On the (In-)Accuracy of GPS Measures of Smartphones: a Study of Running Tracking Applications Christine Bauer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AVG Android App Performance and Trend Report H1 2016
AndroidTM App Performance & Trend Report H1 2016 By AVG® Technologies Table of Contents Executive Summary .....................................................................................2-3 A Insights and Analysis ..................................................................................4-8 B Key Findings .....................................................................................................9 Top 50 Installed Apps .................................................................................... 9-10 World’s Greediest Mobile Apps .......................................................................11-12 Top Ten Battery Drainers ...............................................................................13-14 Top Ten Storage Hogs ..................................................................................15-16 Click Top Ten Data Trafc Hogs ..............................................................................17-18 here Mobile Gaming - What Gamers Should Know ........................................................ 19 C Addressing the Issues ...................................................................................20 Contact Information ...............................................................................21 D Appendices: App Resource Consumption Analysis ...................................22 United States ....................................................................................23-25 United Kingdom .................................................................................26-28 -
Andrew Phay Whatcom CD [email protected]
New Technology for Use in Your District Andrew Phay Whatcom CD [email protected] Smart Phones • Takes the place of GPS, Camera, Data Logger, Notes • GPS o iPhone/iPad – MoronX GPS, SpyGlass o Android – MyTracks, GPSLogger • Document Editing– Docs To Go, Google Docs, Office Suite Pro • Notes & To-Dos’– Evernote, Awesome Note • File Access – DropBox, Box.net • LogMeIn • Soilweb • Calendar sharing and reminders • Email • Weather iPad/Tablets • Mapping/GPS – MyTracks, GPSLogger, GISPro, Google Earth, ArcGIS • Word/Excel/PowerPoint – Docs to Go • Notes – Evernote • Photos/video – GPS tags • Conferencing – Skype, FaceTime • Remote Desktop – LogMeIn • File Access – DropBox, Box.net • Scan/Sign/Edit/Draw • Friend Finder – Device Locator • Security – can wipe from AppleID login • Email • Weather – USGS flooding app • Cases/Keyboards/Other accessories o Pen/GPS/Otter Box GPS Test Web LogMeIn iPad iPhone EverNote Web: Evernote iPad: Evernote Screen Shot Screen Shot iPhone: Evernote Screen Shot Other Hardware • Cameras - Waterproof/Dustproof/Fog-resistant • Portable Projectors File Syncing • DropBox – 2gb free o On smartphones, PC, Mac, Integrates with Docs2Go o Can share a link through email that others can download. • Box.net – 5gb free o Same kind of stuff Online Mapping • ArcGIS.com • Google Maps - My Places • Google Fusion Tables Website Management • Drupal • WordPress • SquareSpace • Google Sites News Aggregators Password Manager • Holds all my passwords • One Master password • On smartphones • Generates passwords • Browser Plugin • Security is great! Browser Plugins • News Aggregators • Lastpass • Screenshots - Fireshot • Download helpers – DownloadThemAll • Morning Coffee Teleconferencing/ Desktop Sharing • LogMeIn - free • Skype - free • Crossloop - free • Join.me – free • GoToMeeting • WebEx Social Networking • Facebook • LinkedIn • Twitter • Google+ • Google Groups Thanks! Andrew Phay [email protected] 360-354-2035 x129 . -
A Security Framework for Mobile Health Applications on Android Platform
A SECURITY FRAMEWORK FOR MOBILE HEALTH APPLICATIONS ON ANDROID PLATFORM MUZAMMIL HUSSAIN FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY UNIVERSITY OF MALAYA UniversityKUALA LUMPUR of Malaya 2017 A SECURITY FRAMEWORK FOR MOBILE HEALTH APPLICATIONS ON ANDROID PLATFORM MUZAMMIL HUSSAIN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY UNIVERSITY OF MALAYA UniversityKUALA LUMPUR of Malaya 2017 UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: Muzammil Hussain Matric No: WHA130038 Name of Degree: Doctor of Philosophy Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): A SECURITY FRAMEWORK FOR MOBILE HEALTH APPLICATIONS ON ANDROID PLATFORM Field of Study: Network Security (Computer Science) I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. -
Understanding and Detecting Wake Lock Misuses for Android Applications
