Biosystematic Studies in the Genus Thelypteris Section Cyclosorus Alan Reid Smith Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Biosystematic Studies in the Genus Thelypteris Section Cyclosorus Alan Reid Smith Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Biosystematic studies in the genus Thelypteris section Cyclosorus Alan Reid Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Smith, Alan Reid, "Biosystematic studies in the genus Thelypteris section Cyclosorus " (1969). Retrospective Theses and Dissertations. 3779. https://lib.dr.iastate.edu/rtd/3779 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BICSYSTEMTIC STUDIES IK THE GENUS THELYPTERI3 SECTION CYCLC3CHUS ^y Alan Re id Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Fiant Taxonomy Approved : Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. of Graduate College Iowa State University Ames, Iowa 1969 70-7739 SMITH, Alan Reid, 1943- BIOSYSTEMATIC STUDIES IN THE GENUS THELYPTERIS SECTION CYCLOSORUS. lowa State University, Ph.D., 1969 Botany University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED iii Thelypter is cretacea Thelypteris dentata 1^0 Thelypteris extensa 157 Thelypteris invisa var. invisa l6l Thelypteris invisa var. aeauatorialis Thelypteris invisa var. peropopon 169 Thelypteris invisa var. Icunzeana 173 Thelypteris invisa var. pallescens 1/6 Thelypteris normalis 177 Thelypteris ovata var. ovata 184 Thelypteris ovata var. lindheimeri l89 Thelypteris parasitica 193 Thelypteris patens var. patens 19^ Thelypteris patens var. lanosa 201 Thelypteris patens var. scabriuscula 202 Thelypteris puberula var. puberula 206 Thelypteris puberula var. sonorensis 211 Thelypteris quadrannularis var, auadrar;r-u1 aris 214 Thelypteris quadrangular is var. incoiistans 221 Thelypteris quadrangularis var. versicolor 224 Thelypteris serra 228 Thelypteris totta var. totta 233 Thelypteris totta var. hirsuta 238 Thelypteris tuerckheiaii 240 Hybrids 244 Thelypteris au^escens X norinalis 244 Thelypteris aurescens X ova ta 245 Thelypteris cretacea X normal is 245 Thelypteris invisa -var. geroposcon X n-jcerv-lr> 245 Thelypteris invisa X serra 246 Thelypteris nornaiis X ovata 246 Thelypteris normal is X quadranprular is 246 Thelypteris normal is X serra 247 SUMMARY 248 LITERATURE CITED 250 ACKNOWLEDGMENTS ?60 APPENDIX A: TAXA EXCLUDED FROM TREATMENT 262 APPENDIX B: TAXA OF UNCERTAIN STATUS 267 APPENDIX C: SELECTED SPECIMENS EXAMINED 278 1 INTRODUCTION The genus Thelypteris sensu lato is composed of nearly 1000 species in all tropical and subtropical regions of the earth. Aside from the many nomenclatural problems in this genus, there are taxonomic difficulties in the various sub­ groups. Such a subgroup is the section Cyclosorus of Morton (1963). Thelypteris section Cyclosorus is one of the larger groups within the genus and numbers perhaps 300 species according to Copeland (19^7). Within the section, the New World species comprise a group of fewer than 20 species. It was conceded to be a very natural group by Christensen (1913) in his monograph of Dryopterls, under which Thelypteris was formerly submerged. Christensen's treatment is basically a good one, but the problems he found prompted him to state that "The subgenus [Cyclosorus] is as a whole the most difficult to deal with." As Christensen recognized, the chief problems encountered in this group are the extreme variability in the species and the large number of forms which are seemingly intermediate between species. Since Christensen's monumental work, several new species have been named and hybrids have been suggested by several authors to account for some of the intermediates. Robert and Edward St. John, avid collectors of Florida ferns during the 1930's, described numerous new species. Although not solving 3 METHODS AND MATERIALS Herbaria; Many of the observations presented here are based on the study of nearly 4,000 specimens on loan from various herbaria. I am grateful to those curators who so kindly made these specimens, as well as types and photographs, available for examination. Since most of the species