Twinning and Epitaxial Growth of Taaffeite-Type Modulated Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amber with Mite Inclusion
Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula The purpose of this new quarterly column in Gems & may seem elusive, even daunting. Continual practice, care- Gemology is to encourage the appreciation of inclusions ful observation, and patience will refine both technique and in forensic gemology and to help build the observational interpretive prowess for both new and experienced inclu- skill set of the practicing gemologist. By providing concise sionists. Observation through the microscope serves as the information and vividly clear photomicrographs and pho- very foundation for many conclusions drawn on a speci- tomacrographs of new or otherwise interesting inclusion men. This can include identification, treatment detection, specimens, the column aims to narrow the knowledge gap separation of natural and synthetic materials, and geo- between advanced inclusionists and gemologists working graphic origin—even secrets of a gem’s genesis and the se- in mainstream general practice. crets of the earth’s depths may ultimately be revealed. The micro-world of gems lies at the very core of gemol- In building proficiency of the micro-world through this ogy. Sometimes its nature contributes to the allure of a column, readers will also expand their personal knowledge gem, as is the case with such coveted gems as sunstones, base and ability with a microscope. Mastery of microscopy, star sapphires, and cat’s-eye chrysoberyls. At other times combined with at least a basic grasp of mineralogy, is es- that world may seem a dreadful distraction to an otherwise sential for understanding the nature of gems and the geo- beautiful, marketable specimen. -
Taaffeite, a New Beryllium Mineral, Found As a Cut Gem- Stone.I
765 Taaffeite, a new beryllium mineral, found as a cut gem- stone.I By B. W. ANDERSON,B.Sc., F.C.S., C. J. PAYNE, B.Sc. Laboratory of the Diamond, Pearl, and Precious Stone Trade Section of the London Chamber of Commerce. and G. F. CLARINGBULL,B.Sc., Ph.D., F.G.S. With microchemical analysis by M. H. HEY, M.A., D.Sc. Department of Mineralogy, British Museum. [Read June 7, 1951.] ------ N October 1945 Count Taaffe,2 a brilliant if unorthodox Dublin I gemmologist, in the course of examining a motley collection of gem- stones, came across a small mauve stone which puzzled him greatly. The stone had the appearance, and most of the characters, of spinel, but afforded clear evidence of double refraction. As recounted below, this stone was later found to belong to an entirely new mineral species-the only c~se hitherto known where a mineral has been first encountered as a faceted gem. Since the precise circumstances of such a discovery have both human and technical interest, it seemed best to obtain from Count Taaffe his own account of the event. This is accordingly given below before pro- ceeding to the more formal presentation of the data on the new mineral, which has been named taaffeite in honour of its discoverer. On one of my rounds in search of gems I came to Mr. Robert Dobbie, watchmaker and working jeweller in Fleet Street, Dublin; he allowed me in his genial way to go through all his boxes in which he kept stones, to pick out any that were real-most of them were glass-and to make him an offer for them. -
New Mineral Names
NEW MINERAL NAMES Ilarkerite C. E. T[,rnv, The zoned contact-skarns of the Broadford area, Skye: a study of boron- fluorine metasomatism in dolomites: Mineralog. Mag ,29, 621-666 (1951). Crrurcar.: Analysis by H. C. G. Vincent gave SiO: 14.17, BzOa7.77, AlzOt 2.84, FezOr 0.85, FeO 0.46, MnO 0.02, MgO 11.15, CaO 46.23, COz 14.94,Cl 1'36, H2O+ 0.81' HrO- 0.11; sum 100.71,less O:Cl 0.31, lOO.4O7o.The formula is discussed;a rough fit with the unit cell is given by the lollowing: 20CaCOs'Cax(Mg, A1, etc.)zo(B, Si)zr(O, OH, Cl)s6' The Mg group has Mg 15'65, At 3.16, Fe'r' 0.60, Fe" 0.36, the (B, Si) group has Si 13.35,B 12.63- The mineral dissolves with efiervescence in acetic or hydrochloric acids; gives a good flame test for boron. Heated to 850o, it decomposes to a turbid brown product. Cnvse.lr,r-ocn-lPnrc AND X-R,c.v Dere: X-ray study by N. F. M. Henry give the Laue .gtotp m3m and the tests for pyro- and piezo-electricity were negative. The crystal class is probably m3m ((]ttbic holohedral). The cell has a:29.53*.01 A., with a pseudo-cell at 14.76 A. This pseudo-cell contains the formula given above. X-ray powder data are given: the strongest lines are (l) 2.61, (2) 1.84, (3) 2.13, (4) 1.51 A. Psvsrclr- nql Oprrc.lr,: Harkerite occurs typically as simple octahedra that are color- less with vitreous luster, but alter to white masses of calcite. -
