Conformal Gravity and Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SOME PROGRESS in CONFORMAL GEOMETRY Sun-Yung A. Chang, Jie Qing and Paul Yang Dedicated to the Memory of Thomas Branson 1. Confo
SOME PROGRESS IN CONFORMAL GEOMETRY Sun-Yung A. Chang, Jie Qing and Paul Yang Dedicated to the memory of Thomas Branson Abstract. In this paper we describe our current research in the theory of partial differential equations in conformal geometry. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the σ2-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes. 1. Conformal Gap and finiteness Theorem for a class of closed 4-manifolds 1.1 Introduction Suppose that (M 4; g) is a closed 4-manifold. It follows from the positive mass theorem that, for a 4-manifold with positive Yamabe constant, σ dv 16π2 2 ≤ ZM and equality holds if and only if (M 4; g) is conformally equivalent to the standard 4-sphere, where 1 1 σ [g] = R2 E 2; 2 24 − 2j j R is the scalar curvature of g and E is the traceless Ricci curvature of g. This is an interesting fact in conformal geometry because the above integral is a conformal invariant like the Yamabe constant. Typeset by AMS-TEX 1 2 CONFORMAL GEOMETRY One may ask, whether there is a constant 0 > 0 such that a closed 4-manifold M 4 has to be diffeomorphic to S4 if it admits a metric g with positive Yamabe constant and σ [g]dv (1 )16π2: 2 g ≥ − ZM for some < 0? Notice that here the Yamabe invariant for such [g] is automatically close to that for the round 4-sphere. -
Conformal Symmetry in Field Theory and in Quantum Gravity
universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals). -
What Can We Learn from Shape Dynamics? International Loop Quantum Gravity Seminar
What can we learn from shape dynamics? International Loop Quantum Gravity Seminar Tim A. Koslowski University of New Brunswick, Fredericton, NB, Canada November 12, 2013 Tim A. Koslowski (UNB) What can we learn from shape dynamics? November 12, 2013 1 / 19 Outline 1 Motivation from 2+1 diemsnional qunatum gravity to consider conformal evolution as fundamental 2 Conformal evolution is different from spacetime (i.e. abandon spacetime) 3 Generic dynamical emergence of spacetime in the presence of matter (i.e. regain spacetime) Tim A. Koslowski (UNB) What can we learn from shape dynamics? November 12, 2013 2 / 19 Introduction and Motivation Tim A. Koslowski (UNB) What can we learn from shape dynamics? November 12, 2013 3 / 19 Motivation Canonical metric path integral in 2+1 (only known metric path integral) ab p necessary: 2+1 split and CMC gauge condition gabπ − t g = 0 R 2 ab R ab a pπ c i dtd x(_gabπ −S(N)−H(ξ)) Z = [dgab][dπ ][dN][dξ ]δ[ g − t]δ[F ] det[FP ]e R 2 A R A i dtd x(_τAp −Vo(τ;p;t)) = [dτA][dp ]e [Carlip: CQG 12 (1995) 2201, Seriu PRD 55 (1997) 781] where: τA are Teichm¨ullerparameters, Vo(τ; p; t) denotes on-shell volume, which depends explicitly on time t ) QM on Teichm¨ullerspace, phys. Hamilt. Vo(τ; p; t) [Moncrief: JMP 30 (1989) 2907] Fradkin-Vilkovisky theorem: [cf. Henneaux/Teitelboim: \Quantization of Gauge Systems"] \Partition function depends on gauge fixing cond. only through the gauge equivalence class of gauge fixing conditions." for a discussion and some examples of non-equivalence [see Govaerts, Scholtz: J.Phys. -
Non-Linear Elliptic Equations in Conformal Geometry, by S.-Y
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 44, Number 2, April 2007, Pages 323–330 S 0273-0979(07)01136-6 Article electronically published on January 5, 2007 Non-linear elliptic equations in conformal geometry, by S.-Y. Alice Chang, Z¨urich Lectures in Advanced Mathematics, European Mathematical Society, Z¨urich, 2004, viii+92 pp., US$28.00, ISBN 3-03719-006-X A conformal transformation is a diffeomorphism which preserves angles; the differential at each point is the composition of a rotation and a dilation. In its original sense, conformal geometry is the study of those geometric properties pre- served under transformations of this type. This subject is deeply intertwined with complex analysis for the simple reason that any holomorphic function f(z)ofone complex variable is conformal (away from points where f (z) = 0), and conversely, any conformal transformation from one neighbourhood of