under consideration are very common and have been widely collected, it was considered sufficient for the purpose of this study to examine material from only a few of the larger herbaria in the United States. Listed below, using the standard abbreviations of Lanjouw and Stafleu ilSGk) , are the herbaria from which specimens were borrowed. The University of Mississippi, which did not have an entry, is indicated by the abbreviation MISS. ISC - Iowa State University, Ames, Iowa MICH - University of Michigan, Ann Arbor, Michigan MISS - University of Mississippi, University. Mississippi MO - Missouri Botanical Garden, St. Louis, Missouri NY - New York Botanical Garden, New York, New York US - United States National Museum, Washington, D.C. Field collections; During the fall of 1966, I made a collecting trip to northern and central Florida to procure pressed specimens, living plants and preserved material for cytological examination. Pieces of fertile pinnae were fixed in either Newcomer's solution (Newcomer, 1953) or in 3:1 4 absolute alcohol:acetic acid, but material preserved in the field resulted in rather poor cytological preparations, possibly because of a lack of refrigeration. A return trip was made to southern Florida in November, 1967. Both pressed specimens and living rhizomes were again collected and brought back for study. Additional collections were made in Costa Rica while I was participating in a course on the biology of tropical pterldophytes (Nickel, 1967). Greenhouse culture: Brief mention should be made of the adaptability of these plants to greenhouse conditions. The living rhizomes brought back established themselves quickly in a 3:1 mixture of soil and sand. In a few instances small amounts of peat or ground limestone rock were added to the potting mixture, without visible effects on the growth of the plants. Although they are able to grow quic^ well under nearly full insolation, most plants responded with even more luxurious growth when the light intensity was reduced with fine mesh screening and whitewashing of the greenhouse panels. Many of the plants collected in the field were sterile; under greenhouse conditions, however, nearly all material soon became fertile. This is possibly a reaction to the increased light intensity, since decreased fertility was noted in many greenhouse plants during the winter. This photoperiodic response does not seem to apply to the more weedy species. Unlike most ferns, the species of sect. Cyclosorus do exceptionally well under alkaline conditions. This was 5 fortunate because the hardness of the water furnishing the greenhouses Is approximately 38^ ppm (including 98 ppm Ca and 35 ppm Mg) with a pH of 8.1. This rather high alkalinity makes it nearly impossible to culture many other ferns. Most of the species can tolerate low humidity and high temperatures for at least short periods of time. However, young croziers and pinnae are damaged after several hours under such conditions. Mature fronds can withstand much longer periods of desiccation. Anatomical preparations: Leaf segments were cleared in 5^ aqueous sodium hydroxide for several days, with final clear­ ing in a 20^ solution of Clorox followed by chloral hydrate. Specimens were stained using the tannic acid-ferric chloride method of Foster (193^) and mounted in either piccolyte or diaphane. Spores were mounted in 85^ lactic acid which pro­ duced partial clearing when heated. Cytology: All of the cytological observations presented in this paper were made from plants established in the green­ house. Pinnae were fixed in either 3-1 absolute alcohol: acetic acid or in the fixative suggested by Newcomer (1953)• Preparations were stained with aceto-carmine according to the process described by Kanton (1950) ^nd squashed as flat as possible. With the exception of a single count made from a somatic cell (probably a tapetal nucleus), all chromosome counts were made from sporogenous cells undergoing me lotie division. 