Exploring in Silico Protein Toxicity Prediction Methods to Support the Food and Feed Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Exploring in Silico Protein Toxicity Prediction Methods to Support the Food and Feed Risk Assessment EXTERNAL SCIENTIFIC REPORT APPROVED: 28 May 2020 doi:10.2903/sp.efsa.2020.EN-1875 Literature search – Exploring in silico protein toxicity prediction methods to support the food and feed risk assessment L. Palazzolo1, E. Gianazza1, I. Eberini1 1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (IT) Abstract This report is the outcome of an EFSA procurement (NP/EFSA/GMO/2018/01) reviewing relevant scientific information on in silico prediction methods for protein toxicity, that could support the food and feed risk assessment. Several proteins are associated with adverse (toxic) effects in humans and animals, by a variety of mechanisms. These are produced by plants, animals and bacteria to prevail in hostile environments. In the present report, we present an integrated pipeline to perform a comprehensive literature and database search applied to proteins with toxic effects. “Toxin activity” and “toxin-antitoxin system” strings were used as inputs for this pipeline. UniProtKB was considered as the reference database, and only the UniProtKB curator-reviewed proteins were considered in the pipeline. Experimentally- determined structures and homology-based in silico 3D models were retrieved from protein structures repositories; family-, domain-, motif- and other molecular signature-related information was also obtained from specific databases which are part of the InterPro consortium. Protein aggregation associated with adverse effects was also investigated using different search strategies. This work can serve as the basis for further exploring novel risk assessment strategies for new proteins using in silico predictive methods. © European Food Safety Authority, 2020 Key words: (protein toxicity, bioinformatics, toxic activity, toxin-antitoxin system, aggregates, predictive toxicity) Question number: EFSA-Q-2019-00038 Correspondence: [email protected] www.efsa.europa.eu/efsajournal 1 EFSA Supporting publication 2020: EN-1875 Literature search – Exploring in silico protein toxicity prediction methods to support food/feed RA Disclaimer: The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors. Suggested citation: Palazzolo L, Gianazza E and Eberini I, 2020. Literature search – Exploring in silico protein toxicity prediction methods to support the food and feed risk assessment. EFSA supporting publication20 20:EN-1875. 89 pp. doi:10.2903/sp.efsa.2020.EN-1875 ISSN: 2397-8325 © European Food Safety Authority, 2020 www.efsa.europa.eu/publications 2 EFSA Supporting publication 2020: EN-1875 The present document has been produced and adopted by the bodies identified above as authors. This task has been carried out exclusively by the authors in the context of a contract between the European Food Safety Authority and the authors, awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors). Literature search – Exploring in silico protein toxicity prediction methods to support food/feed RA Summary Abstract .........................................................................................................................................1 Summary .......................................................................................................................................3 1. Introduction ........................................................................................................................5 1.1. Background and Terms of Reference as provided by the requestor ........................................5 1.1.1. Task 1 ................................................................................................................................5 1.1.2. Task 2 ................................................................................................................................5 1.2. Interpretation of the Terms of Reference as provided by EFSA ..............................................5 1.3. Protein toxicity – Background information .............................................................................5 1.3.1. Toxic proteins .....................................................................................................................6 1.3.2. Proteins with putative toxic activity as aggregates .................................................................8 2. Data and Methodologies ......................................................................................................9 2.1. Databases ........................................................................................................................ 10 2.1.1. Literature databases .......................................................................................................... 10 2.1.2. Protein Databases - Primary structure and function ............................................................. 11 2.1.3. Protein databases - Modelling tools .................................................................................... 12 2.1.4. Families, domains and signatures ....................................................................................... 13 2.1.5. Toxin predicting tools ........................................................................................................ 15 2.2. Methodologies .................................................................................................................. 16 2.2.1. Compilation of a comprehensive collection of information for toxic proteins .......................... 16 2.2.2. Proteins with putative toxic activity as aggregates ............................................................... 23 2.3. Three-dimensional structures ............................................................................................. 