the plane to another is either holomorphic or antiholomorphic. This provides a rich supply of local conformal transformations in two dimensions. More globally, the (orientation pre- serving) conformal diffeomorphisms of the Riemann sphere S2 are its holomorphic automorphisms, and these in turn constitute the non-compact group of linear frac- tional transformations. By contrast, the group of conformal diffeomorphisms of any other compact Riemann surface is always compact (and finite when the genus is greater than 1). Implicit here is the notion that a Riemann surface is a smooth two-dimensional surface together with a conformal structure, i.e. a fixed way to measure angles on each tangent space. There is a nice finite dimensional structure on the set of all inequivalent conformal structures on a fixed compact surface; this is the starting point of Teichm¨uller theory. -
Weyl Gauge-Vector and Complex Dilaton Scalar for Conformal Symmetry and Its Breaking
1 Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking Hans C. Ohanian1 Abstract Instead of the scalar “dilaton” field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge- vector, in accord with Weyl’s original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than mP by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson. Keywords Quantum gravity • Conformal invariance • Spontaneous symmetry breaking •Weyl length transport Publication history First arXiv publication [v1] 30 January 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s10714-016-2023-8 and in General Relativity and Gravitation, March 2016, 48:25. 1 Introduction Modifications of Einstein’s gravitational theory that incorporate local conformal symmetry—that is, invariance 2 (x ) under the transformation g( x ) e g ( x ) , where ()x is an arbitrary real function—have been exploited in attempts at the solution of various of theoretical problems, such as renormalization of the stress tensor, renormalization of quantum gravity, quantum mechanics of black holes, analytic solutions and geodesic completeness in the early universe, and the dynamics that lead to inflation by symmetry breaking. -
Conformally Invariant Equations for Graviton 50 5.1 the Conformally Invariant System of Conformal Degree 1
Conformally Invariant Equations for Graviton Mohsen Fathi Department of Physics, Tehran Central Branch Islamic Azad Univeristy arXiv:1210.3436v3 [physics.gen-ph] 12 Nov 2012 A thesis submitted for the Master degree Master of Science in Physics Tehran, Winter 2010 I am grateful to my supervisor Dr. Mohammad Reza Tanhayi for the helps, supports and scientific training, during this work and thereafter. Abstract Recent astrophysical data indicate that our universe might currently be in a de Sitter (dS) phase. The importance of dS space has been primarily ignited by the study of the inflationary model of the universe and the quantum gravity. As we know Einstein’s theory of gravitation (with a nonzero cosmological constant) can be interpreted as a theory of a metric field; that is, a symmetric tensor field of rank-2 on a fixed de Sitter back- ground. It has been shown the massless spin-2 Fierz-Pauli wave equation (or the linearized Einstein equation) is not conformally invariant. This result is in contrary with what we used to expect for massless theories. In this thesis we obtain conformally invariant wave equation for the massless spin-2 in the dS space. This study is motivated by the belief that confor- mal invariance may be the key to a future theory of quantum gravity. Contents Introduction 1 1 The Lorentz and the conformal groups, and the concept of invari- ance 3 1.1 Grouptheory ............................... 3 1.1.1 Orthogonalgroups ........................ 4 1.1.2 Rotationgroups.......................... 5 1.2 Invarianceunderagroupaction . 7 1.2.1 Invarianceofthelawsofphysics. 7 1.3 TheLorentzgroup ............................ 8 1.4 Theconformalgroup .......................... -
Shape Dynamics
