Meeting Key Synthetic Challenges in Amanitin Synthesis with a New Cytotoxic Analog: 50-Hydroxy- Cite This: Chem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WSC 2000-01 Conference 1
The Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2002-2003 CONFERENCE 17 12 February 2003 Conference Moderator: LTC Gary Zaucha, DVM Diplomate, ACVP, ABT, and ACVPM Chief, Department of Comparative Pathology Walter Reed Army Institute of Research Silver Spring, MD 20910 CASE I – 1614-1 (AFIP 2850109) Signalment: 5-month-old outbred female Swiss-Webster mouse History: Sentinel mouse in a laboratory colony housed on dirty bedding from other mouse cages, part of an infectious disease surveillance program. Euthanized due to lethargy and unthriftiness. Gross Pathology: Stomach distended approximately three times by gas, fluid, and partially digested food. Kidneys shrunken, pale, and pitted. Multifocal hemorrhagic necrosis and thrombosis of the ovaries bilaterally. Laboratory Results: Negative for all murine infectious pathogens tested in the colony surveillance program by serology, respiratory and intestinal cultures, fecal examination, anal tape, and skin scrapings. Contributor’s Morphologic Diagnosis: Kidney: Chronic nephropathy characterized by membranous glomerulopathy, lymphoplasmacytic adventitial vasculitis and perivasculitis, tubular degeneration, ectasia, and regeneration with protein, hemoglobin, cellular, waxy, and granular casts, and lymphoplasmacytic and histiocytic interstitial nephritis, severe. Contributor’s Comment: This case is consistent with the previously reported syndrome of gastric dilatation and chronic nephropathy in mice exposed to dirty bedding [1]. Although the mean age of affected mice in the published report was 10 months, similar lesions are sometimes found in animals as young as 3 or 4 months of age. The kidney disease appears immune-mediated and is presumably the result of chronic high antigen exposure, although there may be more than one inciting process. -
Determination of Mushroom Toxin Alpha-Amanitin in Serum by Liquid Chromatography-Mass Spectrometry After Solid-Phase Extraction
Original article UDC: 615.918:582.28 doi:10.5633/amm.2015.0102 DETERMINATION OF MUSHROOM TOXIN ALPHA-AMANITIN IN SERUM BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY AFTER SOLID-PHASE EXTRACTION Maja Vujović1,2, Ivana Ilić3, Vesna Kilibarda4 University of Niš, Faculty of Medicine, Department of Pharmacy, Serbia1 Institute of Forensic Medicine, Niš, Serbia2 University of Niš, Faculty of Medicine, Serbia3 Military Medical Academy Belgrade, National Poison Control Centre, Serbia4 Alpha-amanitin is a cyclic peptide which belongs to a large group of mushroom toxins known as amatoxins. Being responsible for the majority of fatal mushroom poisonings, they require rapid detection and excretion from the body fluids. In accordance with these requirements, a simple and an accurate method was developed for successful identification and quantification of alpha-amanitin in serum with electrospray liquid chromatography–mass spectrometry (LC-ESI-MS) after collision-induced dissociation. The method conforms to the established International Conference on Harmonization Q2A/Q2B 1996 guidelines on the validation of analytical methods. Linearity, precision, extraction recovery and stability test on blank serum spiked with alpha-amanitin and stored in different conditions met the acceptance criteria. The obtained calibration curve was linear over the concentration range 5-100 ng/mL with a lower limit of quantification (LOQ) of 5 ng/mL and limit of detection (LOD) of 2.5 ng/mL. The mean intra- and inter-day precision and accuracy were 6.05% and less than ±15% of nominal values, respectively. The neutral solid phase extraction with copolymer hydrophilic–lipophilic balance cartridges was found optimal for sample preparation with the mean recovery of 91.94%. -
A Report on Mushrooms Poisonings in 2018 at the Apulian Regional Poison Center
Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2020 Sep 03; 8(E):616-622. https://doi.org/10.3889/oamjms.2020.4208 eISSN: 1857-9655 Category: E - Public Health Section: Public Health Disease Control A Report on Mushrooms Poisonings in 2018 at the Apulian Regional Poison Center Leonardo Pennisi1, Anna Lepore1, Roberto Gagliano-Candela2*, Luigi Santacroce3, Ioannis Alexandros Charitos1 1Department of Emergency/Urgent, National Poison Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Foggia, Italy; 2Department of Interdisciplinary Medicine, Forensic Medicine, University of Bari, Bari, Italy; 3Ionian Department, Microbiology and Virology Lab, University of Bari, Bari, Italy Abstract Edited by: Sasho Stoleski BACKGROUND: The “Ospedali Riuniti’s Poison Center” (Foggia, Italy) provides a 24 h telephone consultation in Citation: Pennisi L, Lepore A, Gagliano-Candela R, Santacroce L, Charitos IA. A Report on Mushrooms clinical toxicology to the general public and health-care professionals, including drug information and assessment of Poisonings in 2018 at the Apulian Regional Poison Center. the effects of commercial and industrial chemical substances, toxins but also plants and mushrooms. It participates Open Access Maced J Med Sci. 2020 Sep 03; 8(E):616-622. in diagnosis and treatment of the exposure to toxins and toxicants, also throughout its ambulatory activity. https://doi.org/10.3889/oamjms.2020.4208 Keywords: Poisoning; Intoxication; Epidemiology; Poison center; Mushroom poisoning METHODS: To report data on the epidemiology of mushroom poisoning in people contacting our Poison Center we *Correspondence: Roberto Gagliano-Candela, made computerized queries and descriptive analyses of the medical records database of the mushroom poisoning Department of Interdisciplinary Medicine, Forensic in the poison center of Foggia from January 2018 to December 2018. -
Conference 1 C O N F E R E N C E 16 29 January 2020 18 August, 2021 Dr
Joint Pathology CeJointnter Pathology Center Veterinary PatholVeterinaryogy Service Pathologys Services WEDNESDAY SLIDE CONFERENCE 2021-2022 WEDNESDAY SLIDE CONFER ENCE 2019-2020 Conference 1 C o n f e r e n c e 16 29 January 2020 18 August, 2021 Dr. Ingeborg Langohr, DVM, PhD, DACVP Professor Department of Pathobiological Sciences Louisiana S tate University School of Veterinary Medicine Baton RouJointge, L APathology Center Silver Spring, Maryland CASE I: CASE S1809996 1: 1 ((4152313JPC 4135077-00) ). Microscoptan/purple.ic Descr ipThetio n:medullary The inte rstitparenchymaium was within thedisrupted section isby diff dozensusel yof infilt brightra tedred btoy dull purple SignalmeSignalment:nt: A 3-mont h-old, male, mixed- moderate linesto lar thatge radiatednumbers from of pre thedomi levelna ofntl they renal crest breed pig 6(-Susmonth scrofa-old )male (intact) mastiff (Canis mononuclethroughar cell thes a lonmedulla.g with edema. There familiaris). is abunda nt type II pneumocyte hyperplasia History: This pig had no previous signs of lining alveolar septae and many of the illness, andHistory: was found dead. The patient was referred to a veterinary medicalalveola r spaces have central areas of Gross Patholteachingogy : hospitalApprox imfollowingately 70% an o facute, 1-dayne- crotic macrophages admixed with other the lungs,history primar ofily lethargy in the c andrani ainappetencel regions o fthat quicklymononucle ar cells and fewer neutrophils. the lobes, progressedwere patch toy obtundation. dark red, and Bloodwork firm performedOc casionally there is free nuclear basophilic comparedat to thethe rDVMmore norevealedrmal ar etooas ofhigh lun tog. read ALT, elevated ALP (805 U/L), hypoalbuminemia (2.7 Laboratorg/dL)y re suandlts: hypoglycemia Porcine reprodu (23 cmg/dL).tive PT and and respiraaPTTtory weresyndrome both prolonged (PRRS) PCat >100R wa secs and >300 positive frsec,om sprespectively.lenic tissue, Protein and P RandRS IHCbilirubin were was strongdetectedly immunore on a urineactive dipstick. -
The Effect of a High-Resolution Accurate Mass Spectrometer On