26 2.4. Families, domains and signatures ....................................................................................... 26 2.5. Automated information retrieval and management tool ....................................................... 26 3. Results ............................................................................................................................. 27 3.1. Toxic proteins ................................................................................................................... 27 3.1.1. Main Collection ................................................................................................................. 27 3.1.2. TAS Collection ................................................................................................................... 46 3.2. Proteins with putative toxic activity as aggregates ............................................................... 60 4. Quality assurance of 3D structures ..................................................................................... 63 4.1. Protein Data Bank ............................................................................................................. 63 4.1.1. Models downloaded from SM repository ............................................................................. 64 5. Evaluation of toxin prediction tools ..................................................................................... 66 5.1. NTXpred ........................................................................................................................... 67 5.2. BTXpred ........................................................................................................................... 70 5.3. Knottin ............................................................................................................................. 73 5.4. CLANTOX ......................................................................................................................... 76 5.5. ConoServer ....................................................................................................................... 79 5.6. ToxinPred ......................................................................................................................... 82 6. Evaluation of other freely available tools ............................................................................. 83 6.1. Meme ............................................................................................................................... 83 7. Discussion, conclusions and future perspectives .................................................................. 84 References ................................................................................................................................... 86 Annex A
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Manual of Bacteriology
    m 4-1 /fo3 L CORNELL UNIVERSITY. THE THE GIFT OF ROSWELL P. FLOWER FOR THE USE OF THE N. Y. STATE VETERINARY COLLEGE ,,,. ^ 1897 8394-1 v3 Cornell University Library OR 41.M95 1903 Manual of bacteriology, 3 1924 000 225 965 Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924000225965 MANUAL OF BACTERIOLOGY \ > rhe?yi><^- MANUAL OF BACTERIOLOGY BY ROBERT MUIR; M.A., M.D., F.R.C.P.Ed. PROFESSOR OF PATHOLOGY, UNIVERSITY OF GLASGOW, AND JAMES RITCHIE, M.A., M.D., B.Sc. T READER IN PATHOLOGY, UNIVERSITY OF OXFORD, AMERICAN EDITION (WITH ADDITIONS), REVISED AND EDITED FROM THE THIRD ENGLISH EDITION BY NORMAN MAC LEOD HARRIS, M.B. (Tor.) ASSOCIATE IN BACTERIOLOGY, THE JOHNS HOPKINS UNIVERSITY, BALTIMQRE. WITH ONE HUND/t^D &= i^ENlPC^LLUSTRATIONS. LIBRARY. THE MACMILLAN COMPANY. LONDON: MACMILLAN & CO., Ltd. 1903 T Jill rights reserved. -7 . "^ '%C; No. X5 G^ Copyright, 1903, By the macmillan company. Set up and electrotyped February, 1903. Norivood Press J. S. Cushing & Co. — Berwick & Smith Norwood, Mass., U.S.A. PREFACE TO THE AMERICAN EDITION. In presenting this the American edition of the well-known and appreciated work of Doctors Muir and Ritchie, the en- deavour has been made to add to the value of the book by giving adequate expression to the best in American laboratory methods and research, and, at the same time, to augment the general scope of the work -without eliminating the personal impress of the authors.
    [Show full text]
  • Poisoning by Medical Plants
    ARCHIVES OF ArchiveArch Iran Med.of SID February 2020;23(2):117-127 IRANIAN http www.aimjournal.ir MEDICINE Open Systematic Review Access Poisoning by Medical Plants Mohammad Hosein Farzaei, PhD1; Zahra Bayrami, PhD2; Fatemeh Farzaei, PhD1; Ina Aneva, PhD3; Swagat Kumar Das, PhD4; Jayanta Kumar Patra, PhD5; Gitishree Das, PhD5; Mohammad Abdollahi, PhD2* 1Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran 2Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 3Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria, Bulgaria 4Department of Biotechnology, College of Engineering and Technology, BPUT, Bhubaneswar 751003, Odisha, India 5Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea Abstract Background: Herbal medications are becoming increasingly popular with the impression that they cause fewer side effects in comparison with synthetic drugs; however, they may considerably contribute to acute or chronic poisoning incidents. Poison centers receive more than 100 000 patients exposed to toxic plants. Most of these cases are inconsiderable toxicities involving pediatric ingestions of medicinal plants in low quantity. In most cases of serious poisonings, patients are adults who have either mistakenly consumed a poisonous plant as edible or ingested the plant regarding to its medicinal properties for therapy or toxic properties for illegal aims. Methods: In this article, we review the main human toxic plants causing mortality or the ones which account for emergency medical visits. Articles addressing “plant poisoning” in online databases were listed in order to establish the already reported human toxic cases.
