F. Ryabov , B.A. Schumm , A. Soloshenko ,o , M. Shimojima , R. Seuster 101 93 102 , C.A. Solans Sanchez , T. Scanlon 40b , K. Shaw 156 , S.B. Silverstein 51 45 , A.F. Saavedra 90 , R.L. Sandbach , K. Sliwa , 22b , F. Schenck , Ph. Schwemling , N.W. Shaikh , S. Snyder , 133 78 132 179 , S.Yu. Smirnov , E. Shulga , D. Sosa , M. Simon , N. Schuh , N.A. Rusakovich 99 , A. Seiden , Y. Rozen , M.N.K. Smith 57 , F. Safai Tehrani 42 22b , J.H.N. Rosten 136b 87 , S. Schmitt 57 , , 40a , A.C. Schaffer 121 , A. Shmeleva 131 81 52 , P. Savard 118 22a 51 88 , M. Scornajenghi 57 , M. Schioppa 128d 68 100 113 , P.H. Sales De Bruin 130 , , H. Sakamoto , C. Roda , M. Rijssenbeek 86 107 , N. Sherafati , E. Ritsch 86 53a 80 22a , S. Rosati 25 51 175 86 32 136a 109 157 115 115 83 128a N. Smirnov J.W. Smith I.M. Snyder G. Sokhrannyi A.A. Solodkov A. Sopczak S. Shrestha E. Sideras Haddad J. Silva B. Simmons S.Yu. Sivoklokov M. Slawinska M. Sessa E. Shabalina P.B. Shatalov Y. Shen C.O. Shimmin J. Shlomi B.D. Schoenrock S. Schramm M. Schumacher H. Schweiger G. Sciolla S.C. Seidel N. Semprini-Cesari A. Sbrizzi B.M. Schachtner U. Sch¨afer D. Scheirich C. Schillo C. Schmitt D. Salek D. Salvatore D. Sampsonidis H. Sandaker D.P.C. Sankey I. Santoyo Castillo G. Savage A. Rozanov Z. Rurikova E.M. R¨uttinger G.F. Rzehorz R. Sadykov T. Saito B. Risti´c S.H. Robertson E. Rocco D. Rodriguez Rodriguez M. Romano L. Roos L.P. Rossi O. Rifki JHEP05(2018)077 , , , , , , , 19 , , , , ,d 32 , 123a 49 , 94a , 60a , 3 , , , , , 161 , 177 166 , 144 47 ,c 22b 124 , 33 103 , , 121 45 , , , , 91 148b , , 147b , 13 , , , , , , , 49 111 32 22a 109 , 99 27 , , , 119 , 157 , 71 , 94b 103 28b 76b 103 94a , , 148a 47 , 77 39 , X. Sun 32 120 22b , , 109 , R. Turra , , 59 , 94a 105 , , V. Vercesi 76a , S. Todt , A. Strubig , J.P. Thomas , 141 95 5 ,at 22a 13 79 32 34b , , H. Ten Kate 43 39 37 , A. Taffard , S. Terzo , L.M. Veloce , T.M. Spieker 4b , T. Trefzger , G. Unal 7 , P. Urquijo , L. Truong 109 144 , E. Thomson 85 155 , M.C. Vetterli 103 , P. Vankov 112 164 , J. Tanaka , A.J. Taylor , K.O.H. Vadla , E.H. Takasugi , S. Sun 172 , T. Tashiro 179 , H. Torres ,c , A. Stabile , M. Swiatlowski , S. Stonjek 146b , M.M. Stanitzki , S.H Stark 109 , P. Steinberg 90 160 72 71 ∗ , Y. Sugaya 107 , 57 , D. Varouchas , S. Valentinetti 58 129 45 118 111 129 , I.I. Tsukerman , Yu.A. Tikhonov , V. Tudorache 56 43 60a 136a 52 , M. Tomoto , S. Strandberg , R. Vuillermet , C. Vittori , F. Thiele , S. Spagnolo , J.H. Vossebeld , N. Venturi ,aq 54a 87 , F. Vazeille 28b 45 88 80 149 109 32 , J. Terron 98 172 , D. Temple , M.F. Tripiana , H. von der Schmitt , J. Taenzer 34b , F. Spettel , T.J. Stevenson , I. Turk Cakir , P.V. Tsiareshka , S. Tapia Araya 157 80 , J. Urban , R. Stroynowski 83 13 45 , C.J. Treado , F. Ukegawa 17 , I. van Vulpen 55 , J. Stark , P. Stolte , S. Todorova-Nova , B. Vachon 175 , M. Villaplana Perez , T. Sumida 122 113 157 118 33 , M. Trovatelli , O.E. Vickey Boeriu , T. Varol 141 , M. Svatos , M. Stegler 144 , A.C. Taylor 4c 28b 159 , S. Suchek 148b , V. Veeraraghavan 130 , L.A. Thomsen , 22b , E. Torrence , R. Takashima , R. Voss 69 42 , A. Vaniachine , , M. Tasevsky , M. Valente , W. Van Den Wollenberg 94a 141 53b 57 , J.C. Vermeulen , , C. Stanescu 56 51 127 27 32 137e 6 , A.A. Talyshev 170 22a 131 148a 170 , R.D. St. Denis 53a 109 148b 88 , M. Venturi , L. Tomlinson , , G. Volpi , B.C. Sowden , A. Tudorache , M. Vreeswijk , K. Uno , J. Strandberg , K. Terashi 131 45 , H. Stenzel 113 76b 130 , D. Sperlich 69 18 , 69 , G.A. Vasquez 62b , A. Vishwakarma , J. Su 130 148a , E.G. Tskhadadze , V. Vacek 80 , G.H. Stark , K. Tackmann 68 , V.O. Tikhomirov 51 , G. Stoicea , D.R. Tovey , S. Suzuki , P. Tas 76a , D.M. Strom 163a 179 145 , J.C-L. Tseng , D. Turgeman , M. Vos , K. Todome 88 , T. Vickey , J. Veatch , P. Teixeira-Dias 51 , H. Takai 57 – 52 – , S. Sultansoy 90 ∗ , M. Villa 88 132 , C. Troncon , 68 88 151 94a 177 , T. Theveneaux-Pelzer 90 , C. Varni 62a 100 , S. Trincaz-Duvoid 155 7 , Y. Tayalati , M. Talby 45 , R. Staszewski , W. Vandelli , Y. Tu 122 163b , B.B. Tannenwald , P. Tornambe 