6 After drawing the best figures, all slides were made permanent. Initially the carbon dioxide freezing technique of Bowen (195^) was used but many good meiotic figures were lost. The method which ultimately gave the best results involved rinsing underneath the ccverslip with ^5^ acetic acid until excess stain was removed, then displacing the acetic acid-water solution with either absolute ethyl alcohol or 3:1. The slide was then ringed with diaphane and allowed to dry. Measurements: A Bausch and Lomb dissecting microscope equipped w5th a micrometer disk graduated to 0.1 mm was used to measure selected morphological characters of the various species. Many of the measurements are in the form of ranges of variation with the extremes indicated in parentheses, as in "pinnae (4) 5-9 (11) cm long." This means that the majority of specimens had pinnae from 5-9 cm long, with a minimum of 4 cm and a maximum of 11 cm. Measurements requiring greater magnllication were made using a Leitz compound
Recommended publications
  • Lista Anotada De La Taxonomía Supraespecífica De Helechos De Guatemala Elaborada Por Jorge Jiménez
    Documento suplementario Lista anotada de la taxonomía supraespecífica de helechos de Guatemala Elaborada por Jorge Jiménez. Junio de 2019. [email protected] Clase Equisetopsida C. Agardh α.. Subclase Equisetidae Warm. I. Órden Equisetales DC. ex Bercht. & J. Presl a. Familia Equisetaceae Michx. ex DC. 1. Equisetum L., tres especies, dos híbridos. β.. Subclase Ophioglossidae Klinge II. Órden Psilotales Prantl b. Familia Psilotaceae J.W. Griff. & Henfr. 2. Psilotum Sw., dos especies. III. Órden Ophioglossales Link c. Familia Ophioglossaceae Martinov c1. Subfamilia Ophioglossoideae C. Presl 3. Cheiroglossa C. Presl, una especie. 4. Ophioglossum L., cuatro especies. c2. Subfamilia Botrychioideae C. Presl 5. Botrychium Sw., tres especies. 6. Botrypus Michx., una especie. γ. Subclase Marattiidae Klinge IV. Órden Marattiales Link d. Familia Marattiaceae Kaulf. 7. Danaea Sm., tres especies. 8. Marattia Sw., cuatro especies. δ. Subclase Polypodiidae Cronquist, Takht. & W. Zimm. V. Órden Osmundales Link e. Familia Osmundaceae Martinov 9. Osmunda L., una especie. 10. Osmundastrum C. Presl, una especie. VI. Órden Hymenophyllales A.B. Frank f. Familia Hymenophyllaceae Mart. f1. Subfamilia Trichomanoideae C. Presl 11. Abrodictyum C. Presl, una especie. 12. Didymoglossum Desv., nueve especies. 13. Polyphlebium Copel., cuatro especies. 14. Trichomanes L., nueve especies. 15. Vandenboschia Copel., tres especies. f2. Subfamilia Hymenophylloideae Burnett 16. Hymenophyllum Sm., 23 especies. VII. Órden Gleicheniales Schimp. g. Familia Gleicheniaceae C. Presl 17. Dicranopteris Bernh., una especie. 18. Diplopterygium (Diels) Nakai, una especie. 19. Gleichenella Ching, una especie. 20. Sticherus C. Presl, cuatro especies. VIII. Órden Schizaeales Schimp. h. Familia Lygodiaceae M. Roem. 21. Lygodium Sw., tres especies. i. Familia Schizaeaceae Kaulf. 22.
    [Show full text]
  • THELYPTERIS SUBG. AMAUROPELTA (THELYPTERIDACEAE) DA ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÂNDIA, MINAS GERAIS, BRASIL Adriana A
    THELYPTERIS SUBG. AMAUROPELTA (THELYPTERIDACEAE) DA ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÂNDIA, MINAS GERAIS, BRASIL Adriana A. Arantes1, Jefferson Prado2 & Marli A. Ranal1 RESUMO (Thelypteris subg. Amauropelta (Thelypteridaceae) da Estação Ecológica do Panga, Uberlândia, Minas Gerais, Brasil) O presente trabalho apresenta o tratamento taxonômico para as espécies de Thelypteris subgênero Amauropelta que ocorrem na Estação Ecológica do Panga. Thelypteridaceae mostrou-se uma das mais representativas da pteridoflora local, com 14 espécies de Thelypteris segregadas em quatro subgêneros (Amauropelta, Cyclosorus, Goniopteris e Meniscium). Na área de estudo, o subgênero Amauropelta está representado por quatro espécies, Thelypteris heineri, T. mosenii, T. opposita e T. rivularioides. São apresentadas descrições, chave para identificação das espécies, comentários, distribuição geográfica e ilustrações dos caracteres diagnósticos. Palavras-chave: samambaias, Pteridophyta, cerrado, flora, taxonomia. ABSTRACT (Thelypteris subg. Amauropelta (Thelypteridaceae) of the Ecological Station of Panga, Uberlândia, Minas Gerais State, Brazil) This paper provides the taxonomic treatment for the species of Thelypteris subgenus Amauropelta in the Ecological Station of Panga. Thelypteridaceae is one of the richest families in the area, with 14 species of Thelypteris segregated in four subgenera (Amauropelta, Cyclosorus, Goniopteris, and Meniscium). In the area the subgenus Amauropelta is represented by four species, Thelypteris heineri, T. mosenii, T. opposita, and