Shape Dynamics Tim A. Koslowski Abstract Barbour’s formulation of Mach’s principle requires a theory of gravity to implement local relativity of clocks, local relativity of rods and spatial covariance. It turns out that relativity of clocks and rods are mutually exclusive. General Relativity implements local relativity of clocks and spatial covariance, but not local relativity of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory that is locally equivalent to General Relativity, implements local relativity of rods and spatial covariance and how a BRST formulation, which I call Doubly General Relativity, implements all of Barbour’s principles. 1 Introduction A reflection on Mach’s principle lead Barbour to postulate that rods and spatial frames of reference should be locally determined by a procedure that he calls “best matching,” while clocks should be locally determined by what he calls “objective change.” (For more, see [1].) More concretely, Barbour’s principles postulate lo- cal time reparametrization invariance, local spatial conformal invariance and spatial covariance. The best matching algorithm for spatial covariance and local spatial conformal invariance turns out to be equivalent to the imposition of linear diffeo- morphism and conformal constraints Z Z 3 ab 3 H(x) = d xp (Lx g)ab; C(r) = d xr p; (1) S S Tim A. Koslowski Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, Canada New address: Department of Mathematics and Statistics, University of New Brunswick Fredericton, New Brunswick E3B 5A3, Canada e-mail: [email protected] 1 2 Tim A. -
WHAT IS Q-CURVATURE? 1. Introduction Throughout His Distinguished Research Career, Tom Branson Was Fascinated by Con- Formal
WHAT IS Q-CURVATURE? S.-Y. ALICE CHANG, MICHAEL EASTWOOD, BENT ØRSTED, AND PAUL C. YANG In memory of Thomas P. Branson (1953–2006). Abstract. Branson’s Q-curvature is now recognized as a fundamental quantity in conformal geometry. We outline its construction and present its basic properties. 1. Introduction Throughout his distinguished research career, Tom Branson was fascinated by con- formal differential geometry and made several substantial contributions to this field. There is no doubt, however, that his favorite was the notion of Q-curvature. In this article we outline the construction and basic properties of Branson’s Q-curvature. As a Riemannian invariant, defined on even-dimensional manifolds, there is apparently nothing special about Q. On a surface Q is essentially the Gaussian curvature. In 4 dimensions there is a simple but unrevealing formula (4.1) for Q. In 6 dimensions an explicit formula is already quite difficult. What is truly remarkable, however, is how Q interacts with conformal, i.e. angle-preserving, transformations. We shall suppose that the reader is familiar with the basics of Riemannian differ- ential geometry but a few remarks on notation are in order. Sometimes, we shall write gab for a metric and ∇a for the corresponding connection. Let us write Rab and R for the Ricci and scalar curvatures, respectively. We shall use the metric to ‘raise and lower’ indices in the usual fashion and adopt the summation convention whereby one implicitly sums over repeated indices. Using these conventions, the Laplacian is ab a the differential operator ∆ ≡ g ∇a∇b = ∇ ∇a. A conformal structure on a smooth manifold is a metric defined only up to smoothly varying scale. -
The Wave Equation on Asymptotically Anti-De Sitter Spaces
THE WAVE EQUATION ON ASYMPTOTICALLY ANTI-DE SITTER SPACES ANDRAS´ VASY Abstract. In this paper we describe the behavior of solutions of the Klein- ◦ Gordon equation, (g + λ)u = f, on Lorentzian manifolds (X ,g) which are anti-de Sitter-like (AdS-like) at infinity. Such manifolds are Lorentzian ana- logues of the so-called Riemannian conformally compact (or asymptotically hyperbolic) spaces, in the sense that the metric is conformal to a smooth Lorentzian metricg ˆ on X, where X has a non-trivial boundary, in the sense that g = x−2gˆ, with x a boundary defining function. The boundary is confor- mally time-like for these spaces, unlike asymptotically de Sitter spaces studied in [38, 6], which are similar but with the boundary being conformally space- like. Here we show local well-posedness for the Klein-Gordon equation, and also global well-posedness under global assumptions on the (null)bicharacteristic flow, for λ below the Breitenlohner-Freedman bound, (n − 1)2/4. These have been known under additional assumptions, [8, 9, 18]. Further, we describe the propagation of singularities of solutions and obtain the asymptotic behavior (at ∂X) of regular solutions. We also define the scattering operator, which in this case is an analogue of the hyperbolic Dirichlet-to-Neumann map. Thus, it is shown that below the Breitenlohner-Freedman bound, the Klein-Gordon equation behaves much like it would for the conformally related metric,g ˆ, with Dirichlet boundary conditions, for which propagation of singularities was shown by Melrose, Sj¨ostrand and Taylor [25, 26, 31, 28], though the precise form of the asymptotics is different. -