169 , M. Ughetto 162b , R.W. Stanek 179 , 69 32 , D. South 70 , V. Vrba , P. Vokac 59 , Y. Unno , E. Tolley 163a , J. Van Nieuwkoop 69 , D. Su , A.S. Thompson 150 42 128b ,c , D. Ta 6 , S. Terada , M. Spousta 135b , 14 , 91 69 , F. Span`o 19 45 162a 178 91 , J.A. Valls Ferrer , A.T. Vermeulen 111 131 178 5 173 128a , A. Ventura 135a , M. Stoebe 109 , L. Vacavant , J.G. Vasquez , M.E. Stramaglia , V. Tsiskaridze , L. Vigani , F. Touchard , S. St¨arz , I. Vichou , S. Tisserant 69 , I. Ueda 118 134a , K. Vorobev , W. Taylor , B. Tong , R. Str¨ohmer , M.R. Sutton , N. Taiblum , K.W. Tsang 47 , S.J. Thais 13 , S. Turchikhin 16 152 , V.B. Vinogradov , E. Valdes Santurio 84 ,as , E.W. Varnes , Y. Takubo , A. Trofymov 91 60a ,o 179 79 42 , G.F. Tartarelli 22b 131 , R. Tanioka 59 107 , 31 , E.A. Starchenko 152 , O. Stelzer-Chilton 88 , M. Vogel 58 , R.E. Ticse Torres 146b 102 , I.M. Trigger , E. Stanecka , F. Tepel 142 161 32 154 134a 119 10 , N.A. Styles 22a 16 , T. Sykora , A. Vallier 121 , D. Tsybychev 27 17 , F.C. Ungaro , L.A. Spiller , DMS Sultan 120 15 13 , J. Usui , K. Tokushuku 69 32 98 , S. Viel 8 , M. Vanadia 166 146a , T. Vazquez Schroeder , P.D. Thompson , W. Verkerke , P. van Gemmeren 13 122 146a 80 109 , A.M. Soukharev , O. Viazlo , J. Toth , K. Toms , M. Spangenberg , P. Tipton , S. Veneziano 109 , R. Vari 136b , V. Vorobel , K.E. Varvell , A.N. Tuna , 34b , A. Trzupek 140 , A. Straessner ,ar , M.C. Stockton 167c , B. Trocm´e , S. Tarem 8 , E. Tahirovic , S. Tsiskaridze 100 , 8 , A. Tavares Delgado 23 180 , P.T.E. Taylor 9 42 126b , A. Tricoli , P. Strizenec , R. Tanaka , S. Vlachos , S. Stamm 128c , P. Starovoitov , 56 28a 86 , B. Stugu , S. Stapnes , M.G. Vincter , C.J.E. Suster , J.J. Teoh , , G. Usai 145 , H.J. Stelzer , M. Vranjes Milosavljevic , S. Tsuno , G. Unel , L. Val´ery , T. Takeshita 161 , G. Spigo 136a 91 , G. Ucchielli , C. Valderanis 40b 163a 27 50 167a 86 151 , I. Sykora , R.J. Teuscher 115 159 , 151 60a 14 129 16 27 70 109 151 , V.V. Sulin 153 38 81 2 144 , M.J. Tibbetts 126a 170 22a 128a , S. Tok´ar 50 40a 38 130 73 N. Viaux Maira G.H.A. Viehhauser E. Vilucchi I. Vivarelli E. von Toerne N. Vranjes M.C. van Woerden G. Vardanyan A. Vartapetian D. Vazquez Furelos F. Veloso M. Verducci P.M. Tuts A. Undrus P. Urrejola A. Vaidya A. Valero H. van der Graaf E. Torr´oPastor F. Tresoldi W. Trischuk M. Trzebinski N. Tsirintanis V. Tsulaia T.T. Tulbure M. Testa J. Thomas-Wilsker Y. Tian S. Timoshenko J. Tojo L. Tompkins R. Tafirout K. Takeda M. Tanaka S. Tapprogge E. Tassi G.N. Taylor P.K. Teng A.R. Stradling M. Strauss S.A. Stucci M. Suk K. Suruliz S.P. Swift M. Spalla R. Spighi R. Stamen B.S. Stapf P. Staroba B. Stelzer G.A. Stewart R. Soualah JHEP05(2018)077 , , , , , , , 8 ) , c 32 36c 143 35b , 92 ( , , 92 146a 6 , 47 , , , , , 36b 69 103 91 51 , , , J. Yu 92 32 , , 133 ˇ Zeniˇs , , 81 32 68 64 138 , , , , , , B. Zhou , 115 , Z. Wang 31 36b 88 89 , C. Wang 16 , , T. , P. Werner 49 68 , J. Zhang , 151 ,aw 19 67 , Y. Wu , A.S. White 132 148b , X. Zhang , , 119 , D. Zanzi 157 , M. Ziolkowski 52 , T. Xu 75 36a , C. Weiser 13 59 ,au 86 , S. Wahrmund 27 86 148a , A. Wildauer , L. Zwalinski 74 , A. Yamamoto , R. Wolff 36a , Q. Wang 51 , C.G. Zhu , F.J. Wickens 17 , B.M. Waugh , I. Yeletskikh 7 , C.J.S. Young , S. Willocq 159 , D. Zieminska , W-M. Yao 109 , S.A. Weber 75 152 87 , X. Wu 27 93 , O. Zenin 15 , L. Xu 145 177 , H. Zhang 177 , S.D. Worm 176 , W. Wang 145 , A. Washbrook 35a , O.J. Winston , M.D. Werner , R. Zaidan , M. Zinser 139 ,aw , A. Zhemchugov 81 , S. Zambito ,av , T. Yamazaki 23 10 , S. Ye 118 , M. Weirich , R. Zhang 103 , Y. Zhou 36a 36a , A.M. Wharton 150 153 43 157 57 , J. Wang 23 , S. Watts , V. Wallangen , H. Wahlberg , Z. Yang 36c , C. Willis Istanbul Aydin University, Istanbul; 45 140 , D. Xu , C. Young , A. Zibell , S.L. Wu ) 140 143 102 , Q. Zeng b 153 , T.M.H. Wolf 109 ( 98 , M. zur Nedden 33 35c , Y. Yamaguchi 124 , J. Ye 86 , S.W. Weber 169 33 , B.W. Whitmore , Z. Zhao 23 159 , L.A.M. Wiik-Fuchs , N.L. Woods 60a , N. Wermes , G. Zhang ,x , Z. Zinonos , G. Zacharis , W. Wang 39 166 , R. Zhang , A. Zaman , N. Zhou 32 , J. Wang 171 51 42 38 176 36b 3 15 , L. Xia , D.R. Wardrope , M. Wu , F. Winklmeier , Y. Yang 35b 150 , G. Watts , M. Yamatani 92 , R. Zou 30 42 , A. Wolf , J. Weingarten 16 19 70 151 – 53 – , K. Zhukov ,u , N.L. Whallon 64 , S. Williams , J.C. Zeng 22b , 82 , W. Walkowiak 35a 118 124 , K. Yoshihara 41a , J. Wagner-Kuhr , Z. Xi 22a , S. Wenig , Y. Zhao 102 , T. Wang , S.M. Weber , H. Wang , F. Zhang 174 39 , D. Yamaguchi 32 , M. Zhou 43 178 , P. Zhang 18 , D. Whiteson 16 92 , B. Zabinski , H. Yang 153 , K.H. Yau Wong , J. Zalieckas 5 35d 169 , C.P. Ward , V.W.S. Wong 147a , C. Wiglesworth , 34b 45 ,ax 36c , F. Yamane , E. Winkels 90 , S. Zimmermann , B. Weinert 30 5 35a 133 , M.F. Watson 128c , A. Zemla 157 86 , K.W. Wozniak , , X. Zhuang , M. Wobisch , K. Whalen 122 19 , S. Xella , A. Zoccoli 32 , X. Zhao , R. Walker , K. Yorita 122 18 36a 49 145 128a , H. Wang , D. Zhang 75 86 176 , H.H. Williams , T. Wengler 119 , W. Wagner , H. Yang , M.S. Weber 32 , S.M. Wang 176 , M. Zhang , R. White 27 36b , S. Yacoob 23 6 1 24 , I. Yusuff 86 , E. Yatsenko , M. Zhou 36a 23 152 69 43 , M. Wielers , Y. Zhu , N. Zakharchuk , A. Warburton 92 176 , T. Yamanaka 45 ,ak , A.T. Watson , Z. Zhang , J. Walder , H. Wolters , Z. Yan , F. Wang , J. Wotschack , M. Wittgen , T.D. Weston , E. Yildirim , I. Wingerter-Seez , B.M. Wynne 19 , A.R. Weidberg , G. Zemaityte 70 157 , C. Zimmermann , R. Wang 42 , G. Zobernig 132 , D. Zhang , S. Webb 70 6 35d 42 23 , , T. Wenaus 24 19 , P. Wagner 87 ,au 68 83 , Y. Yasu 14 60a , L. Zhang , L. Zhou 11 178 , M.J. White 119 32 33 , J. Zhu , H.G. Wilkens 35a 45 Department of Physics, Ankara University, Ankara; 8 51 36b , B. Yabsley 176 ) 87 , S.P.Y. Yuen 35a a 92 Physics Department, National Technical UniversityDepartment of of Athens, Physics, Zografou, The Greece UniversityInstitute of of Texas Physics, at Azerbaijan Austin, AcademyInstitut Austin of de TX, Sciences, F´ısicad’Altes Energies United Baku, (IFAE), States Azerbaijan Barcelona, The of Spain Barcelona America Institute ofInstitute Science of and Physics, Technology, University ofDepartment Belgrade, for Belgrade, Physics Serbia and Technology, University of Bergen, Bergen, Norway LAPP, CNRS/IN2P3 and Universit´eSavoie Mont Blanc,High Energy Annecy-le-Vieux, Physics France Division, ArgonneDepartment National of Laboratory, Physics, Argonne University IL, ofDepartment United Arizona, of States Tucson Physics, of AZ, The America United UniversityAmerica States of of Texas at America Arlington,Physics Arlington Department, TX, National United and States Kapodistrian of University of Athens, Athens, Greece Department of Physics, University ofPhysics Adelaide, Department, Adelaide, SUNY Australia Albany, AlbanyDepartment NY, of United Physics, States University of of America Alberta, Edmonton AB, Canada Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 67 ( 5 6 7 8 9 1 2 3 4 11 12 13 14 15 10 ˇ Zivkovi´c L. Zhang Y. Zhang C. Zhou H. Zhu N.I. Zimine L. Y.C. Yap E. Yigitbasi J. Yu A.M. Zaitsev C. Zeitnitz D. Zerwas B.T. Winter M.W. Wolter B.K. Wosiek T.R. Wyatt W. Xu S. Yamamoto Y. Yamazaki P.S. Wells M. Wessels A. White W. Wiedenmann F. Wilk J.A. Wilson K. Wakamiya C. Wang R.-J. Wang C. Wanotayaroj P.M. Watkins A.F. Webb J.S. Webster I. Vukotic JHEP05(2018)077 Departamento ) b Electrical Circuits ( Department of ) ) b Dipartimento di b ( ( ) b ( Federal University of Sao ) c ( Department of Physics Engineering, ) School of Physics, Shandong University, b ( ) b ( University Politehnica Bucharest, Bucharest; ) e ( Horia Hulubei National Institute of Physics and ) b ( Instituto de Fisica, Universidade de Sao Paulo, Sao – 54 – ) Physics Department, Tsinghua University, Beijing 100084; d ( ) c ( Istanbul Bilgi University, Faculty of Engineering and Natural Department of Physics, Alexandru Ioan Cuza University of ) ) d ( c Dipartimento di Fisica e Astronomia, Universit`adi Bologna, ( ) b ( Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, ) e ( Department of Physics and Astronomy, Key Laboratory for Particle Physics, National Institute for