    [Show full text]
  • Meeting Key Synthetic Challenges in Amanitin Synthesis with a New Cytotoxic Analog: 50-Hydroxy- Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Meeting key synthetic challenges in amanitin synthesis with a new cytotoxic analog: 50-hydroxy- Cite this: Chem. Sci., 2020, 11, 11927 0 † All publication charges for this article 6 -deoxy-amanitin have been paid for by the Royal Society of Chemistry Alla Pryyma, Kaveh Matinkhoo, Antonio A. W. L. Wong and David M. Perrin * Appreciating the need to access synthetic analogs of amanitin, here we report the synthesis of 50-hydroxy- Received 29th July 2020 60-deoxy-amanitin, a novel, rationally-designed bioactive analog and constitutional isomer of a-amanitin, Accepted 2nd October 2020 that is anticipated to be used as a payload for antibody drug conjugates. In completing this synthesis, we DOI: 10.1039/d0sc04150e meet the challenge of diastereoselective sulfoxidation by presenting two high-yielding and rsc.li/chemical-science diastereoselective sulfoxidation approaches to afford the more toxic (R)-sulfoxide. drug-tolerant cell subpopulations.7 Examples include ADCs for Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction targeting human epidermal growth factor receptor 2 and pros- 8 9 a-Amanitin, the deadliest of the amatoxins produced by the tate specic membrane antigen. With but a few exceptions, death-cap mushroom Amanita phalloides, is a potent, orally nearly all bioconjugates to a cytotoxic amanitin have emerged 1 a available inhibitor of RNA polymerase II (pol II) (Ki 10 nM), from naturally-sourced -amanitin. To date, conjugation that has been validated as a payload for targeted cancer handles used for a-amanitin-based bioconjugates include the d- 2a therapy.2 First described in 1907 3 and isolated in 1941,4 a- hydroxyl of (2S,3R,4R)-4,5-dihydroxyisoleucine (DHIle), the 10 0 amanitin is a compact bicyclic octapeptide that has been asparagine side chain, and the 6 -hydroxyl of the tryptathio- 11 indispensable for probing RNA pol II-catalysed transcription in nine staple.
    [Show full text]
  • Biosafety Level 1 and Rdna Training
    Biosafety Level 1and rDNA Training Office of Biological Safety Biosafety Level 1 and rDNA Training • Difference between Risk Group and Biosafety Level • NIH and UC policy on recombinant DNA • Work conducted at Biosafety Level 1 • UC Code of Conduct for researchers Biosafety Level 1 and rDNA Training What is the difference between risk group and biosafety level? Risk Groups vs Biosafety Level • Risk Groups: Assigned to infectious organisms by global agencies (NIH, CDC, WHO, etc.) • In US, only assigned to human pathogens (NIH) • Biosafety Level (BSL): How the organisms are managed/contained (increasing levels of protection) Risk Groups vs Biosafety Level • RG1: Not associated with disease in healthy adults (non‐pathogenic E. coli; S. cerevisiae) • RG2: Cause diseases not usually serious and are often treatable (S. aureus; Legionella; Toxoplasma gondii) • RG3: Serious diseases that may be treatable (Y. pestis; B. anthracis; Rickettsia rickettsii; HIV) • RG4: Serious diseases with no treatment/cure (Hemorrhagic fever viruses, e.g., Ebola; no bacteria) Risk Groups vs Biosafety Level • BSL‐1: Usually corresponds to RG1 – Good microbiological technique – No additional safety equipment required for biological work (may still need chemical/radiation protection) – Ability to destroy recombinant organisms (even if they are RG1) Risk Groups vs Biosafety Level • BSL‐2: Same as BSL‐1, PLUS… – Biohazard signs – Protective clothing (lab coat, gloves, eye protection, etc.) – Biosafety cabinet (BSC) for aerosols is recommended but not always required – Negative airflow into room is recommended, but not always required Risk Groups vs Biosafety Level • BSL‐3: Same as BSL‐2, PLUS… – Specialized clothing (respiratory protection, Tyvek, etc.) – Directional air flow is required.
