Dryopteris Filix-Mas (L.) Schott, in Canterbury, New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Dryopteris Filix-Mas (L.) Schott, in Canterbury, New Zealand An Investigation into the Habitat Requirements, Invasiveness and Potential Extent of male fern, Dryopteris filix-mas (L.) Schott, in Canterbury, New Zealand A thesis Submitted in partial fulfilment Of the requirements for the Degree of Masters in Forestry Science By Graeme A. Ure School of Forestry University of Canterbury June 2014 Table of Contents Table of Figures ...................................................................................................... v List of Tables ......................................................................................................... xi Abstract ................................................................................................................ xiii Acknowledgements .............................................................................................. xiv 1 Chapter 1 Introduction and Literature Review ............................................... 1 1.1 Introduction ................................................................................................................. 1 1.2 Taxonomy and ecology of Dryopteris filix-mas .......................................................... 2 1.2.1 Taxonomic relationships .................................................................................... 2 1.2.2 Life cycle ............................................................................................................... 3 1.2.3 Native distribution .............................................................................................. 4 1.2.4 Native habitat ....................................................................................................... 5 1.2.5 Mycorrhizal associations .................................................................................... 8 1.2.6 New Zealand distribution and habitat.............................................................. 8 1.3 Invasion ecology and D. filix-mas in Canterbury ................................................... 10 1.3.1 Invasion ecology and invasive species............................................................ 10 1.3.2 Darwins naturalisation hypothesis (the importance of relatives) ............... 11 1.3.3 Niche Overlap ................................................................................................... 12 1.3.4 The Rule of Tens ............................................................................................... 13 1.3.5 Propagule pressure and dispersal .................................................................... 14 1.3.6 Disturbance ........................................................................................................ 14 1.4 Thesis goals and approach ....................................................................................... 18 2 Chapter 2 Effects of light environment on growth of D. filix-mas ............... 19 ii 2.1 Introduction ............................................................................................................... 19 2.2 Method ........................................................................................................................ 20 2.2.1 Design and establishment ................................................................................ 20 2.2.2 Light levels ......................................................................................................... 22 2.2.3 Wet Pot Weights ................................................................................................ 23 2.2.4 Plant Weights ..................................................................................................... 23 2.2.5 Statistical analyses .............................................................................................. 24 2.3 Results ......................................................................................................................... 25 2.3.1 Losses and Damage .......................................................................................... 25 2.3.2 Photosynthetically Active Radiation in each treatment ............................... 25 2.3.3 Wet pot weight change ..................................................................................... 25 2.3.4 Start weights of rhizomes ................................................................................. 26 2.3.5 rhizome and roots, fresh weight change ........................................................ 28 2.3.6 Whole plant dry weight .................................................................................... 30 2.4 Discussion ................................................................................................................... 31 3 Chapter 3 Male fern habitat preferences in North Canterbury ..................... 35 3.1 Introduction ............................................................................................................... 35 3.2 Study Sites ................................................................................................................... 35 3.2.1 Tiromoana Bush ................................................................................................ 36 3.2.2 North Canterbury Foothills and inland sites ................................................. 38 3.3 Methods ...................................................................................................................... 43 3.3.1 Data collection ................................................................................................... 43 3.3.2 Data entry and calculations .............................................................................. 45 3.3.3 Ordination and analysis .................................................................................... 46 3.4 Results ......................................................................................................................... 47 3.4.1 Tiromoana Bush ................................................................................................ 47 iii 3.4.2 North Canterbury foothills and inland sites .................................................. 58 3.5 Discussion ................................................................................................................... 71 4 Chapter 4 National distribution, range of observed habitats and the potential extent within New Zealand using Land Environments New Zealand. 76 4.1 Introduction ............................................................................................................... 76 4.2 Method ........................................................................................................................ 76 4.3 Results ......................................................................................................................... 77 4.4 Discussion ................................................................................................................... 84 5 Chapter 5 Summary and Conclusions ........................................................... 90 5.1 Overview ..................................................................................................................... 90 5.2 Habitat requirements in North Canterbury ........................................................... 90 5.3 Invasiveness and potential extent ............................................................................ 91 5.4 Implications ................................................................................................................ 92 5.5 Recommendations ..................................................................................................... 93 6 Appendices .................................................................................................... 95 6.1 Appendix One Male Fern gallery ............................................................................ 96 6.2 Appendix Two Field Data Form ........................................................................... 112 6.3 Appendix Three Land Environments New Zealand attribute table for Level IV environments containing D. filix-mas ................................................................................ 114 6.4 Appendix Four Species list ..................................................................................... 120 7 References .................................................................................................... 128 iv Table of Figures Figure 1.1 Northern Hemisphere distribution of D. filix-mas (reproduced with permission from the Swedish Museum of Natural History website: http://linnaeus.nrm.se/flora/orm/polypodia/dryop/dryofil.html) .................................... 4 Figure 1.2 Confirmed records of D. filix-mas at commencement of this study from Lincoln Herbarium (yellow), NZ Biodiversity Recording Network (green), National Vegetation Survey (blue), literature and personal observation (red). (Base map from Google Earth). .............................................................................................................................. 8 Figure 2.1 Layout of replicates in the study area. A: full exposure, B: single layer of shadecloth, C: double layer of shadecloth, D: triple layer of shadecloth. .......................... 21 Figure 2.2 experiment layout and pot arrangement. View from replicate 8 (near left) to replicate 25 (centre distance) .................................................................................................... 21 Figure 2.3 Replicate groups used to obtain light level measurements
Recommended publications
  • List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
    British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf.