Minerals of Rockbridge County, Virginia
VOL. 40 FEBRUARYJMAY 1994 NO. 1 &2 MINERALS OF ROCKBRIDGE COUNTY, VIRGINIA D. Allen Penick, Jr. INTRODUCTION RockbridgeCountyhas agreatdiversityofrocksandminerals.Rocks withinthecountyrangeingeologic agehmPmxnbrianthroughDevonian (01desttoyoungest)covexingatimespanofatleast 1OOOmilIion years. The county liesmostlywithintheVdeyandRiagePhysi~hich~~ 1). Thisprovinceis underlainbysedimentaryrochcomposedof dolostone, limestone, sandstone, andshale. TheexlMlceastempartofRockbridge County is withintheBlueRidge PhysiowhicPro. This areaisrepre sentedbyallthreemajorrocktypes: sedirnentary,igneous, andmetarnorphic. Theseinclu&Qlostone,qdta,inta~s~neandshale,granite, pmdiorite, andunakite. Ingeneral, theol&strocksarefoundin theeastem portion with youngerrocks outcropping in the westernpart of thecounty o%w2). Mininghasplaydan~tpaainthehistoryofRockbridgeCounty. Indians probably were thefirstco1lectorsof localqu~andquartzitefrom which they shapedprojectilepoints. Important deposits of ironore were mined in the 1800s near the towns of Buena Vista, Goshen, Vesuvius, and in Amoldvalley. Other early minesin thecounty -&manganese, waver- tine-marl, tin, niter (saltpeter), lithographiclimestone, silicasand, andcave orryx Thecounty has been prospected for barite, gibbsite (alumina), gold, silver, limonik(ocher),beryl, Ghalerite (zinc), andilmeniteandmtile(tita- nium), but no production has beenreported for t.Quarriesare still producing dolostone.lirnestone, andquartzitefor constructionaggregate andshale forbrickmanufacture. This report describes 102mineralsandnativeelements -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Surinagite, Taaffeite, and Heryllian Sapphirine from Pegmatites In
American Mineralogist, Volume 66, pages 1022_1033, IggI Surinagite, taaffeite, and heryllian sapphirinefrom pegmatitesin granulite-faciesrocks of caJey Bay,Enderby Land, fntarctica Eowano S. Gnew Department of Earth and Space Sciences U niv ersity of Caldo rni a Los Angeles, Califurnia 90024 Abstrect Surinamite, taaffeite,berylliaa sapphirine,niobian rutile, chrysoberyl,and wagneriteoccur in sillimanite-rich, medium-grainedsegregations in two pegmaiitesofprobable late Archean age which granulite-facies.rocks cut near Mclntyre llaia-1erzz,s,4go05,E) in casey Bay, Antarctica. Antarctic surinamite contains 30.9-32.1wt.za sior, 33.7-37.3wt.vo Alror,9.i- l3'4 wt.Eo Feo, 0.01-0.2wt.vo Mro, and 16.4-1g.4wt.vo Mgo,0.5-r wt.voBe, and 0.66+0.2 wt'VoH2O. Assuming water is absent,a constantBeO content of 3.5 wt.Vo,and possibleFe3* for Al substitution, surinamite analysesrecast to 32 oxygenscontain 22 cations. Antarctic taafeite ,xt.vo conrains68.5-69.3 A12o3,9.7w.vo Feo, 10.6-11.0wr.% Mgo, 4.7-5.2 wt.vo zno, and'0.5-l wt.% Be. cell parameterssre a :5.6g04 (2)A, c : +t.tC4-(zt1, ,"gg"r,;g that this taaffeite gR is the polyrype.sapphirine contains zo.i wt.cosio2, 5 l. l wt.voAiror ani Be, 9:-l Y.E" indicating substitutionof Be for Al: Be + Si : 2Al. Associaredgarnet contains 33 to 42 mole vopyrope and associatedcordierite, I wt.7aNarO. Stablemineral assemblages in the segregationsat the time the pegrnatitescrystallized are quartz-sillimanite-surinamite- biotite-orthopyroxene-garnet, quartz-surinamite-taafeite, sillimanite-garnet-biotite-su- rinamite-taaffeite-sapphirine, and siltim4nite-garnet-biotite-chrysoberyl_surinamite.Tem_ peraturesand pressures at the time of pegmalils emplacementare estimatedto have been 800-900"c and 7-8 kbar. -
Gems and Placers—A Genetic Relationship Par Excellence