✓ Artifact evaluated by FSE Understanding and Detecting Wake Lock Misuses for Android Applications Yepang Liux Chang Xu‡ Shing-Chi Cheungx Valerio Terragnix xDept. of Comp. Science and Engineering, The Hong Kong Univ. of Science and Technology, Hong Kong, China ‡State Key Lab for Novel Software Tech. and Dept. of Comp. Sci. and Tech., Nanjing University, Nanjing, China x{andrewust, scc*, vterragni}@cse.ust.hk, ‡[email protected]* ABSTRACT over slow network connections, it may take a while for the transaction to complete. If the user's smartphone falls asleep Wake locks are widely used in Android apps to protect crit- while waiting for server messages and does not respond in ical computations from being disrupted by device sleeping. time, the transaction will fail, causing poor user experience. Inappropriate use of wake locks often seriously impacts user To address this problem, modern smartphone platforms al- experience. However, little is known on how wake locks are low apps to explicitly control when to keep certain hardware used in real-world Android apps and the impact of their mis- awake for continuous computation. On Android platforms, uses. To bridge the gap, we conducted a large-scale empiri- wake locks are designed for this purpose. Specifically, to keep cal study on 44,736 commercial and 31 open-source Android certain hardware awake for computation, an app needs to ac- apps. By automated program analysis and manual investi- quire a corresponding type of wake lock from the Android gation, we observed (1) common program points where wake OS (see Section 2.2). When the computation completes, the locks are acquired and released, (2) 13 types of critical com- app should release the acquired wake locks properly. -
Privatumo Apsaugos Metodas Nuo Buvimo Vietos Nustatymo Mobiliesiems Įrenginiams Baigiamasis Magistro Studijų Projektas
Kauno technologijos universitetas Informatikos fakultetas Privatumo apsaugos metodas nuo buvimo vietos nustatymo mobiliesiems įrenginiams Baigiamasis magistro studijų projektas Deimantė Zemeckytė Projekto autorė Prof. Jevgenijus Toldinas Vadovas Kaunas, 2021 Kauno technologijos universitetas Informatikos fakultetas Privatumo apsaugos metodas nuo buvimo vietos nustatymo mobiliesiems įrenginiams Magistro studijų projektas Informacijos ir informaciniu technologijų sauga (621E10003) Deimantė Zemeckytė Projekto autorė Prof. Jevgenijus Toldinas Vadovas Doc. Statys Maciulevičius Recenzentas Kaunas, 2021 2 Kauno technologijos universitetas Informatikos fakultetas Deimantė Zemeckytė Privatumo apsaugos metodas nuo buvimo vietos nustatymo mobiliesiems įrenginiams Akademinio sąžiningumo deklaracija Patvirtinu, kad mano, Deimantė Zemeckytė, baigiamasis projektas tema „Privatumo apsaugos metodas nuo buvimo vietos nustatymo mobiliesiems įrenginiams“ yra parašytas visiškai savarankiškai ir visi pateikti duomenys ar tyrimų rezultatai yra teisingi ir gauti sąžiningai. Šiame darbe nei viena dalis nėra plagijuota nuo jokių spausdintinių ar internetinių šaltinių, visos kitų šaltinių tiesioginės ir netiesioginės citatos nurodytos literatūros nuorodose. Įstatymų nenumatytų piniginių sumų už šį darbą niekam nesu mokėjęs. Aš suprantu, kad išaiškėjus nesąžiningumo faktui, man bus taikomos nuobaudos, remiantis Kauno technologijos universitete galiojančia tvarka. Deimantė Zemeckytė (vardą ir pavardę įrašyti ranka) (parašas) Deimantė Zemeckytė. Privatumo apsaugos -
The State of Mobile 2019 Executive Summary
1 Table of Contents 07 Macro Trends 19 Gaming 25 Retail 31 Restaurant & Food Delivery 36 Banking & Finance 41 Video Streaming 46 Social Networking & Messaging 50 Travel 54 Other Industries Embracing Mobile Disruption 57 Mobile Marketing 61 2019 Predictions 67 Ranking Tables — Top Companies & Apps 155 Ranking Tables — Top Countries & Categories 158 Further Reading on the Mobile Market 2 COPYRIGHT 2019 The State of Mobile 2019 Executive Summary 194B $101B 3 Hrs 360% 30% Worldwide Worldwide App Store Per day spent in Higher average IPO Higher engagement Downloads in 2018 Consumer Spend in mobile by the valuation (USD) for in non-gaming apps 2018 average user in companies with for Gen Z vs. older 2018 mobile as a core demographics in focus in 2018 2018 3 COPYRIGHT 2019 The Most Complete Offering to Confidently Grow Businesses Through Mobile D I S C O V E R S T R A T E G I Z E A C Q U I R E E N G A G E M O N E T I Z E Understand the Develop a mobile Increase app visibility Better understand Accelerate revenue opportunity, competition strategy to drive market, and optimize user targeted users and drive through mobile and discover key drivers corp dev or global acquisition deeper engagement of success objectives 4 COPYRIGHT 2019 Our 1000+ Enterprise Customers Span Industries & the Globe 5 COPYRIGHT 2019 Grow Your Business With Us We deliver the most trusted mobile data and insights for your business to succeed in the global mobile economy. App Annie Intelligence App Annie Connect Provides accurate mobile market data and insights Gives you a full view of your app performance. -
Preventing Duplicate Bug Reports by Continuously Querying Bug Reports