On the Axioms of Causal Set Theory
On the Axioms of Causal Set Theory Benjamin F. Dribus Louisiana State University [email protected] November 8, 2013 Abstract Causal set theory is a promising attempt to model fundamental spacetime structure in a discrete order-theoretic context via sets equipped with special binary relations, called causal sets. The el- ements of a causal set are taken to represent spacetime events, while its binary relation is taken to encode causal relations between pairs of events. Causal set theory was introduced in 1987 by Bombelli, Lee, Meyer, and Sorkin, motivated by results of Hawking and Malament relating the causal, conformal, and metric structures of relativistic spacetime, together with earlier work on discrete causal theory by Finkelstein, Myrheim, and 't Hooft. Sorkin has coined the phrase, \order plus number equals geometry," to summarize the causal set viewpoint regarding the roles of causal structure and discreteness in the emergence of spacetime geometry. This phrase represents a specific version of what I refer to as the causal metric hypothesis, which is the idea that the properties of the physical universe, and in particular, the metric properties of classical spacetime, arise from causal structure at the fundamental scale. Causal set theory may be expressed in terms of six axioms: the binary axiom, the measure axiom, countability, transitivity, interval finiteness, and irreflexivity. The first three axioms, which fix the physical interpretation of a causal set, and restrict its \size," appear in the literature either implic- itly, or as part of the preliminary definition of a causal set. The last three axioms, which encode the essential mathematical structure of a causal set, appear in the literature as the irreflexive formula- tion of causal set theory. -
The Language of Differential Forms
Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects. -
Emergent Spacetimes
Emergent spacetimes Silke Christine Edith Weinfurtner Department of Mathematics, Statistics and Computer Science — Te Kura Tatau arXiv:0711.4416v1 [gr-qc] 28 Nov 2007 Thesis submitted for the degree of Doctor of Philosophy at the Victoria University of Wellington. In Memory of Johann Weinfurtner Abstract In this thesis we discuss the possibility that spacetime geometry may be an emergent phenomenon. This idea has been motivated by the Analogue Gravity programme. An “effective gravitational field” dominates the kinematics of small perturbations in an Analogue Model. In these models there is no obvious connection between the “gravitational” field tensor and the Einstein equations, as the emergent spacetime geometry arises as a consequence of linearising around some classical field. After a brief survey of the most relevant literature on this topic, we present our contributions to the field. First, we show that the spacetime geometry on the equatorial slice through a rotating Kerr black hole is formally equivalent to the geometry felt by phonons entrained in a rotating fluid vortex. The most general acoustic geometry is compatible with the fluid dynamic equations in a collapsing/ ex- panding perfect-fluid line vortex. We demonstrate that there is a suitable choice of coordinates on the equatorial slice through a Kerr black hole that puts it into this vortex form; though it is not possible to put the entire Kerr spacetime into perfect-fluid “acoustic” form. We then discuss an analogue spacetime based on the propagation of excitations in a 2-component Bose–Einstein condensate. This analogue spacetime has a very rich and complex structure, which permits us to provide a mass-generating mechanism for the quasi-particle excitations.