Article Gems and Placers—A Genetic Relationship Par Excellence Dill Harald G. Mineralogical Department, Gottfried-Wilhelm-Leibniz University, Welfengarten 1, D-30167 Hannover, Germany; [email protected] Received: 30 August 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Gemstones form in metamorphic, magmatic, and sedimentary rocks. In sedimentary units, these minerals were emplaced by organic and inorganic chemical processes and also found in clastic deposits as a result of weathering, erosion, transport, and deposition leading to what is called the formation of placer deposits. Of the approximately 150 gemstones, roughly 40 can be recovered from placer deposits for a profit after having passed through the “natural processing plant” encompassing the aforementioned stages in an aquatic and aeolian regime. It is mainly the group of heavy minerals that plays the major part among the placer-type gemstones (almandine, apatite, (chrome) diopside, (chrome) tourmaline, chrysoberyl, demantoid, diamond, enstatite, hessonite, hiddenite, kornerupine, kunzite, kyanite, peridote, pyrope, rhodolite, spessartine, (chrome) titanite, spinel, ruby, sapphire, padparaja, tanzanite, zoisite, topaz, tsavorite, and zircon). Silica and beryl, both light minerals by definition (minerals with a density less than 2.8–2.9 g/cm3, minerals with a density greater than this are called heavy minerals, also sometimes abbreviated to “heavies”. This technical term has no connotation as to the presence or absence of heavy metals), can also appear in some placers and won for a profit (agate, amethyst, citrine, emerald, quartz, rose quartz, smoky quartz, morganite, and aquamarine, beryl). This is also true for the fossilized tree resin, which has a density similar to the light minerals. -
Some Characteristics of Taaffeite from Myanmar
Gemmological Brief Some Characteristics of Taaffeite from Myanmar Thanong Leelawatanasuk, Wilawan Atichat, Tay Thye Sun, Boontawee Sriprasert and Jirapit Jakkawanvibul Although taaffeite from Myanmar was reported over 30 years ago, few gemmological studies have been published on this material. Five specimens of very pale purplish pink and heavily included taaffeite from the Mogok area were characterized for this report. Chemical analysis revealed 75.2–76.4 wt.% Al2O3 and 18.2–19.1 wt.% MgO, with trace amounts of Fe, Zn, Ga, Mn and other elements. Compared to similarly coloured taaffeite from Sri Lanka and Africa, these Burmese samples showed no significant differences except for lower Fe content. The Journal of Gemmology, 34(2), 2014, pp. 144–148. © 2014 The Gemmological Association of Great Britain Introduction article magnesiotaaffeite-2N’2S will simply be Among gem minerals, taaffeite is considered one referred to as taaffeite. of the rarest, with only a handful of deposits Due to its scarcity, taaffeite is considered reported to date. The mineral was named in a collectors’ stone. The mineral is known to 1945 after its discoverer, Count Edward Charles crystallize in metasomatized limestone or in Richard Taaffe, a Dublin gemmologist. He high-grade amphibolite- or granulite-facies rocks noticed a stone within a parcel of spinel from (Kampf, 1991; Chadwick et al., 1993). Gem-quality Sri Lanka that exhibited a slight birefringence. material is mainly known from Sri Lanka (e.g. He sent the gem to London, where it was Schmetzer et al., 1999; Abduriyim et al., 2008), but eventually confirmed as a new mineral species also has been found in Tanzania (Schmetzer et al., (Anderson et al., 1951). -
Download This Document In
www.dmg.kerala.gov.in Commo nly Encountered Gemstones GEM TESTING LABORATORY DEPARTMENT OF MINING AND GEOLOGY GOVERNMENT OF KERALA 2010 Department of Mining and Geology, Government of Kerala Commonly Encountered Gemstones A mineral is a naturally occurring, inorganic, homogeneous substance with a definite chemical composition and a regular three dimensional arrangement of atoms. A rock is an aggregate of minerals. From time immemorial several minerals and rocks have been used as gemstones. Nowadays not only minerals and rocks, any material, say metallic, amorphous, synthetic, organic or inorganic, that has substantial beauty, rarity and durability and can be fashioned into a desirable and attractive form is being used as a gem. The table given below shows the gem varieties of some of the minerals/rocks commonly used as gemstones. The photos of the gemstones in the table below have been captured in the Gem Testing Lab of the Department. Name of mineral Chemical Hardness Gem Varieties composition (Indian Names, if any) 1) Andalusite (brown, yellow) 2) Viridine (green) Andalusite Al2SiO5 7 - 7.5 3) Chiastolite (black cross-like core in a dark brown background) 1) Apatite (white, rose, orange, yellow, red, pink, blue, green) Apatite Ca5(PO4)3 (F, 5 Cl, O, OH)3 2 ) Apatite cat’s eye Azurite Cu3(CO3)2 3.5 - 4 Azurite (light blue to dark blue) (OH)2 1) Emerald (green) Marathakam / Panna 2) Aquamarine (blue) Beruj 3) Heliodor (golden, yellow) Beryl 7.5 - 8 4) Morganite (pink) Be3Al2Si6O18 5) Bixbite (red) 6) Maxixe Beryl (deep blue Page | 2 website: www.dmg.kerala.gov.in email: [email protected] Department of Mining and Geology, Government of Kerala Name of mineral Chemical Hardness Gem Varieties composition (Indian Names, if any) [fading]) 7) Goshenite (colourless) 8) Beryl cat’s eye 9) Star Beryl 10) Parti – coloured Beryl 11) Trapiche emerald (green with black intersecting spokes) Calcite CaCO3 3 1) Calcite (white, yellow, brown, pink, blue) 2) Iceland spar (colourless) Charoite . -