Research and Development of Isotopic and Molecular ) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland c ) ( ) d ( b ( West University in Timisoara, Timisoara, Romania AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Departamento de F´ısica,Pontificia Universidad Cat´olicade Chile, Santiago; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Transilvania University of Brasov, Brasov; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; INFN Sezione di Bologna; Department of Physics, Bogazici University, Istanbul; Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Chinese Academy of Science (UCAS), Beijing, China ) ) ) ) ) ) ) ) ) ) ) a a d a a a a f a a a Krakow; Institute of Nuclear Physics PolishPhysics Academy Department, of Southern Sciences, Methodist Krakow, University,Physics Dallas Poland Department, TX, University United of States TexasDESY, at of Hamburg Dallas, America and Richardson Zeuthen, TX, Germany United States of America and Cosmology, Shanghai Jiao TongUniversit´eClermont Auvergne, University, Tsung-Dao CNRS/IN2P3, Lee LPC, Institute, Clermont-Ferrand, France Nevis China Laboratory, Columbia University, IrvingtonNiels NY, Bohr United Institute, States University of of America Copenhagen, Kobenhavn, Denmark Fisica, Universit`adella Calabria, Rende, Italy Physics, Nanjing University, Jiangsu; ( University of Science and TechnologyShandong; of China, Anhui; Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics Cavendish Laboratory, University of Cambridge,Department Cambridge, of United Physics, Kingdom Carleton University,CERN, Ottawa Geneva, ON, Switzerland Canada Enrico Fermi Institute, University of Chicago, Chicago IL, Unitedde States F´ısica,Universidad Chile T´ecnicaFederico Santa of Mar´ıa,Valpara´ıso, America Nuclear Engineering, Bucharest; Iasi, Iasi; Technologies, Physics Department, Cluj( Napoca; Departamento de F´ısica,Universidad de Buenos Aires, Buenos Aires, Argentina Department of Physics, Boston University,Department Boston of MA, Physics, United Brandeis States University, Waltham of MA, America United StatesDepartment, of Federal America University of JuizJoao de del Fora Rei (UFJF), (UFSJ), JuizPaulo, Sao de Brazil Joao Fora; del Rei; Physics Department, Brookhaven National Laboratory, Upton NY, United States of America Sciences, Istanbul; Turkey Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia Bologna, Italy Physikalisches Institut, University of Bonn, Bonn, Germany CA, United States ofDepartment America of Physics, Humboldt University,Albert Berlin, Einstein Germany Center forUniversity Fundamental Physics of and Bern, Laboratory Bern, for Switzerland School High of Energy Physics Physics, and Astronomy, University of Birmingham, Birmingham,Gaziantep United University, Gaziantep; Kingdom Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley ( ( ( ( ( ( ( ( ( 42 43 44 45 37 38 39 40 41 36 30 31 32 33 34 35 29 28 25 26 27 21 22 23 24 17 18 19 20 16 JHEP05(2018)077 ) ) b ( b ( ) b ( Department of Physics and ) c ( – 55 – Dipartimento di Fisica, Universit`adi Genova, Genova, Italy ) Dipartimento di Matematica e Fisica, Universit`adel Salento, Lecce, b ( ) b ( INFN Sezione di Lecce; Kirchhoff-Institut f¨urPhysik, Ruprecht-Karls-Universit¨atHeidelberg, Heidelberg; Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; INFN Sezione di Genova; ) ) ) ) ) a a a a a Louisiana Tech University, Ruston LA,Laboratoire United de States Physique of Nucl´eaireet America deCNRS/IN2P3, Hautes Paris, Energies, France UPMC andFysiska Universit´eParis-Diderot institutionen, and Lunds universitet, Lund,Departamento Sweden de Fisica Teorica C-15,Institut Universidad f¨urPhysik, Universit¨atMainz, Autonoma Mainz, de Germany Madrid, Madrid, Spain Oliver Lodge Laboratory, University ofDepartment Liverpool, of Liverpool, Experimental United Particle Physics, Kingdom University JoˇzefStefan of Institute Ljubljana, and Ljubljana, Department Slovenia School of of Physics, Physics and Astronomy,Department Queen of Mary Physics, University Royal of HollowayDepartment University London, of of London, Physics