GÜFBED/GUSTIJ (2020) 10 (4): 878-886 Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi DOI: 10.17714/gumusfenbil.680816 Araştırma Makalesi / Research Article The Effect of A High-Resolution Accurate Mass Spectrometer On Simultaneous Multiple Mushroom Toxin Detection Yüksek Çözünürlüklü Kütle Spektrometrenin Eşzamanlı Çoklu Mantar Toksin Tayinleri Üzerindeki Etkisi Yasemin NUMANOĞLU ÇEVİK*1,2,a 1MoH, Turkish Public Health General Directorate, Microbiology Reference Laboratory, Adnan Saygun Street 55, 06100 Sıhhıye, Ankara, TURKEY 2Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-Bis, 9000 Gent, Belgium • Geliş tarihi / Received: 29.01.2020 • Düzeltilerek geliş tarihi / Received in revised form: 17.06.2020 • Kabul tarihi / Accepted: 02.07.2020 Abstract Amatoxins are deadly wild mushroom toxins that cause severe poisoning in humans, from diarrhea to organ dysfunction. Mortality can be as high as 80% if no specific treatment is applied. In this study, separation and determination methods were developed for the simultaneous determination of 7 toxins belonging to Amanita phalloides. After extraction and purification of Amanita phalloides (death cap) wild mushrooms, toxins were detected using HPLC- ESI MS and exact mass with time of flight MS (TOF-MS) in positive ionization mode. In addition, it was observed that the toxins of α- and β-amanitine could be differentiated from each other thanks to HR-MS detection in case of their close retention (Rt) in LC. The presence of two toxins at the same retention point in the chromatogram was detected by differentiating the molecular ion mass (920.3514 DA) of the α-amanitine with the HR-MS (920.3696 DA). -
Determination of Mushroom Toxin Alpha-Amanitin in Serum by Liquid Chromatography-Mass Spectrometry After Solid-Phase Extraction
Original article UDC: 615.918:582.28 doi:10.5633/amm.2015.0102 DETERMINATION OF MUSHROOM TOXIN ALPHA-AMANITIN IN SERUM BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY AFTER SOLID-PHASE EXTRACTION Maja Vujović1,2, Ivana Ilić3, Vesna Kilibarda4 University of Niš, Faculty of Medicine, Department of Pharmacy, Serbia1 Institute of Forensic Medicine, Niš, Serbia2 University of Niš, Faculty of Medicine, Serbia3 Military Medical Academy Belgrade, National Poison Control Centre, Serbia4 Alpha-amanitin is a cyclic peptide which belongs to a large group of mushroom toxins known as amatoxins. Being responsible for the majority of fatal mushroom poisonings, they require rapid detection and excretion from the body fluids. In accordance with these requirements, a simple and an accurate method was developed for successful identification and quantification of alpha-amanitin in serum with electrospray liquid chromatography–mass spectrometry (LC-ESI-MS) after collision-induced dissociation. The method conforms to the established International Conference on Harmonization Q2A/Q2B 1996 guidelines on the validation of analytical methods. Linearity, precision, extraction recovery and stability test on blank serum spiked with alpha-amanitin and stored in different conditions met the acceptance criteria. The obtained calibration curve was linear over the concentration range 5-100 ng/mL with a lower limit of quantification (LOQ) of 5 ng/mL and limit of detection (LOD) of 2.5 ng/mL. The mean intra- and inter-day precision and accuracy were 6.05% and less than ±15% of nominal values, respectively. The neutral solid phase extraction with copolymer hydrophilic–lipophilic balance cartridges was found optimal for sample preparation with the mean recovery of 91.94%. -
Amanita Phalloides Poisoning: Mechanisms of Toxicity and Treatment
Food and Chemical Toxicology 86 (2015) 41–55 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Review Amanita phalloides poisoning: Mechanisms of toxicity and treatment Juliana Garcia a,∗, Vera M. Costa a, Alexandra Carvalho b, Paula Baptista c,PaulaGuedesde Pinho a, Maria de Lourdes Bastos a, Félix Carvalho a,∗∗ a UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua José Viterbo Ferreiran° 228, 4050-313 Porto, Portugal b Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden c CIMO/School of Agriculture, Polytechnique Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-854 Bragança, Portugal article info abstract Article history: Amanita phalloides, also known as ‘death cap’, is one of the most poisonous mushrooms, being involved Received 10 April 2015 in the majority of human fatal cases of mushroom poisoning worldwide. This species contains three main Received in revised form 8 September 2015 groups of toxins: amatoxins, phallotoxins, and virotoxins. From these, amatoxins, especially α-amanitin, Accepted 10 September 2015 are the main responsible for the toxic effects in humans. It is recognized that α-amanitin inhibits RNA Available online 12 September 2015 polymerase II, causing protein deficit and ultimately cell death, although other mechanisms are thought Keywords: to be involved. The liver is the main target organ of toxicity, but other organs are also affected, especially Amanita phalloides the kidneys. Intoxication symptoms usually appear after a latent period and may include gastrointestinal Amatoxins disorders followed by jaundice, seizures, and coma, culminating in death. -
