New Mineral Names
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Taaffeite, a New Beryllium Mineral, Found As a Cut Gem- Stone.I
765 Taaffeite, a new beryllium mineral, found as a cut gem- stone.I By B. W. ANDERSON,B.Sc., F.C.S., C. J. PAYNE, B.Sc. Laboratory of the Diamond, Pearl, and Precious Stone Trade Section of the London Chamber of Commerce. and G. F. CLARINGBULL,B.Sc., Ph.D., F.G.S. With microchemical analysis by M. H. HEY, M.A., D.Sc. Department of Mineralogy, British Museum. [Read June 7, 1951.] ------ N October 1945 Count Taaffe,2 a brilliant if unorthodox Dublin I gemmologist, in the course of examining a motley collection of gem- stones, came across a small mauve stone which puzzled him greatly. The stone had the appearance, and most of the characters, of spinel, but afforded clear evidence of double refraction. As recounted below, this stone was later found to belong to an entirely new mineral species-the only c~se hitherto known where a mineral has been first encountered as a faceted gem. Since the precise circumstances of such a discovery have both human and technical interest, it seemed best to obtain from Count Taaffe his own account of the event. This is accordingly given below before pro- ceeding to the more formal presentation of the data on the new mineral, which has been named taaffeite in honour of its discoverer. On one of my rounds in search of gems I came to Mr. Robert Dobbie, watchmaker and working jeweller in Fleet Street, Dublin; he allowed me in his genial way to go through all his boxes in which he kept stones, to pick out any that were real-most of them were glass-and to make him an offer for them. -
The Minerals and Rocks of the Earth 5A: the Minerals- Special Mineralogy
Lesson 5 cont’d: The Minerals and Rocks of the Earth 5a: The minerals- special mineralogy A. M. C. Şengör In the previous lectures concerning the materials of the earth, we studied the most important silicates. We did so, because they make up more than 80% of our planet. We said, if we know them, we know much about our planet. However, on the surface or near-surface areas of the earth 75% is covered by sedimentary rocks, almost 1/3 of which are not silicates. These are the carbonate rocks such as limestones, dolomites (Americans call them dolostones, which is inappropriate, because dolomite is the name of a person {Dolomieu}, after which the mineral dolomite, the rock dolomite and the Dolomite Mountains in Italy have been named; it is like calling the Dolomite Mountains Dolo Mountains!). Another important category of rocks, including parts of the carbonates, are the evaporites including halides and sulfates. So we need to look at the minerals forming these rocks too. Some of the iron oxides are important, because they are magnetic and impart magnetic properties on rocks. Some hydroxides are important weathering products. This final part of Lesson 5 will be devoted to a description of the most important of the carbonate, sulfate, halide and the iron oxide minerals, although they play a very little rôle in the total earth volume. Despite that, they play a critical rôle on the surface of the earth and some of them are also major climate controllers. The carbonate minerals are those containing the carbonate ion -2 CO3 The are divided into the following classes: 1. -
Circular of the Bureau of Standards No. 539 Volume 5: Standard X-Ray