London, United and Surrey, Kingdom Astronomy, United University Kingdom College London, London, United Kingdom Research Center for Advanced ParticleFukuoka, Japan Physics and Department ofInstituto Physics, de Kyushu F´ısicaLa Plata, University, Universidad NacionalPhysics de Department, La Lancaster Plata University, Lancaster, and United CONICET, La Kingdom Plata, Argentina Italy University of Iowa, Iowa CityDepartment IA, of United Physics States and of Astronomy,Joint America Iowa Institute State for University, Nuclear Ames Research,KEK, IA, JINR High United Dubna, Energy States Dubna, Accelerator of Russia Graduate Research America Organization, School Tsukuba, of Japan Science,Faculty Kobe of University, Science, Kobe, Kyoto Japan University,Kyoto Kyoto, University Japan of Education, Kyoto, Japan Department of Physics, The UniversityInstitute of for Hong Advanced Kong, Study, The HongBay, Hong Kowloon, Kong; Kong Hong University Kong, of China Department Science of and Physics, Technology, National Clear TsingDepartment Water Hua of University, Physics, Taiwan, Indiana Taiwan University,Institut Bloomington f¨urAstro- und IN, Teilchenphysik, United Leopold-Franzens-Universit¨at,Innsbruck, Austria States of America Grenoble, France Laboratory for Particle Physics andof Cosmology, America Harvard University, Cambridge MA, United States Physikalisches Institut, Ruprecht-Karls-Universit¨atHeidelberg, Heidelberg, Germany Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan High Energy Physics Institute, TbilisiII State Physikalisches Institut, University, Tbilisi, Justus-Liebig-Universit¨atGiessen, Giessen, Georgia SUPA Germany - School of PhysicsII and Physikalisches Astronomy, Institut, University Georg-August-Universit¨at,G¨ottingen,Germany ofLaboratoire Glasgow, de Glasgow, Physique United Subatomique Kingdom et de Cosmologie, Universit´eGrenoble-Alpes, CNRS/IN2P3, Institut f¨urKern- und Teilchenphysik, Technische Universit¨atDresden,Department Dresden, of Germany Physics, Duke University,SUPA Durham - NC, School United of States PhysicsINFN of and e America Astronomy, Laboratori University Nazionali of undFakult¨atf¨urMathematik di Edinburgh, Physik, Frascati, Edinburgh, Albert-Ludwigs-Universit¨at,Freiburg, Frascati, Germany United Italy Kingdom Departement de Physique Nucleaire et Corpusculaire, Geneva, Universit´ede Gen`eve, Switzerland Lehrstuhl f¨urExperimentelle Physik IV, Technische Universit¨atDortmund, Dortmund, Germany ( ( ( ( ( 83 84 85 86 77 78 79 80 81 82 73 74 75 76 66 67 68 69 70 71 72 63 64 65 59 60 61 62 54 55 56 57 58 48 49 50 51 52 53 46 47 JHEP05(2018)077 Faculdade ) b ( – 56 – Dipartimento di Fisica, Universit`adi Milano, Milano, Italy Dipartimento di Fisica, Universit`adi Napoli, Napoli, Italy Dipartimento di Fisica, Universit`adi Pavia, Pavia, Italy ) ) b Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, Italy b ) ( ( b ) ( b ( INFN Sezione di Pisa; Experimental F´ısica Laborat´oriode de - Instrumenta¸c˜aoe Part´ıculas LIP, Lisboa; INFN Sezione di Pavia; INFN Sezione di Napoli; INFN Sezione di Milano; ) ) ) ) ) a a a a a National Research Centre “Kurchatov Institute”Institute, B.P.Konstantinov St. Petersburg Nuclear Petersburg, Physics Russia Department of Physics and Astronomy,America University of Pittsburgh, Pittsburgh PA, United States of LAL, Univ. Paris-Sud, CNRS/IN2P3,Graduate Orsay, Universit´eParis-Saclay, France School of Science,Department Osaka University, of Osaka, Physics, Japan University ofDepartment Oslo, of Oslo, Physics, Norway Oxford University, Oxford, United Kingdom Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America Faculty of Science, Okayama University, Okayama,Homer Japan L. Dodge DepartmentUnited of States Physics and of Astronomy, America UniversityDepartment of of Oklahoma, Physics, Norman Oklahoma OK, State RCPTM,Palack´yUniversity, Olomouc, University, Stillwater Czech OK, Republic UnitedCenter States for of High America Energy Physics, University of Oregon, Eugene OR, United States of America Nijmegen/Nikhef, Nijmegen, Netherlands Nikhef National Institute