Protein-Polymer-Drug Conjugates
(19) TZZ¥ ¥ _T (11) EP 3 228 325 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.10.2017 Bulletin 2017/41 A61K 47/59 (2017.01) A61K 47/68 (2017.01) A61K 47/64 (2017.01) A61P 35/00 (2006.01) (21) Application number: 17159707.3 (22) Date of filing: 11.06.2012 (84) Designated Contracting States: • THOMAS, Joshua D AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Natick, MA Massachusetts 01760 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • HAMMOND, Charles E PL PT RO RS SE SI SK SM TR Billerica, MA Massachusetts 01821 (US) • STEVENSON, Cheri A (30) Priority: 10.06.2011 US 201161495771 P Haverhill, MA Massachusetts 01832 (US) 24.06.2011 US 201161501000 P • BODYAK, Natalya D 29.07.2011 US 201161513234 P Boston, MA 02135 (US) 05.12.2011 US 201161566935 P • CONLON, Patrick R 01.03.2012 US 201261605618 P Wakefield, MA Massachusetts 01880 (US) 30.03.2012 US 201261618499 P • GUMEROV, Dmitry R Waltham, MA Massachusetts 02451 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Cooley (UK) LLP 12728014.7 / 2 717 916 Dashwood 69 Old Broad Street (71) Applicant: Mersana Therapeutics, Inc. London EC2M 1QS (GB) Cambridge, MA 02139 (US) Remarks: (72) Inventors: •Claims f iled aft er the date of fil ing of the • YURKOVETSKIY, Aleksandr application/after the date of receipt of the divisional Littleton, MA Massachusetts 01460 (US) application (Rule 68(4) EPC) • YIN, Mao •This application was filed on 07-03-2017 as a Needham, MA Massachusetts 02492 (US) divisional application to the application mentioned • LOWINGER, Timothy B under INID code 62. -
| Hai Lala Mo at Alt a La La La Manual
|HAI LALA MO ATUS009938323B2 ALT A LA LA LA MANUAL (12 ) United States Patent ( 10 ) Patent No. : US 9 ,938 , 323 B2 Grunewald et al. (45 ) Date of Patent : Apr . 10 , 2018 ( 54 ) AMATOXIN DERIVATIVES AND WO 2014135282 AL 9 / 2014 CONJUGATES THEREOF AS INHIBITORS WO 2014141094 Al 9 / 2014 OF RNA POLYMERASE WO 2016142049 AL 9 / 2016 (71 ) Applicant: NOVARTIS AG , Basel (CH ) OTHER PUBLICATIONS ( 72 ) Inventors : Jan Grunewald , San Diego , CA (US ) ; Yunho Jin , San Diego , CA (US ) ; Zhao , et al ., “ Synthesis of a Cytotoxic Amanitin for Biorthogonal Weijia Ou , San Diego , CA (US ) ; Conjugation ” , ChemBioChem , 2015 , pp . 1420 - 1425, vol . 16 , Tetsuo Uno , San Diego , CA (US ) Wiley - VCH Verlag GmbH & Co . Adair, et al ., “ Antibody -drug conjugates a perfect synergy ” , ( 73 ) Assignee : Novartis AG , Basel (CH ) Expert Opin . Biol. Ther. , 2012 , pp . 1191 - 1206 , vol. 12 , No . 9 , Informa UK , Ltd . ( * ) Notice : Subject to any disclaimer , the term of this Flygare , et al ., “ Antibody - Drug Conjugates for the Treatment of patent is extended or adjusted under 35 Cancer ” , Chem . Biol . Drug . Des. , 2013 , pp . 113 - 121 , vol. 81 , John Wiley & Sons A / S . U . S . C . 154 ( b ) by 0 days . Jackson , et al ., “ Using the Lessons Learned from the Clinic to Improve the Preclinical Development of Antibody Drug Conju (21 ) Appl. No. : 15 /524 , 197 gates ” , Pharm . Res . , 2014 , pp . 1 - 12 . (22 ) PCT Filed : Nov. 5 , 2015 (Continued ) ( 86 ) PCT No. : PCT/ IB2015 /058537 Primary Examiner — Jeanette Lieb $ 371 ( c ) ( 1 ) , ( 74 ) Attorney , Agent, or Firm — Daniel E . Raymond ; ( 2 ) Date : May 3, 2017 Genomics Institute of the Novartis Research Foundation ( 87) PCT Pub . -
Interactions Between Drugs and Chemicals in Industrial Societies. G.L