F^ the Journal of \ Y Volume 26 No
Gemmologf^ The Journal of \ y Volume 26 No. 6 April 1999 II J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 0171 404 3334 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, MJ. O'Donoghue, I. Thomson, V.R Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, J. Kessler, J. Monnickendam, L. Music, J.B. Nelson, P.G. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West - L Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc, M.Phil., FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil, C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. ROSS, B.Sc, FGA, DGA, PA. Sadler, B.Sc, FGA, DGA, E. -
(130) Twins and Rutile Precipitates in Chrysoberyl Crystals from Rio Das
REVISION 1 1 Structural investigation of (130) twins and rutile precipitates 2 in chrysoberyl crystals from Rio das Pratinhas in Bahia (Brazil) 3 4 Sandra Drev,1 Matej Komelj,1 Matjaž Mazaj,2 Nina Daneu1 and Aleksander Rečnik1 5 6 1 Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia 7 2 Laboratory for Inorganic Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia 8 9 10 11 Abstract. We studied V-shaped twins of chrysoberyl (BeAl2O4) from Rio das Pratinhas 12 pegmatites near Arataca in the Bahia state of Brazil. The local structure of the twin boundaries 13 was determined using powder X-ray diffraction analysis (XRD), transmission electron micros- 14 copy (TEM) methods and density functional theory (DFT) calculations. To provide the most re- 15 liable model for DFT and HRTEM simulations the structure of chrysoberyl was first refined in 16 the orthorhombic space group 62 (Pmnb) with unit cell parameters: a = 5.4825(1) Å, b = 17 9.4163(2) Å and c = 4.4308(1) Å, with 0.5 at% of Fe3+ present on the Al(2) sites, suggesting an 18 average composition of BeAl1.99Fe0.01O4. TEM study of V-shaped twins showed that the twin 19 boundary lies in the (130) planes, and the angle measured between the crystal domains relat- 20 ed by mirror twin operation is ∼ 59.5°. Rigid structural model of (130) twin boundary in 21 chrysoberyl was refined by DFT calculations, using a pseudo-potential method. The twin 22 boundaries show local enrichment with Ti. -
Revised Nomenclature of Högbomite, Nigerite, and Taaffeite Minerals
Eur. J. Mineral. 2002, 14, 389–395 Revised nomenclature of högbomite, nigerite, and taaffeite minerals THOMAS ARMBRUSTER Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, e-mail: [email protected] Abstract: Minerals of the högbomite, nigerite, and taaffeite groups form polysomatic series composed of spinel (S) and nolanite (N) modules. The idealised formula of a spinel module is T2M4O8 where T and M represent tetrahedrally and octahedrally coordinated cations. The nolanite module in nigerite and högbomite minerals has the formula TM4O7(OH) whereas the nolanite module in the Be- bearing taaffeite minerals is modified (N’) and has the formula BeTM4O8. The modules are normalised to two closest-packed oxygen layers situated parallel to (001) in hexagonal setting. The composition of these minerals thus depends: (1) on the composition of the nolanite module, (2) on the composition of spinel module, (3) on the number of spinel and nolanite modules forming the structure. Högbomite- and nigerite-group minerals are distinguished by the dominant tetravalent cation in the nolanite module. If the molar concentration of Ti > Sn, the group name is högbomite. If the molar concentration of Sn > Ti, the group name is nigerite. Taaffeite- group minerals have a nolanite module without OH groups but with additional tetrahedral Be. In the new nomenclature, approved by the IMA CNMMN, the subgroup name is chosen according to the composition of the aluminium-spinel module. If the spinel module is dominated by the gahnite component, ZnAl2O4, the prefix ‘zinco’ is used. If the spinel module is dominated by the hercynite component, FeAl2O4, the prefix ‘ferro’ is used.