forNetherlands Subatomic Physics and University ofDepartment Amsterdam, of Amsterdam, Physics, Northern IllinoisBudker University, Institute DeKalb of IL, Nuclear United Physics,Department States SB of of RAS, Physics, America New Novosibirsk, Russia YorkOhio University, State New University, York Columbus NY, OH, United United States States of of America America Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science and Kobayashi-Maskawa Institute, Nagoya University,Department Nagoya, of Japan Physics and Astronomy,of University America of New Mexico,Institute Albuquerque for NM, Mathematics, United Astrophysics States and Particle Physics, Radboud University P.N. Lebedev Physical Institute ofInstitute the for Russian Theoretical Academy and ofNational Experimental Sciences, Research Physics Moscow, Nuclear (ITEP), Russia University Moscow, MEPhI, Russia D.V. Moscow, Skobeltsyn Russia Institute ofRussia Nuclear Physics, Germany M.V. M¨unchen, Lomonosov Ludwig-Maximilians-Universit¨atM¨unchen, MoscowFakult¨atf¨urPhysik, State University, Moscow, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), Germany M¨unchen, B.I. Stepanov Institute of Physics,Belarus National Academy of SciencesResearch of Institute Belarus, for Minsk, Nuclear Republic ProblemsBelarus of of Byelorussian State University,Group Minsk, of Republic Particle of Physics, University of Montreal, Montreal QC, Canada CPPM, Aix-Marseille Universit´eand CNRS/IN2P3, Marseille,Department France of Physics, University ofDepartment Massachusetts, of Amherst Physics, MA, McGill United University,School Montreal States of QC, of Physics, Canada America University ofDepartment Melbourne, of Victoria, Physics, The Australia UniversityDepartment of of Michigan, Physics Ann and Arbor Astronomy,of Michigan MI, America State United University, States East of Lansing America MI, United States School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom ( ( ( ( ( 99 95 96 97 98 94 89 90 91 92 93 87 88 126 127 128 119 120 121 122 123 124 125 114 115 116 117 118 109 110 111 112 113 104 105 106 107 108 100 101 102 103 JHEP05(2018)077 ) b ( Facult´edes ) Departamento de e ( ) e ( Department of Physics, ) b ( The Oskar Klein Centre, Stockholm, Sweden ) b ( Department of Physics, University of Coimbra, School of Physics, University of the Witwatersrand, ) c ) ( c ( Dipartimento di Fisica, Universit`adi Roma Tor – 57 – Departamento de Fisica Teorica y del Cosmos, ) b ) ( f ( Dep Fisica and CEFITEC of Faculdade de Ciencias e Centre National de l’Energie des Sciences Techniques ) g ) ( b Dipartimento di Matematica e Fisica, Universit`aRoma Tre, ( ) b ( Dipartimento di Fisica, Sapienza Universit`adi Roma, Roma, Italy ) b ( Facult´edes Sciences Semlalia, Universit´eCadi Ayyad, LPHEA-Marrakech; ) c ( Centro de F´ısicaNuclear da Universidade de Lisboa, Lisboa; ) d ( Department of Physics, Stockholm University; Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Department of Physics, University of Cape Town, Cape Town; Facult´edes Sciences Ain Chock, R´eseauUniversitaire de Physique des Hautes Energies - INFN Sezione di Roma; INFN Sezione di Roma Tor Vergata; INFN Sezione di Roma Tre; Facult´edes Sciences, Universit´eMohamed Premier and LPTPM, Oujda; ) ) ) ) ) ) ) ) a a a a d a a a Department of Physics, Aristotle UniversityInternational of Center Thessaloniki, for Thessaloniki, Elementary Particle Greece Tokyo, Physics Tokyo, Japan and Department ofGraduate Physics, School The of University Science of Department and of Technology, Tokyo Physics, Metropolitan Tokyo University, Institute Tokyo,Tomsk Japan of State Technology, University, Tokyo, Tomsk, Japan Russia Department of Physics and Astronomy,School University of of Physics, Sussex, University Brighton, ofInstitute United Sydney, of Kingdom Sydney, Physics, Australia Academia Sinica,Department of Taipei, Taiwan Physics, Technion: IsraelRaymond Institute and of Beverly Sackler Technology, Haifa, SchoolIsrael Israel of Physics and Astronomy, Tel Aviv University, Tel Aviv, University of Johannesburg, Johannesburg; Johannesburg, South Africa