: :;.ta^4aya9 . Bl.ig NBS CIRCULAR 539 VOLUME V Reference taken Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Standard X-ray Diffraction Powder Patterns The four previously issued volumes in this series are avail- able from the Superintendent of Documents, U. S. Govern- ment Printing Office, Washington 25, D. C., as follows: NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) NBS Circular 539, Volume III, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) NBS Circular 539, Volume IV, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C. UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard X-ray Diffraction Powder Patterns Howard E. Swanson, Nancy T. Gilfrich, and George M. Ugrinic National Bureau of Standards Circular 539 Volume V, Issued October 21, 1955 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 45 cents CONTENTS Page Page Introduction 1 Standard X-ray powder patterns—Continued Standard X-ray powder patterns: Lead titanate, PbTi0 3 39 Ammonium chloroplatinate, (NH 4 ) 2 PtCl 6 3 Magnesium tin, Mg 2 Sn 41 Ammonium chlorostannate, (NH 4 ) 2 SnCl 6 4 Magnesium titanate (geikielite), MgTi0 3 43 Ammonium fluosilicate (cryptohalite), Manganese (II) oxide, (manganosite) MnO._ 45 (NH 4 ) 2 SiF6 5 Molybdenum disulfide (molybdenite), MoS 2 _. -
Minerals of Rockbridge County, Virginia
VOL. 40 FEBRUARYJMAY 1994 NO. 1 &2 MINERALS OF ROCKBRIDGE COUNTY, VIRGINIA D. Allen Penick, Jr. INTRODUCTION RockbridgeCountyhas agreatdiversityofrocksandminerals.Rocks withinthecountyrangeingeologic agehmPmxnbrianthroughDevonian (01desttoyoungest)covexingatimespanofatleast 1OOOmilIion years. The county liesmostlywithintheVdeyandRiagePhysi~hich~~ 1). Thisprovinceis underlainbysedimentaryrochcomposedof dolostone, limestone, sandstone, andshale. TheexlMlceastempartofRockbridge County is withintheBlueRidge PhysiowhicPro. This areaisrepre sentedbyallthreemajorrocktypes: sedirnentary,igneous, andmetarnorphic. Theseinclu&Qlostone,qdta,inta~s~neandshale,granite, pmdiorite, andunakite. Ingeneral, theol&strocksarefoundin theeastem portion with youngerrocks outcropping in the westernpart of thecounty o%w2). Mininghasplaydan~tpaainthehistoryofRockbridgeCounty. Indians probably were thefirstco1lectorsof localqu~andquartzitefrom which they shapedprojectilepoints. Important deposits of ironore were mined in the 1800s near the towns of Buena Vista, Goshen, Vesuvius, and in Amoldvalley. Other early minesin thecounty -&manganese, waver- tine-marl, tin, niter (saltpeter), lithographiclimestone, silicasand, andcave orryx Thecounty has been prospected for barite, gibbsite (alumina), gold, silver, limonik(ocher),beryl, Ghalerite (zinc), andilmeniteandmtile(tita- nium), but no production has beenreported for t.Quarriesare still producing dolostone.lirnestone, andquartzitefor constructionaggregate andshale forbrickmanufacture. This report describes 102mineralsandnativeelements -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Surinagite, Taaffeite, and Heryllian Sapphirine from Pegmatites In
American Mineralogist, Volume 66, pages 1022_1033, IggI Surinagite, taaffeite, and heryllian sapphirinefrom pegmatitesin granulite-faciesrocks of caJey Bay,Enderby Land, fntarctica Eowano S. Gnew Department of Earth and Space Sciences U niv ersity of Caldo rni a Los Angeles, Califurnia 90024 Abstrect Surinamite, taaffeite,berylliaa sapphirine,niobian rutile, chrysoberyl,and wagneriteoccur in sillimanite-rich, medium-grainedsegregations in two pegmaiitesofprobable late Archean age which granulite-facies.rocks cut near Mclntyre llaia-1erzz,s,4go05,E) in casey Bay, Antarctica. Antarctic surinamite contains 30.9-32.1wt.za sior, 33.7-37.3wt.vo Alror,9.i- l3'4 wt.Eo Feo, 0.01-0.2wt.vo Mro, and 16.4-1g.4wt.vo Mgo,0.5-r wt.voBe, and 0.66+0.2 wt'VoH2O. Assuming water is absent,a constantBeO content of 3.5 wt.Vo,and possibleFe3* for Al substitution, surinamite analysesrecast to 32 oxygenscontain 22 cations. Antarctic taafeite ,xt.vo conrains68.5-69.3 A12o3,9.7w.vo Feo, 10.6-11.0wr.% Mgo, 4.7-5.2 wt.vo zno, and'0.5-l wt.% Be. cell parameterssre a :5.6g04 (2)A, c : +t.tC4-(zt1, ,"gg"r,;g that this taaffeite gR is the polyrype.sapphirine contains zo.i wt.cosio2, 5 l. l wt.voAiror ani Be, 9:-l Y.E" indicating substitutionof Be for Al: Be + Si : 2Al. Associaredgarnet contains 33 to 42 mole vopyrope and associatedcordierite, I wt.7aNarO. Stablemineral assemblages in the segregationsat the time the pegrnatitescrystallized are quartz-sillimanite-surinamite- biotite-orthopyroxene-garnet, quartz-surinamite-taafeite, sillimanite-garnet-biotite-su- rinamite-taaffeite-sapphirine, and siltim4nite-garnet-biotite-chrysoberyl_surinamite.Tem_ peraturesand pressures at the time of pegmalils emplacementare estimatedto have been 800-900"c and 7-8 kbar. -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com. -
