Wray Wind Energy Project Environmental Assessment for Pre-Approval Review DOE/EA - 1884

Total Page:16

File Type:pdf, Size:1020Kb

Wray Wind Energy Project Environmental Assessment for Pre-Approval Review DOE/EA - 1884 Wray Wind Energy Project Environmental Assessment For Pre-Approval Review DOE/EA - 1884 Yuma County, Colorado U. S. Department of Energy Western Area Power Administration February 2012 Wray Wind Energy Project Environmental Assessment For Pre-Approval Review DOE/EA - 1884 Yuma County, Colorado U. S. Department of Energy Western Area Power Administration February 2012 THIS PAGE INTENTIONALLY BLANK Table of Contents TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................. 1-1 1.1 BACKGROUND ................................................................................................................................. 1.1-1 1.2 PURPOSE AND NEED ........................................................................................................................ 1.2-1 1.2.1 Invenergy’s Purpose and Need .............................................................................................. 1.2-1 1.2.2 Western’s Purpose and Need ................................................................................................. 1.2-1 1.3 FEDERAL ENVIRONMENTAL PROCESS AND DECISIONS TO BE MADE ............................................... 1.3-2 1.4 PUBLIC PARTICIPATION ................................................................................................................... 1.4-2 1.5 OTHER AUTHORIZATIONS ................................................................................................................ 1.5-3 2.0 DESCRIPTION OF PROPOSED PROJECT AND ALTERNATIVES .......................... 2-1 2.1 DESCRIPTION OF THE PROPOSED PROJECT ....................................................................................... 2.1-1 2.1.1 Western’s Proposed Action .................................................................................................... 2.1-1 2.2 OVERVIEW OF THE PROPOSED PROJECT ........................................................................................... 2.2-1 2.2.1 Construction ........................................................................................................................... 2.2-5 2.2.2 Public Access and Safety ........................................................................................................ 2.2-8 2.2.3 Operations and Maintenance ................................................................................................. 2.2-9 2.2.4 Work Force ............................................................................................................................ 2.2-9 2.2.5 Traffic ..................................................................................................................................... 2.2-9 2.2.6 Water Use ............................................................................................................................. 2.2-10 2.2.7 Hazardous Materials ............................................................................................................ 2.2-10 2.2.8 Reclamation and Abandonment ........................................................................................... 2.2-10 2.2.9 Western and Invenergy’s Standard Construction, Operation and Maintenance Practices .. 2.2-11 2.3 ALTERNATIVES TO THE PROPOSED PROJECT .................................................................................. 2.3-17 2.3.1 Alternative Turbine and Facility Locations ......................................................................... 2.3-17 2.4 ALTERNATIVES CONSIDERED AND ELIMINATED FROM DETAILED STUDY ..................................... 2.4-17 2.4.1 Alternative Project Generation Capacity ............................................................................. 2.4-17 2.4.2 Alternative Electrical System Interconnections Facilities .................................................... 2.4-17 2.4.3 Alternative Project Locations............................................................................................... 2.4-17 2.5 NO ACTION ALTERNATIVE ............................................................................................................ 2.5-18 3.0 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES .......... 3-1 3.1 OVERVIEW OF ANALYSIS APPROACH .............................................................................................. 3.1-1 3.2 CLIMATE AND AIR QUALITY ............................................................................................................ 3.2-2 3.2.1 Affected Environment – Environmental Setting for the Proposed Project ............................. 3.2-2 3.2.2 Environmental Impacts and Mitigation Measures ................................................................. 3.2-3 3.3 GEOLOGY AND PALEONTOLOGY ...................................................................................................... 3.3-3 3.3.1 Affected Environment – Environmental Setting for the Proposed Project ............................. 3.3-3 3.3.2 Environmental Impacts and Mitigation Measures ................................................................. 3.3-5 3.4 WATER RESOURCES AND FLOODPLAINS .......................................................................................... 3.4-6 3.4.1 Affected Environment – Environmental Setting for the Proposed Project ............................. 3.4-6 3.4.2 Environmental Impacts and Mitigation Measures ................................................................. 3.4-8 3.5 WETLANDS .................................................................................................................................... 3.5-10 3.5.1 Affected Environment – Environmental Setting for the Proposed Project ........................... 3.5-10 3.5.2 Environmental Impacts and Mitigation Measures ............................................................... 