EMSE manuscript No. (will be inserted by the editor) Preventing Duplicate Bug Reports by Continuously Querying Bug Reports Abram Hindle · Curtis Onuczko Received: date / Accepted: date Abstract Bug deduplication or duplicate bug report detection is a hot topic in software engineering information retrieval research, but it is often not de- ployed. Typically to de-duplicate bug reports developers rely upon the search capabilities of the bug report software they employ, such as Bugzilla, Jira, or Github Issues. These search capabilities range from simple SQL string search to IR-based word indexing methods employed by search engines. Yet too often these searches do very little to stop the creation of duplicate bug reports. Some bug trackers have more than 10% of their bug reports marked as duplicate. Perhaps these bug tracker search engines are not enough? In this paper we propose a method of attempting to prevent duplicate bug reports before they start: continuously querying. That is as the bug reporter types in their bug report their text is used to query the bug database to find duplicate or related bug reports. This continuously querying bug reports allows the reporter to be alerted to duplicate bug reports as they report the bug, rather than formulat- ing queries to find the duplicate bug report. Thus this work ushers in a new way of evaluating bug report deduplication techniques, as well as a new kind of bug deduplication task. We show that simple IR measures can address this problem but also that further research is needed to refine this novel process that is integrate-able into modern bug report systems. -
Geo-Tracking Tracking Routes, Syncing Coordinates
geo-tracking tracking routes, syncing coordinates overview: If you are taking photos with a device that does not have a built in GPS, you can add geographic coordinates to those photos by associating those images with a recording of your route from a device that has GPS capabilities. This is useful when you have a camera with no built-in GPS but you do have a cell phone with GPS capabilities or a stand-alone GPS device. Because both your photos and the recording of your route include time information, the photos can look to a file of your route — a GPX file — and see where you were, when, and thus where you were when each photo was taken. For this to work, the date and time on the device recording images and the device recording your route should be closely synced. creating a route: There are numerous applications for Android and iOS that allow you to record geographical routes and export that information. Here we are using the app My Tracks for Android (myTracks for iOS). It is free and works well enough for our purposes. Once you have synced your phone and camera clocks, hit the red record button on the My Tracks app. By default, the app will continue to record your route until you tell it to stop. Go for a walk, car trip, or jet ski ride and take some photos as you go (though please not while you’re driving). When you have finished your route and taking photos, hit the stop button. You will be prompted to give your route a name. -
Collecting Activity Data Using the Open Mhealth Platform an Exploratory Study on Integrating Objective Data with Sport Monitoring Systems
Collecting activity data using the Open mHealth platform An exploratory study on integrating objective data with sport monitoring systems Daniel Gynnild-Johnsen , Lars-Erik Holte Master’s Thesis Spring 2017 Collecting activity data using the Open mHealth platform Daniel Gynnild-Johnsen Lars-Erik Holte May 2, 2017 Abstract Football players works together as a unit to perform on an elite competi- tive level, and the most minor abnormalities can determine the outcome of a match. Success can often be the result of healthy, uninjured and rejuve- nated players working together as a collective. Even though it is impossible to control all outcomes and scenarios, the risk of failure might be mini- mized by monitoring players closely on an individual level. If we monitor players over a longer period of time we might discover patterns or abnor- malities in their training. This information can be used to avoid multiple scenarios related to fatigue, injuries and overtraining. In this thesis we present a proof of concept for expanding an existing self- reporting monitoring system called pmSys, and look at how football teams and players can utilize modern technology like phones and wearable de- vices to capture objective data. This system will collect and store the data, which can be processed into useful visualised feedback, and help a team to evaluate their players. This way the coaches can make mitigating mea- sures to improve certain aspect that might be lacking on a player or team level. By eliminating the use of pen and paper, pmSys introduces a simpler way of reporting the players’ health status. -
A Study on Twitter Usage for Fitness Self-Reporting Via Mobile Apps