    [Show full text]
  • Insects of Macquarie Island. Introduction1
    Pacific Insects 4 (4) : 905-915 December, 15, 1962 INSECTS OF MACQUARIE ISLAND. INTRODUCTION1 By J. Linsley Gressitt BISHOP MUSEUM, HONOLULU Abstract: Collections of land arthropods were made on Macquarie Island by J. L. Gres­ sitt and J. H. Calaby, 4-10 December 1960, and by Keith Watson, December 1960-Decem- ber 1961. This paper is a brief discussion of the geography and environment of Macquarie, introductory to the systematic papers describing the fauna. Watson, of the Australian Na­ tional Antarctic Research Expeditions, will later publish his general ecological studies, when the species are all identified. INTRODUCTION This paper is a brief description of the geography and environment of Macquarie Is­ land, as related to land arthropods. It is presented by way of introduction to the series of reports by various specialists on the land arthropod fauna of the island. The bulk of these reports immediately follow this article. (One Macquarie mite is discussed in the third of the preceding articles by Wallwork on Antarctic mites, and another is mentioned in his second article.) Others will appear in later issues, when they are completed. After publication of the bulk of these taxonomic reports, Keith Watson will publish his general report on the land arthropod fauna of Macquarie, incorporating his ecological studies on the fauna. Through the kindness of Mr. P. G. Law, Director of the Antarctic Division, Australian Department of External Affairs, I was permitted to join the Australian National Antarctic Research Expedition for the annual resupply trip to Macquarie Island in early December 1960. The operation, supported by the chartered Danish ice-breaker Magga Dan, was car­ ried on at Macquarie from 4th to lOth December.
    [Show full text]
  • A Synthesis of Geophysical and Biological Assessment to Determine Restoration Priorities
    How can geomorphology inform ecological restoration? A synthesis of geophysical and biological assessment to determine restoration priorities A thesis submitted in partial fulfilment of the requirements for the Master of Science Degree in Physical Geography By Leicester Cooper School of Geography, Environment and Earth Sciences Victoria University Wellington 2012 _________________________________________________________________________________________________________________ Acknowledgements Many thanks and much appreciation go to my supervisors Dr Bethanna Jackson and Dr Paul Blaschke, whose sage advice improved this study. Thanks for stepping into the breach; I hope you didn’t regret it. Thanks to the Scholarships Office for the Victoria Master’s (by thesis) Scholarship Support award which has made the progression of the study much less stressful. Thanks go to the various agencies that have provided assistance including; Stefan Ziajia from Kapiti Coast District Council, Nick Page from Greater Wellington Regional Council, Eric Stone from Department of Conservation, Kapiti office. Appreciation and thanks go to Will van Cruchten, for stoically putting up with my frequent calls requesting access to Whareroa Farm. Also, many thanks to Prof. Shirley Pledger for advice and guidance in relation to the statistical methods and analysis without whom I might still be working on the study. Any and all mistakes contained within I claim sole ownership of. Thanks to the generous technicians in the Geography department, Andrew Rae and Hamish McKoy and fellow students, including William Ries, for assistance with procurement of aerial images and Katrin Sattler for advice in image processing. To Dr Murray Williams, without whose sudden burst at one undergraduate lecture I would not have strayed down the path of ecological restoration.