    [Show full text]
  • Thelypteroid Comprising Species Chiefly Regions. These Family, Its
    BLUMEA 27(1981) 239-254 Comparative morphologyof the gametophyteof some Thelypteroidferns Tuhinsri Sen Department of Botany, Kalyani University, Kalyani 741235, West Bengal, India. Abstract A study of the developmentofthe gametophytes of sixteen thelypteroidferns reveals similarities and differences them. Combinations of the diversified features of the significant among prothalli appear to identification delimitation of the taxa, and the views of have a tremendous impact on and major support those authors who the taxonomic of these ferns. propose segregation Introduction The thelypteroid ferns comprising about one thousand species are chiefly inhabitants the and few of them in These of tropics only a occur temperate regions. plants are exceptionally varied in structure, yet they constitute a natural family, its members being easily distinguishable by their foliar acicular hairs, cauline scales with marginal and superficial appendages, and two hippocampus type of petiolar fern this bundles. It is certainly significant that no other has assemblage of vegetative characters. A critical survey through the literaturereveals that probably in no other group of ferns the generic concept of the taxonomists is so highly in the and Reed assembled all contrasting as thelypteroids. Morton (1963) (1968) the thelypteroids in a single genus, Thelypteris. Iwatsuki (1964) on the other hand, subdivided them into three genera. Copeland (1947) recognised eight genera (including with them the unrelated Currania) while Christensen (1938) tentatively suggested about twelve. Pichi Sermolli (1970) stated that no less than eighteen have to be and increased this numberto in 1977 genera kept distinct, thirtytwo (Pichi Sermolli, 1977); Ching (1963) maintainednineteen genera in Asia. Holttum (1971), Old in his new system of genera in the World Thelypteridaceae circumscribed twentythree genera.
    [Show full text]
  • (Title of the Thesis)*
    Dionysian Semiotics: Myco-Dendrolatry and Other Shamanic Motifs in the Myths and Rituals of the Phrygian Mother by Daniel Attrell A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Arts in Ancient Mediterranean Cultures Waterloo, Ontario, Canada, 2013 © Daniel Attrell 2013 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The administration of initiation rites by an ecstatic specialist, now known to western scholarship by the general designation of ‗shaman‘, has proven to be one of humanity‘s oldest, most widespread, and continuous magico-religious traditions. At the heart of their initiatory rituals lay an ordeal – a metaphysical journey - almost ubiquitously brought on by the effects of a life-changing hallucinogenic drug experience. To guide their initiates, these shaman worked with a repertoire of locally acquired instruments, costumes, dances, and ecstasy-inducing substances. Among past Mediterranean cultures, Semitic and Indo-European, these sorts of initiation rites were vital to society‘s spiritual well-being. It was, however, the mystery schools of antiquity – organizations founded upon conserving the secrets of plant-lore, astrology, theurgy and mystical philosophy – which satisfied the role of the shaman in Greco-Roman society. The rites they delivered to the common individual were a form of ritualized ecstasy and they provided an orderly context for religiously-oriented intoxication.
    [Show full text]
  • (Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
    Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns.