Gems and Placers—A Genetic Relationship Par Excellence
Article Gems and Placers—A Genetic Relationship Par Excellence Dill Harald G. Mineralogical Department, Gottfried-Wilhelm-Leibniz University, Welfengarten 1, D-30167 Hannover, Germany; [email protected] Received: 30 August 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Gemstones form in metamorphic, magmatic, and sedimentary rocks. In sedimentary units, these minerals were emplaced by organic and inorganic chemical processes and also found in clastic deposits as a result of weathering, erosion, transport, and deposition leading to what is called the formation of placer deposits. Of the approximately 150 gemstones, roughly 40 can be recovered from placer deposits for a profit after having passed through the “natural processing plant” encompassing the aforementioned stages in an aquatic and aeolian regime. It is mainly the group of heavy minerals that plays the major part among the placer-type gemstones (almandine, apatite, (chrome) diopside, (chrome) tourmaline, chrysoberyl, demantoid, diamond, enstatite, hessonite, hiddenite, kornerupine, kunzite, kyanite, peridote, pyrope, rhodolite, spessartine, (chrome) titanite, spinel, ruby, sapphire, padparaja, tanzanite, zoisite, topaz, tsavorite, and zircon). Silica and beryl, both light minerals by definition (minerals with a density less than 2.8–2.9 g/cm3, minerals with a density greater than this are called heavy minerals, also sometimes abbreviated to “heavies”. This technical term has no connotation as to the presence or absence of heavy metals), can also appear in some placers and won for a profit (agate, amethyst, citrine, emerald, quartz, rose quartz, smoky quartz, morganite, and aquamarine, beryl). This is also true for the fossilized tree resin, which has a density similar to the light minerals. -
Some Characteristics of Taaffeite from Myanmar
Gemmological Brief Some Characteristics of Taaffeite from Myanmar Thanong Leelawatanasuk, Wilawan Atichat, Tay Thye Sun, Boontawee Sriprasert and Jirapit Jakkawanvibul Although taaffeite from Myanmar was reported over 30 years ago, few gemmological studies have been published on this material. Five specimens of very pale purplish pink and heavily included taaffeite from the Mogok area were characterized for this report. Chemical analysis revealed 75.2–76.4 wt.% Al2O3 and 18.2–19.1 wt.% MgO, with trace amounts of Fe, Zn, Ga, Mn and other elements. Compared to similarly coloured taaffeite from Sri Lanka and Africa, these Burmese samples showed no significant differences except for lower Fe content. The Journal of Gemmology, 34(2), 2014, pp. 144–148. © 2014 The Gemmological Association of Great Britain Introduction article magnesiotaaffeite-2N’2S will simply be Among gem minerals, taaffeite is considered one referred to as taaffeite. of the rarest, with only a handful of deposits Due to its scarcity, taaffeite is considered reported to date. The mineral was named in a collectors’ stone. The mineral is known to 1945 after its discoverer, Count Edward Charles crystallize in metasomatized limestone or in Richard Taaffe, a Dublin gemmologist. He high-grade amphibolite- or granulite-facies rocks noticed a stone within a parcel of spinel from (Kampf, 1991; Chadwick et al., 1993). Gem-quality Sri Lanka that exhibited a slight birefringence. material is mainly known from Sri Lanka (e.g. He sent the gem to London, where it was Schmetzer et al., 1999; Abduriyim et al., 2008), but eventually confirmed as a new mineral species also has been found in Tanzania (Schmetzer et al., (Anderson et al., 1951). -