    [Show full text]
  • Resupinate Fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia
    Hikobia 13: 745-750, 2002 Resupinate fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia GARY A. LAURSEN, HAROLD H. BURDSALL AND RODNEY D. SEPPELT LAURSEN, G. A., BURDSALL, H. H. & SEPPELT, R. D. 2002. Resupinate fungi (Basidiomycetes, Aphyllophorales) of Macquarie Island, Australia. Hikobia 13: 745-750. Fourteen collections of resupinate higher fungi in the order Aphyllophorales (Basidiomycetes) were made on Subantarctic Macquarie Island (54°30'S, 158°57' E) in 1995. Of the 14, three proved to lack species-determining characteristic basidiospores and 12 were determined to belong to three species in two genera; Athelopsis lembospora (Bourdot) Oberwinkler, Athelopsis subinconspicua (Lirschauer) Julich, the first report of this species from the Southern Hemisphere, and Epithele galzinii Bres., the first reportr of E. galzinii from an Australian territory and also representing a southern range extension by several hundred kilometers. None are endemic and all are suspected to have reached the Island by long-distance transoceanic wind dispersal from other southern continental sources. Their habitats are restricted to old and clustered culms, frond bracts, and leaf petioles of the fern Polystichum vestitum (G. Forst.) C. Presl, the raised pedestals of old giant russock grass stem bases of Poa foliosa (Hook. f-) Hook. f., and the woody, but thin, stems of Acaena magellanica (Lam.) Vahl (Rosaceae) and Coprosma perpusilla Colenso ssp. subantarcrica Orchard (Rubiaceae). Gary A. Laursen. University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775-6100, USA. Harold H. Burdrall, Jr.. retired Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, USDA, Madison, WI 53705 USA. Rodney D. Seppelt, Australian Antarctic Division, Channel Highway, Kingston, 7050 Tasmania.
    [Show full text]
  • 1999 New Zealand Botanical Society
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 57 SEPTEMBER 1999 New Zealand Botanical Society President: Jessica Beever Secretary/Treasurer: Anthony Wright Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 NEW ZEALAND Subscriptions The I999 ordinary and institutional subs are $18 (reduced to $15 if paid by the due date on the subscription invoice). The 1999 student sub, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February of each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next year's subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the December 1999 issue (Number 58) is 26 November 1999. Please forward contributions to: Dr Carol J. West, c/- Department of Conservation PO Box 743 Invercargill Contributions may be provided on an IBM compatible floppy disc (Word) or by e-mail to [email protected] Cover Illustration Plagiochila ramosissima with antheridial branches.
    [Show full text]
  • In the Fern Dryopteris Affinis Ssp. Affinis
    UNIVERSIDAD DE OVIEDO Departamento de Biología de Organismos y Sistemas. Programa de Doctorado en Biogeociencias Apogamy in the fern Dryopteris affinis ssp. affinis. Physiological and transcriptomic approach. Apogamia en el helecho Dryopteris affinis ssp. affinis. De la fisiología a la transcriptómica. TESIS DOCTORAL Alejandro Rivera Fernández Directoras: Elena Fernández González y María Jesús Cañal Villanueva Oviedo 2020 RESUMEN DEL CONTENIDO DE TESIS DOCTORAL 1.- Título de la Tesis Español/Otro Idioma: Apogamia en el helecho Inglés: Apogamy in the fern Dryopteris affinis Dryopteris affinis ssp. affinis: de la fisiología a la ssp. affinis: a physiological and transcriptomic transcriptómica approach 2.- Autor Nombre: Alejandro Rivera Fernández DNI/Pasaporte/NIE:53507888K Programa de Doctorado: BIOGEOCIENCIAS Órgano responsable: UNIVERSIDAD DE OVIEDO RESUMEN (en español) Esta memoria de tesis aborda un estudio sobre el desarrollo vegetativo y reproductivo del gametofito helecho Dryopteris affinis ssp. affinis, cuyo ciclo vital cuenta con un caso peculiar de apomixis. En concreto, se informa de un enfoque fisiológico y transcriptómico, revelando un papel de las fitohormonas, ya sea mediante el análisis de los efectos causados por la adición al medio de cultivo, o midiendo los niveles endógenos, así como a través de perfiles 010 (Reg.2018) 010 - transcriptómicos comparativos entre gametofitos unidimensionales y bidimensionales. VOA La tesis consta de cinco capítulos: una introducción, tres trabajos experimentales y una - discusión general. En la introducción, se ofrece una visión general de la investigación llevada a MAT - cabo en helechos en los últimos años, para que el lector conciba una nueva idea sobre la contribución que este grupo vegetal puede ofrecer para profundizar en la reproducción de FOR plantas, y en el concreto, en la apomixis.
    [Show full text]
  • (Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
    Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns.