    [Show full text]
  • Clinical Laboratory Preparedness and Response Guide
    TABLE OF CONTENTS Table of Contents ...................................................................................................................................................................................... 2 State Information ....................................................................................................................................................................................... 7 Introduction .............................................................................................................................................................................................. 10 Laboratory Response Network (LRN) .......................................................................................................................................... 15 Other Emergency Preparedness Response Information: .................................................................................................... 19 Radiological Threats ......................................................................................................................................................................... 21 Food Safety Threats .......................................................................................................................................................................... 25 BioWatch Program ............................................................................................................................................................................ 27 Bio Detection Systems
    [Show full text]
  • Penetration of Stratified Mucosa Cytolysins Augment Superantigen
    Cytolysins Augment Superantigen Penetration of Stratified Mucosa Amanda J. Brosnahan, Mary J. Mantz, Christopher A. Squier, Marnie L. Peterson and Patrick M. Schlievert This information is current as of September 25, 2021. J Immunol 2009; 182:2364-2373; ; doi: 10.4049/jimmunol.0803283 http://www.jimmunol.org/content/182/4/2364 Downloaded from References This article cites 76 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/182/4/2364.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cytolysins Augment Superantigen Penetration of Stratified Mucosa1 Amanda J. Brosnahan,* Mary J. Mantz,† Christopher A. Squier,† Marnie L. Peterson,‡ and Patrick M. Schlievert2* Staphylococcus aureus and Streptococcus pyogenes colonize mucosal surfaces of the human body to cause disease. A group of virulence factors known as superantigens are produced by both of these organisms that allows them to cause serious diseases from the vaginal (staphylococci) or oral mucosa (streptococci) of the body.
    [Show full text]
  • Chapter 26 BIOSAFETY Appendix B. Pathogen and Toxin Lists B.1
    Chapter 26 BIOSAFETY ____________________ Appendix B. Pathogen and Toxin Lists B.1 Introduction and Scope Pathogens and toxins are discussed in detail in Work Process B.3.d, Pathogenic Agents and Toxins, of this manual. This appendix lists the following biological agents and toxins presented in Work Process B.3.d: Human etiologic agents (pathogens) from Appendix B of the NIH Guidelines Select agents and toxins from the National Select Agent Registry (NSAR) Plant pathogens previously identified by U.S. Department of Agriculture (USDA) These lists are provided for convenience in this manual, but may not reflect the actual regulatory list or applicable agents or materials. Regulatory sources, standards, and Web links noted in this appendix and Work Process B.3.d should be consulted to confirm applicable agents or toxins. B.2 NIH Guidelines Human Etiologic Agents This section provides a list of human pathogens and their Risk Group (RG) 2, RG3, and RG4 designations as excerpted from Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, of the NIH Guidelines, amendment effective November 6, 2013. B.2.1 Risk Group 1 Agents RG1 agents are not associated with disease in healthy adult humans. Examples of RG1 agents include asporogenic Bacillus subtilis or Bacillus licheniformis (see NIH Guidelines, Appendix C-IV-A, Bacillus subtilis or Bacillus licheniformis Host-Vector Systems, Exceptions); adeno-associated virus (AAV, all serotypes); and recombinant or synthetic AAV constructs, in which the transgene does not encode either a potentially tumorigenic gene product or a toxin molecule and which are produced in the absence of a helper virus.