© 1987 Elsevier Science Publishers B.V. (Biomedical Division) Interactions between drugs and chemicals in industrial societies. G.L. Plaa, P. du Souich, S. Erill, editors. 255 NEW TRENDS IN MUSHROOM POISONING THEODOR WIELAND Max-Planck-Institut fur medizinische Forschung, Jahnstr. 29 D-6900 Heidelberg (FRG) Among the naturally growing products, mushrooms are suspected to be the most poisonous ones. Some people would not eat any mushrooms; the majority is cautious, and consume only a few species confirmed as absolutely innocuous, although the number of edible mushrooms is much greater than it is commonly assumed. The term "poisonous" is a matter of definition. If one defines a substance as poisonous that after ingestión causes transcient irritation of the stomach abdominal pain, nausea and diarrhea then a considreable number of mushrooms are toxic. If one, however, defines a poison as a substance that, in relatively small amounts, can lead to death, only a few species exist that must be designated poisonous fungi. 95% of all lethal intoxications by ingestión are caused by specimens of the genus Amanita. Before treating the important chapter of mushroom poisoning, I would like to mention those species that in rare cases have been reported to have caused death of patients. A. most recent, amply illustrated treatise on poisonous mushrooms has been compiled by Besl and Bresinzki (1). Traditionally, fatal toxicity has been attributed to the red fly-agaric, Amanita muscaria, the mushroom of fairy tales. The reason for this is perhaps the observation that houseflies that suckled enough of the sweetened sap of the mushroom lost their mobility and eventually died. -
Detection of Α-, Β-, and Γ-Amanitin in Urine by LC-MS/MS Using 15 N10-Α-Amanitin As the Internal Standard
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Toxicon Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 September 15. Published in final edited form as: Toxicon. 2018 September 15; 152: 71–77. doi:10.1016/j.toxicon.2018.07.025. Detection of α-, β-, and γ-amanitin in urine by LC-MS/MS using 15 N10-α-amanitin as the internal standard Nicole L. Abbotta, Kasey L. Hillb, Alaine Garrettc, Melissa D. Carterb, Elizabeth I. Hamelinb,*, and Rudolph C. Johnsonb a.Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, GA, USA b.Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA c.Oak Ridge Institute of Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, USA Abstract The majority of fatalities from poisonous mushroom ingestion are caused by amatoxins. To prevent liver failure or death, it is critical to accurately and rapidly diagnose amatoxin exposure. We have developed an liquid chromatography tandem mass spectrometry method to detect α-, β-, and γ-amanitin in urine to meet this need. Two internal standard candidates were evaluated, 15 including an isotopically labeled N10-α-amanitin and a modified amanitin methionine sulfoxide 15 synthetic peptide. Using the N10-α-amanitin internal standard, precision and accuracy of α- amanitin in pooled urine was ≤5.49% and between 100–106%, respectively, with a reportable range from 1–200 ng/mL. β- and γ-Amanitin were most accurately quantitated in pooled urine using external calibration, resulting in precision ≤17.2% and accuracy between 99 – 105% with calibration ranges from 2.5–200 ng/mL and 1.0–200 ng/mL, respectively. -
Deactivation Study of Α-Amanitin Toxicity in Poisonous Amanita Spp
orensi Narongchai and Narongchai, J Forensic Res 2017, 8:6 f F c R o e l s a e n DOI: 10.4172/2157-7145.1000396 r a r u c o h Journal of J ISSN: 2157-7145 Forensic Research Research Article Open Access Deactivation Study of α-Amanitin Toxicity in Poisonous Amanita spp. Mushrooms by the Common Substances In Vitro Paitoon Narongchai* and Siripun Narongchai Department of Forensic Medicine, Faculty of Medicine, ChiangMai University, Chiang Mai, Thailand Abstract The purpose of this research was to find out the substance which deactivate α-AmanitinToxicity The materials and methods used in the study include analysis with high performance liquid chromatography (HPLC) to: 1.Demonstrate the standard α-amanitin at concentrations of 25, 50 and 100 µg/ml 2.Determine the deactivation of α-amanitin with 1) 18% acetic acid 2), calcium hydroxide 40 mg/ml, 3) potassium permanganate 20 mg/ml, 4) sodium bicarbonate 20 mg/ml 3.Report the statistical analysis as the mean ± standard deviation (SD) and paired t-test. The result revealed that potassium permanganate could eliminate 100 percent of the α-amanitin at 25, 50 and 100 µg/ml. Calcium hydroxide, sodium bicarbonate and acetic acid had lower elimination rates at those concentrations: 68.43 ± 2.58 (-71.4, -67.2, -66.7%), 21.48 ± 10.23 (-29.4, -25.2, -9.9%) and 3.21 ± 0.02% (-3.2, -3.2, +1.1%), respectively. The conclusion of this study was suggested that potassium permanganate could be applied as an absorbent substance during gastric lavage in patients with mushroom poisoning.