The Thermodynamics of Selenium Minerals in Near-Surface Environments
minerals Review The Thermodynamics of Selenium Minerals in Near-Surface Environments Vladimir G. Krivovichev 1,*, Marina V. Charykova 2 ID and Andrey V. Vishnevsky 2 1 Department of Mineralogy, Institute of Earth Sciences, St. Petersburg State University, 7/9 University Embankment, Saint Petersburg 199034, Russia 2 Department of Geochemistry, Institute of Earth Sciences, St. Petersburg State University, 7/9 University Embankment, Saint Petersburg 199034, Russia; [email protected] (M.V.C.); [email protected] (A.V.V.) * Correspondence: [email protected]; Tel.: +7-812-328-9481 Received: 18 August 2017; Accepted: 4 October 2017; Published: 6 October 2017 Abstract: Selenium compounds are relatively rare as minerals; there are presently only 118 known mineral species. This work is intended to codify and systematize the data of mineral systems and the thermodynamics of selenium minerals, which are unstable (selenides) or formed in near-surface environments (selenites), where the behavior of selenium is controlled by variations of the redox potential and the acidity of solutions at low temperatures and pressures. These parameters determine the migration of selenium and its precipitation as various solid phases. All selenium minerals are divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I) and hydrous selenites and selenates (II). Within each of the groups, minerals are codified according to the minimum number of independent elements necessary to define the composition of the mineral system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0) software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca) were plotted for the average contents of these elements in acidic waters in the oxidation zones of sulfide deposits. -
Download This Document In
www.dmg.kerala.gov.in Commo nly Encountered Gemstones GEM TESTING LABORATORY DEPARTMENT OF MINING AND GEOLOGY GOVERNMENT OF KERALA 2010 Department of Mining and Geology, Government of Kerala Commonly Encountered Gemstones A mineral is a naturally occurring, inorganic, homogeneous substance with a definite chemical composition and a regular three dimensional arrangement of atoms. A rock is an aggregate of minerals. From time immemorial several minerals and rocks have been used as gemstones. Nowadays not only minerals and rocks, any material, say metallic, amorphous, synthetic, organic or inorganic, that has substantial beauty, rarity and durability and can be fashioned into a desirable and attractive form is being used as a gem. The table given below shows the gem varieties of some of the minerals/rocks commonly used as gemstones. The photos of the gemstones in the table below have been captured in the Gem Testing Lab of the Department. Name of mineral Chemical Hardness Gem Varieties composition (Indian Names, if any) 1) Andalusite (brown, yellow) 2) Viridine (green) Andalusite Al2SiO5 7 - 7.5 3) Chiastolite (black cross-like core in a dark brown background) 1) Apatite (white, rose, orange, yellow, red, pink, blue, green) Apatite Ca5(PO4)3 (F, 5 Cl, O, OH)3 2 ) Apatite cat’s eye Azurite Cu3(CO3)2 3.5 - 4 Azurite (light blue to dark blue) (OH)2 1) Emerald (green) Marathakam / Panna 2) Aquamarine (blue) Beruj 3) Heliodor (golden, yellow) Beryl 7.5 - 8 4) Morganite (pink) Be3Al2Si6O18 5) Bixbite (red) 6) Maxixe Beryl (deep blue Page | 2 website: www.dmg.kerala.gov.in email: [email protected] Department of Mining and Geology, Government of Kerala Name of mineral Chemical Hardness Gem Varieties composition (Indian Names, if any) [fading]) 7) Goshenite (colourless) 8) Beryl cat’s eye 9) Star Beryl 10) Parti – coloured Beryl 11) Trapiche emerald (green with black intersecting spokes) Calcite CaCO3 3 1) Calcite (white, yellow, brown, pink, blue) 2) Iceland spar (colourless) Charoite .