    [Show full text]
  • Denotations & Old Terminologies Used in Homopathy
    Denotations & Old terminologies used in Homopathy Dr Jagathy Murali. Kerala Majority of the students and practitioners in Homeopathy experiencing great difficulty in understanding the meaning of old terminologies in various repertories and materia medicas. Hence this is an attempt to lessen the difficulties of practitioners and students. Acetonemia The presence of acetone bodies in relativly large amounts in blood,manifested at first by erethism,later by progressive depression Acne An inflammatory follucular,papular and pustular eruption involving the sebaceous apparatus Acne rosacea Rosasea;a chronic disease of the skin of the nose,forehead,and cheecks,marked by flushing,followed by red colouration due to dilatation of the capillaries,with the appearance of papules and acne like pustules. Acne simplex Acne vulgaris Acrid Sharp,pungent,biting,irritating Actinomycosis An infectious disease caused by actinomyces,marked by indolent inflammatory lesions of the lymph nodes draining the mouth,by inatraperitonial abcess,or by lung abcess due to aspiration. Adenitis Inflammation of a lymph node or of a gland Adenoid vegetations The adenoids, which spring from the vault of the pharynx, form masses varying in size from a small pea to an almond. They may be sessile, with broad bases, or pedunculated. They are reddish in color, of moderate firmness, and contain numerous blood-vessels. "abundant, as a rule, over the vault, on a line with the fossa of the eustachian tube, the growths may lie posterior to the fossa namely, in the depression known as the fossa of rosenmuller, or upon the parts which are parallel to the posterior wall of the pharynx.
    [Show full text]
  • Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
    Review Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins Wei Yuen Yap 1 and Jung Shan Hwang 2,* 1 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; [email protected] 2 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia * Correspondence: [email protected]; Tel.: +603-7491-8622 (ext. 7414) Academic Editor: Jean-Marc Sabatier Received: 23 August 2018; Accepted: 28 September 2018; Published: 4 October 2018 Abstract: A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses.
    [Show full text]
  • A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus Pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C
    A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. J A Mollick, … , D Grossman, R R Rich J Clin Invest. 1993;92(2):710-719. https://doi.org/10.1172/JCI116641. Research Article Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal […] Find the latest version: https://jci.me/116641/pdf A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C Joseph A.
    [Show full text]
  • A Report on Mushrooms Poisonings in 2018 at the Apulian Regional Poison Center
    Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2020 Sep 03; 8(E):616-622. https://doi.org/10.3889/oamjms.2020.4208 eISSN: 1857-9655 Category: E - Public Health Section: Public Health Disease Control A Report on Mushrooms Poisonings in 2018 at the Apulian Regional Poison Center Leonardo Pennisi1, Anna Lepore1, Roberto Gagliano-Candela2*, Luigi Santacroce3, Ioannis Alexandros Charitos1 1Department of Emergency/Urgent, National Poison Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Foggia, Italy; 2Department of Interdisciplinary Medicine, Forensic Medicine, University of Bari, Bari, Italy; 3Ionian Department, Microbiology and Virology Lab, University of Bari, Bari, Italy Abstract Edited by: Sasho Stoleski BACKGROUND: The “Ospedali Riuniti’s Poison Center” (Foggia, Italy) provides a 24 h telephone consultation in Citation: Pennisi L, Lepore A, Gagliano-Candela R, Santacroce L, Charitos IA. A Report on Mushrooms clinical toxicology to the general public and health-care professionals, including drug information and assessment of Poisonings in 2018 at the Apulian Regional Poison Center. the effects of commercial and industrial chemical substances, toxins but also plants and mushrooms. It participates Open Access Maced J Med Sci. 2020 Sep 03; 8(E):616-622. in diagnosis and treatment of the exposure to toxins and toxicants, also throughout its ambulatory activity. https://doi.org/10.3889/oamjms.2020.4208 Keywords: Poisoning; Intoxication; Epidemiology; Poison center; Mushroom poisoning METHODS: To report data on the epidemiology of mushroom poisoning in people contacting our Poison Center we *Correspondence: Roberto Gagliano-Candela, made computerized queries and descriptive analyses of the medical records database of the mushroom poisoning Department of Interdisciplinary Medicine, Forensic in the poison center of Foggia from January 2018 to December 2018.
    [Show full text]