AAAI Technical Report SS-12-05 Self-Tracking and Collective Intelligence for Personal Wellness A Study on Twitter Usage for Fitness Self-Reporting via Mobile Apps Theodore A. Vickey, John G. Breslin Digital Enterprise Research Institute / School of Engineering and Informatics, National University of Ireland, Galway {[email protected]} Abstract Eventually, we will have access to health information 24 The purpose of this study was to research the new emerging hours a day, 7 days a week, encouraging personal wellness technology of mobile health, the use of mobile fitness apps and prevention, and leading to better informed decisions to share one’s workout with their Twitter social network, the about health care”. The concept of “electronic health” or workout tweets and the individualities of the Tweeters. eHealth has been defined in a number of different ways 70,748 tweets from mobile fitness application Endomondo were processed using an online tweet collection application (Oh et al. 2005). One generally accepted definition and a customized JavaScript to determine aspects of the proposed by (Eng 2001) focuses on the use of emerging shared workouts and the demographics of those that share. interactive technologies to enable disease prevention and The data shows that by tracking mobile fitness app hashtags, disease management. eHealth uses technologies such as a wealth of information can be gathered to include but not miniaturized health sensors, broadband networks and limited to exercise frequency, daily use patterns, location based workouts and language characteristics. While a mobile devices are enhancing and creating new health care majority of these tweets are to share a specific workout with capabilities such as remote monitoring and online care their Twitter social networking, the data would suggest (Accenture 2009). -
{DOWNLOAD} Wearable Android : Android Wear and Google FIT App Development Ebook
WEARABLE ANDROID : ANDROID WEAR AND GOOGLE FIT APP DEVELOPMENT PDF, EPUB, EBOOK Sanjay M. Mishra | 280 pages | 15 Sep 2015 | John Wiley and Sons Ltd | 9781119051107 | English | Hoboken, United States Wearable Android : Android Wear and Google FIT App Development PDF Book You can also unlock achievements as you progress to more advanced workouts. It's dead basic. Luckily the Find My Phone Android Wear app lets you turn on an alarm sound or vibration so you can be quickly reunited. Like Apple, Samsung and Fitbit, Google now wants to keep you calm with a new guided breathing feature that is available within the Google Fit app. Please try again. Citymapper One of the few apps that can really justify an Android Wear watch is Citymapper. Connect to the Google Fit platform to read and store a user's health and wellness data across devices, collect activity data, and record sensor data. Tweet Share Email. What better way to get your heart rate up than to use an app that puts you on a mission and tasks you with outrunning zombies? There was an error. Load the app and you can add new tasks to a current list by simply talking to the watch. How to add Google Fit app widget to your phone homescreen In its latest Fit update, Google has added the ability to let you keep a closer eye on your Move Minutes and Heart Points on your phone by adding support for a Fit widget. It runs in the background while you carry about your exercise or just casual walking , then sends your stats to either a custom Google Map or your Google Docs account. -
(In-)Accuracy of GPS Measures of Smartphones: a Study of Running Tracking Applications
PRE-PRINT VERSION Bauer, Christine (2013). On the (in-)Accuracy of GPS Measures of Smartphones: A Study of Running Tracking Applications. Proceedings of the 11th International Conference on Advances in Mobile Computing & Multimedia (MoMM2013). 2-4 Dec, Vienna, Austria, pp 335- 340. DOI: 10.1145/2536853.2536893 The final publication is available at ACM via https://doi.org/10.1145/2536853.2536893 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 1 PRE-PRINT VERSION Bauer, Christine (2013). On the (in-)Accuracy of GPS Measures of Smartphones: A Study of Running Tracking Applications. Proceedings of the 11th International Conference on Advances in Mobile Computing & Multimedia (MoMM2013). 2-4 Dec, Vienna, Austria, pp 335-340. DOI: 10.1145/2536853.2536893 The final publication is available at ACM via https://doi.org/10.1145/2536853.2536893 On the (In-)Accuracy of GPS Measures of Smartphones: A Study of Running Tracking Applications Christine Bauer Vienna University of Economics and Business Welthandelsplatz 1, D2 1020 Vienna, Austria +43-1-31336-4420 [email protected] ABSTRACT Sports tracking applications are increasingly available on the market, and research has recently picked up this topic. Tracking a user’s running track and providing feedback on the performance are among the key features of such applications. However, little attention has been paid to the accuracy of the applications’ localization measurements. In evaluating the nine currently most popular running applications, we found tremendous differences in the GPS measurements. Besides this finding, our study contributes to the scientific knowledge base by qualifying the findings of previous studies concerning accuracy with smartphones’ GPS components.