    [Show full text]
  • A Review of the Fern Genus Polystichum (Pteropsida: Dryopteridaceae) in Madagascar and the Mascarene Region
    A review of the fern genus Polystichum (Pteropsida: Dryopteridaceae) in Madagascar and the Mascarene region Jacobus P. ROUX National Botanical Institute, Compton Herbarium, Private Bag X7, Claremont 7735, South Africa. [email protected] ABSTRACT KEY WORDS The fern genus Polystichum Roth (Dryopteridaceae) in Madagascar and the Polystichum, Mascarene region is reviewed. Eight species are recorded, six being endemic Dryopteridaceae, Madagascar, to the region. Of these four are endemic to Madagascar. The Madagascan Mascarene region. species remain poorly known. RÉSUMÉ Révision du genre Polystichum (Pteropsida: Dryopteridaceae) de Madagascar et des Mascareignes. MOTS CLÉS Révision des fougères de Madagascar et des Mascareignes appartenant au Polystichum, genre Polystichum Roth (Dryopteridaceae). Huit espèces sont retenues, dont Dryopteridaceae, Madagascar, six endémiques de Madagascar. Les espèces malgaches demeurent peu Mascareignes. connues. INTRODUCTION Madagascar has been separated from Africa for at least 100 million years and is well known for its A review of the fern genus Polystichum in high level of endemism. RAVEN & AXELROD Madagascar and the Mascarene region (the (1974) ascribed the rich Madagascan flora to a now Madagascan and Comore archipelagos) is provid- submerged Madagascan plateau that connected it ed. Polystichum is a genus of between 160 (TRYON with India and Antarctica, thus allowing for migra- & TRYON 1982) and 200 species (DAIGOBO tion between these now distant continents until 1972), occurring throughout the temperate parts the late Cretaceous. LEROY (1978), on the other of the world as well as the montane tropics, but is hand, considered the rich Madagascan flora as an mostly absent from the lowland tropics. autochthonous flora that has differentiated princi- ADANSONIA, sér.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • BPS Cultivar Group
    BPS Cultivar Group Issue 5 October 2018 Mark’s Musings One year of newsletters completed, I know it’s a sign of old age, but it seems to have gone very quickly. In this edition I have to give special thanks to two non-members, in the order they appear: John Ed- miston, Director of “Tropical Britain” and Christa Wardrup. John kindly allowed me to cut and paste from his site while Christa was the inspiration and source of photos for, what I hope, will be an on-going series on exotic cultivars Classic Cultivar Dryopteris affinis Cristata ‘The King’ This is a plant I am sure we all have, or have grown. A few years ago it was to be seen in just about every nursery and Garden Centre, then it seemed to disappear (certainly down here in the South east) except for the specialist nurseries. I had a plant for many years in my previous garden, when we moved and I dug it up to bring with me, it split into two crowns, sadly neither are doing very well here, in fact I have just moved one to, I hope, a better location. This has only one frond. The other crown has two “good” fronds and two very stunted fronds. This gave me a problem for this article as I couldn't use either for illustrations (I do have some pride!). I had a look on line and decided I was going to have to contact one of the nurseries to see if I could use their photos when my wife decided she wanted to go out for a while (as a fitness test after an opera- tion) We went to a local Hillier’s Gar- den Centre for coffee and, what do I find—they have several pots of ’The King’, so, just for you all, I bought the one you see on the left and on the next page.
    [Show full text]
  • Downloadable PDF Format On
    Checklist of the New Zealand Flora Ferns and Lycophytes 2019 A New Zealand Plant Names Database Report © Landcare Research New Zealand Limited 2019 This copyright work is licensed under the Creative Commons Attribution 4.0 International license. Attribution if redistributing to the public without adaptation: "Source: Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Landcare Research" DOI: 10.26065/6s30-ex64 CATALOGUING IN PUBLICATION Checklist of the New Zealand flora : ferns and lycophytes [electronic resource] / Allan Herbarium. – [Lincoln, Canterbury, New Zealand] : Landcare Research Manaaki Whenua, 2017- . Online resource Annual August 2017- ISSN 2537-9054 I.Manaaki Whenua-Landcare Research New Zealand Ltd. II. Allan Herbarium. Citation and Authorship Schönberger, I.; Wilton, A.D.; Brownsey, P.J.; Perrie, L.R.; Boardman, K.F.; Breitwieser, I.; de Pauw, B.; Ford, K.A.; Gibb, E.S.; Glenny, D.S.; Korver, M.A.; Novis, P.M.; Prebble, J.M.; Redmond, D.N.; Smissen, R.D.; Tawiri, K. (2019) Checklist of the New Zealand Flora – Ferns and Lycophytes. Lincoln, Manaaki Whenua-Landcare Research. http://dx.doi.org/10.26065/6s30-ex64 This report is generated using an automated system and is therefore authored by the staff at the Allan Herbarium and collaborators who currently contribute directly to the development and maintenance of the New Zealand Plant Names Database (PND). Authors are listed alphabetically after the fourth author. Authors have contributed as follows: Leadership: Wilton, Breitwieser Database editors: Wilton, Schönberger, Gibb Taxonomic and nomenclature research and review for the PND: Schönberger, Wilton, Gibb, Breitwieser, Brownsey, de Lange, Ford, Fife, Glenny, Novis, Perrie, Prebble, Redmond, Smissen Information System development: Wilton, De Pauw, Cochrane Technical support: Boardman, Korver, Redmond, Tawiri Contents Introduction.......................................................................................................................................................
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]