Physics Department, Royal Institute ofDepartments Technology, of Stockholm, Physics Sweden & AstronomyUnited and States Chemistry, of Stony America Brook University, Stony Brook NY, Department Physik, Universit¨atSiegen, Siegen, Germany Department of Physics, Simon FraserSLAC University, National Burnaby Accelerator BC, Laboratory, Canada Stanford CA, United States ofDepartment America of Subnuclear Physics, InstituteSciences, of Kosice, Experimental Slovak Republic Physics of the Slovak Academy of (Commissariat `al’Energie Atomique et auxSanta Energies Cruz Alternatives), Institute Gif-sur-Yvette, for France ParticleUnited Physics, States University of of America CaliforniaDepartment Santa of Cruz, Physics, Santa University Cruz ofDepartment CA, Washington, of Seattle Physics WA, and United Astronomy,Department States University of of of Physics, America Sheffield, Shinshu Sheffield, University, Nagano, United Japan Kingdom Roma, Italy Universit´eHassan II, Casablanca; Nucleaires, Rabat; ( sciences, Universit´eMohammed V, Rabat, Morocco DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay State Research Center Institute forParticle High Physics Department, Energy Rutherford Physics Appleton (Protvino), Laboratory, NRC Didcot, KI, United Russia Kingdom Vergata, Roma, Italy Coimbra; Fisica, Universidade do Minho, Braga; Universidad de Granada, Granada; Tecnologia, Universidade Nova de Lisboa,Institute Caparica, of Portugal Physics, Academy ofCzech Sciences Technical University of in the Prague, CzechCharles Praha, Republic, University, Czech Faculty Praha, of Republic Czech Mathematics Republic and Physics, Prague, Czech Republic de Ciˆencias,Universidade de Lisboa, Lisboa; ( ( ( ( ( ( ( 157 158 159 160 151 152 153 154 155 156 148 149 150 143 144 145 146 147 139 140 141 142 137 138 132 133 134 135 136 129 130 131 JHEP05(2018)077 Dipartimento ) c ( ICTP, Trieste; ) b ( – 58 – Department of Physics and Astronomy, York University, Toronto ) b ( University of Trento, Trento, Italy ) b ( INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; INFN-TIFPA; TRIUMF, Vancouver BC; ) ) ) a a a Also at Institute ofAlso Particle Physics at (IPP), Horia Canada HulubeiAlso National at Institute Department of of Physics Physics,Russia and St. Nuclear Engineering, Petersburg Bucharest, StateAlso Romania Polytechnical at University, St. Borough Petersburg, ofUnited Manhattan States Community College, of City America University of New York, New York City, Also at Departamento de FisicaPortugal e Astronomia, Faculdade deAlso Ciencias, at Universidade Tomsk do State Porto, University,University, Tomsk, Dolgoprudny, and Russia Moscow InstituteAlso of at Physics The and Collaborative Technology State Also Innovation Center at of Universita Quantum di Matter Napoli (CICQM), Parthenope, Beijing, Napoli, China Italy States of America Also at Physics Department, An-NajahAlso at National Department University, Nablus, of Palestine Physics,Also California at State Department University, of Fresno Physics,Also CA, University at United of II States Fribourg, Physikalisches of Fribourg, Institut,Also America Switzerland Georg-August-Universit¨at,G¨ottingen,Germany at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain Academia Sinica Grid Computing, Institute of Physics, AcademiaAlso Sinica, at Taipei, Taiwan Department of Physics,Also King’s at College Institute London, of London,Also Physics, United Azerbaijan at Kingdom Academy Novosibirsk State of University, Sciences,Also Novosibirsk, Baku, at Russia Azerbaijan TRIUMF, Vancouver BC,Also Canada at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United autafuMteai undFakult¨atf¨urMathematik Naturwissenschaften, Fachgruppe Physik, BergischeWuppertal, Universit¨at Wuppertal, Germany Department of Physics, Yale University,Yerevan New Physics Haven Institute, CT, Yerevan, United Armenia Centre States de of Calcul America de l’Institut(IN2P3), National Villeurbanne, de France Physique Nucl´eaireet de Physique des Particules Department of Physics, University ofDepartment British of Columbia, Physics Vancouver