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • Flora Del Valle De Lerma Thelypteridaceae Ching Ex Pic.Serm
    APORTES BOTÁNICOS DE SALTA - Ser. Flora HERBARIO MCNS FACULTAD DE CIENCIAS NATURALES UNIVERSIDAD NACIONAL DE SALTA Buenos Aires 177 - 4400 Salta - República Argentina ISSN 0327 – 506X Vol. 8 Diciembre 2008 Nº 14 Edición Internet Mayo 2012 FLORA DEL VALLE DE LERMA T H E L Y P T E R I D A C E A E Ching ex Pic.Serm. Mónica Ponce1 2 Olga Gladys Martínez Rizomas erectos o rastreros, con escamas en general pubescentes, con abundantes raíces fibrosas o raramente raíces gruesas, dictiostélicos. Frondes de 0,5- 2,5 m long., monomórficas a subdimórficas, vernación circinada; pecíolos no articulados al rizoma, con 2 haces vasculares lunulados en la base, unidos distalmente en uno en forma de U; láminas comúnmente pinnadas o pinnado- pinnatífidas, rara vez simples o 2 (3)-pinnadas, raquis y costas adaxialmente surcados, surcos no continuos entre sí, venación libre a totalmente anastomosada, las aréolas sin venas incluidas o con una única venilla excurrente, indumento de pelos aciculares, furcados a ramificados, capitado-glandulares, 1-pluricelulares, menos frecuentemente escamas pequeñas sobre los ejes, nunca sobre la lámina; soros circulares o elípticos sobre venas laterales, o arqueados sobre venillas transversales, indusios comúnmente orbicular-reniformes a espatulares, en ocasiones reducidos o ausentes; esporangios con 3 hileras de células en el pie, a veces con pelos en la cápsula o en el pie; esporas monoletes, perisporio reticulado, crestado, alado, o menos frecuentemente equinado. x= 27, 29-36. 1 Instituto de Botánica Darwinion. Labardén 200. Casilla de Correo 22. B1642HYD San Isidro, Buenos Aires, Argentina. [email protected] 2 Herbario MCNS.
    [Show full text]
  • Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
    diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’.
    [Show full text]
  • Dryopteris Filix-Mas (L.) Schott, in Canterbury, New Zealand
    An Investigation into the Habitat Requirements, Invasiveness and Potential Extent of male fern, Dryopteris filix-mas (L.) Schott, in Canterbury, New Zealand A thesis Submitted in partial fulfilment Of the requirements for the Degree of Masters in Forestry Science By Graeme A. Ure School of Forestry University of Canterbury June 2014 Table of Contents Table of Figures ...................................................................................................... v List of Tables ......................................................................................................... xi Abstract ................................................................................................................ xiii Acknowledgements .............................................................................................. xiv 1 Chapter 1 Introduction and Literature Review ............................................... 1 1.1 Introduction ................................................................................................................. 1 1.2 Taxonomy and ecology of Dryopteris filix-mas .......................................................... 2 1.2.1 Taxonomic relationships .................................................................................... 2 1.2.2 Life cycle ............................................................................................................... 3 1.2.3 Native distribution .............................................................................................. 4 1.2.4 Native
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • Biogeographical Patterns of Species Richness, Range Size And
    Biogeographical patterns of species richness, range size and phylogenetic diversity of ferns along elevational-latitudinal gradients in the tropics and its transition zone Kumulative Dissertation zur Erlangung als Doktorgrades der Naturwissenschaften (Dr.rer.nat.) dem Fachbereich Geographie der Philipps-Universität Marburg vorgelegt von Adriana Carolina Hernández Rojas aus Xalapa, Veracruz, Mexiko Marburg/Lahn, September 2020 Vom Fachbereich Geographie der Philipps-Universität Marburg als Dissertation am 10.09.2020 angenommen. Erstgutachter: Prof. Dr. Georg Miehe (Marburg) Zweitgutachterin: Prof. Dr. Maaike Bader (Marburg) Tag der mündlichen Prüfung: 27.10.2020 “An overwhelming body of evidence supports the conclusion that every organism alive today and all those who have ever lived are members of a shared heritage that extends back to the origin of life 3.8 billion years ago”. This sentence is an invitation to reflect about our non- independence as a living beins. We are part of something bigger! "Eine überwältigende Anzahl von Beweisen stützt die Schlussfolgerung, dass jeder heute lebende Organismus und alle, die jemals gelebt haben, Mitglieder eines gemeinsamen Erbes sind, das bis zum Ursprung des Lebens vor 3,8 Milliarden Jahren zurückreicht." Dieser Satz ist eine Einladung, über unsere Nichtunabhängigkeit als Lebende Wesen zu reflektieren. Wir sind Teil von etwas Größerem! PREFACE All doors were opened to start this travel, beginning for the many magical pristine forest of Ecuador, Sierra de Juárez Oaxaca and los Tuxtlas in Veracruz, some of the most biodiverse zones in the planet, were I had the honor to put my feet, contemplate their beauty and perfection and work in their mystical forest. It was a dream into reality! The collaboration with the German counterpart started at the beginning of my academic career and I never imagine that this will be continued to bring this research that summarizes the efforts of many researchers that worked hardly in the overwhelming and incredible biodiverse tropics.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]