and BC, Astronomy,Department Canada University of of Physics, Victoria, University Victoria ofWaseda BC, Warwick, University, Tokyo, Coventry, Canada United Japan Kingdom Department of Particle Physics, TheDepartment Weizmann of Institute Physics, of University Science, und ofFakult¨atf¨urPhysik Rehovot, Astronomie, Wisconsin, Israel Julius-Maximilians-Universit¨at,W¨urzburg,Germany Madison WI, United States of America America di Chimica, Fisica eDepartment Ambiente, Universit`adi of Udine, Physics Udine, and Italy Astronomy,Department University of of Physics, Uppsala, University Uppsala, ofInstituto Sweden Illinois, de Urbana Fisica IL, Corpuscular United (IFIC), States Centro of Mixto America Universidad de Valencia - CSIC, Spain ON, Canada Faculty of Pure and Appliedand Sciences, Engineering, and University Center of for Tsukuba,Department Integrated Tsukuba, of Research Japan Physics in and Fundamental Astronomy,Department Science Tufts of University, Medford Physics and MA, Astronomy, United University States of of California America Irvine, Irvine CA, United States of Department of Physics, University of Toronto, Toronto ON, Canada ( ( ( l i b c j e q r o p d g a k f h n m 182 178 179 180 181 172 173 174 175 176 177 167 168 169 170 171 163 164 165 166 161 162 JHEP05(2018)077 – 59 – Also at Institute ofAlso Physics, Academia at Sinica, University of Taipei, Taiwan Malaya,Deceased Department of Physics, Kuala Lumpur, Malaysia Also at Department of Physics,Also Stanford at University, Institute Stanford for CA,Hungary Particle United and States Nuclear of Physics, America WignerAlso Research at Centre Giresun for University, Faculty Physics,Also of Budapest, at Engineering, CPPM, Turkey Aix-MarseilleAlso Universit´eand CNRS/IN2P3, at Marseille, Department France of Physics, Nanjing University, Jiangsu, China Also at Institut deTechnology, F´ısicad’Altes Barcelona, Energies Spain (IFAE), The BarcelonaAlso Institute at of School Science of and Also Physics, Sun at Yat-sen Institute University, for Guangzhou,Sciences, Nuclear China Sofia, Research and Bulgaria NuclearAlso Energy at (INRNE) Faculty of of the Physics,Also Bulgarian M.V.Lomonosov at Academy Moscow National of State Research University, Nuclear Moscow, University Russia MEPhI, Moscow, Russia Also at Departamento de FisicaAlso Teorica at y Department del of Cosmos, Physics,America Universidad California de State Granada, University, Granada, SacramentoAlso CA, Portugal at United Moscow States Institute of ofAlso Physics at and Departement Technology de State PhysiqueSwitzerland University, Nucleaire Dolgoprudny, Russia et Corpusculaire, Geneva, Universit´ede Gen`eve, America Also at Institute ofAlso Theoretical at Physics, Ilia CERN, State Geneva, Switzerland Also University, Tbilisi, at Georgia Georgian Technical UniversityAlso (GTU),Tbilisi, at Georgia Ochadai Academic Production,Also at Ochanomizu University, Manhattan Tokyo, College, Japan Also New at York NY, The United City States College of of America New York, New York NY, United States of America Also at LAL, Univ.Also Paris-Sud, at CNRS/IN2P3, Graduate Orsay, Universit´eParis-Saclay, France SchoolAlso of at Science, und Fakult¨atf¨urMathematik Osaka Physik, University, Osaka, Albert-Ludwigs-Universit¨at,Freiburg, Germany Also Japan at Institute forNijmegen/Nikhef, Mathematics, Nijmegen, Astrophysics and Netherlands Particle Physics,Also Radboud at University Department of Physics, The University of Texas at Austin, Austin TX, United States of Greece Also at Centre for HighAfrica Performance Computing, CSIR Campus,Also Rosebank, at Cape Louisiana Tech Town, University, South Also Ruston at LA, Institucio United Catalana StatesAlso de of at Recerca America Department i of Estudis Physics,America Avancats, The ICREA, University Barcelona, of Spain Michigan, Ann Arbor MI, United States of Also at Department of Financial and Management Engineering, University of the Aegean, Chios, t s z ∗ v y x u w al ai at ab ac aj as ae aq ar ao ap ad ag av aa ak ax af ah au an aw am View publication statsView publication stats