3.5-12 3.6 VEGETATION ................................................................................................................................. 3.6-12 3.6.1 Affected Environment – Environmental Setting for the Proposed Project ........................... 3.6-12 3.6.2 Environmental Impacts and Mitigation Measures ............................................................... 3.6-14 Wray Wind Energy Project EA for Pre-Approval Review Table of Contents i Table of Contents 3.7 SOILS ............................................................................................................................................. 3.7-18 3.7.1 Affected Environment – Environmental Setting for the Proposed Project ........................... 3.7-18 3.7.2 Environmental Impacts and Mitigation Measures ............................................................... 3.7-18 3.8 WILDLIFE ...................................................................................................................................... 3.8-20 3.8.1 Affected Environment – Environmental Setting for the Proposed Project ........................... 3.8-21 3.8.2 Environmental Impacts and Mitigation Measures ............................................................... 3.8-33 3.9 SPECIAL STATUS AND SENSITIVE SPECIES ..................................................................................... 3.9-37 3.9.1 Affected Environment – Environmental Setting for the Proposed Project ........................... 3.9-38 3.9.2 Environmental Impacts and Mitigation Measures ............................................................... 3.9-41 3.10 CULTURAL RESOURCES ............................................................................................................... 3.10-43 3.10.1 Affected Environment – Environmental Setting for the Proposed Project ......................... 3.10-44 3.10.2 Environmental Impacts and Mitigation Measures ............................................................. 3.10-44 3.11 LAND USE .................................................................................................................................... 3.11-45 3.11.1 Affected Environment – Environmental Setting for the Proposed Project ......................... 3.11-45 3.11.2 Environmental Impacts and Mitigation Measures ............................................................. 3.11-47 3.12 NOISE .......................................................................................................................................... 3.12-51 3.12.1 Affected Environment – Environmental Setting for the Proposed Project ......................... 3.12-51 3.12.2 Environmental Impacts and Mitigation Measures ............................................................. 3.12-52 3.13 VISUAL RESOURCES .................................................................................................................... 3.13-53 3.13.1 Affected Environment – Environmental Setting for the Proposed Project ......................... 3.13-53 3.13.2 Environmental Impacts and Mitigation Measures ............................................................. 3.13-55 3.14 SOCIOECONOMICS AND COMMUNITY RESOURCES (INCLUDING ENVIRONMENTAL JUSTICE) ........ 3.14-65 3.14.1 Affected Environment – Environmental Setting for the Proposed Project ......................... 3.14-65 3.14.2 Environmental Impacts and Mitigation Measures ............................................................. 3.14-68 3.15 TRANSPORTATION ....................................................................................................................... 3.15-71 3.15.1 Affected Environment – Environmental Setting
Recommended publications
  • Wind Powering America FY07 Activities Summary
    Wind Powering America FY07 Activities Summary Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY07 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2007, there were more than 11,500 megawatts (MW) of wind power installed across the United States, with an additional 4,000 MW projected in both 2007 and 2008. The American Wind Energy Association (AWEA) estimates that the U.S. installed capacity will exceed 16,000 MW by the end of 2007. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Seventeen states now have more than 100 MW installed. We anticipate five to six additional states will join the 100-MW club early in 2008, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders.
    [Show full text]
  • Do Gssps Render Dual Time-Rock/Time Classification and Nomenclature Redundant?
    Do GSSPs render dual time-rock/time classification and nomenclature redundant? Ismael Ferrusquía-Villafranca1 Robert M. Easton2 and Donald E. Owen3 1Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, DF, MEX, 45100, e-mail: [email protected] 2Ontario Geological Survey, Precambrian Geoscience Section, 933 Ramsey Lake Road, B7064 Sudbury, Ontario P3E 6B5, e-mail: [email protected] 3Department of Geology, Lamar University, Beaumont, Texas 77710, e-mail: [email protected] ABSTRACT: The Geological Society of London Proposal for “…ending the distinction between the dual stratigraphic terminology of time-rock units (of chronostratigraphy) and geologic time units (of geochronology). The long held, but widely misunderstood distinc- tion between these two essentially parallel time scales has been rendered unnecessary by the adoption of the global stratotype sections and points (GSSP-golden spike) principle in defining intervals of geologic time within rock strata.” Our review of stratigraphic princi- ples, concepts, models and paradigms through history clearly shows that the GSL Proposal is flawed and if adopted will be of disservice to the stratigraphic community. We recommend the continued use of the dual stratigraphic terminology of chronostratigraphy and geochronology for the following reasons: (1) time-rock (chronostratigraphic) and geologic time (geochronologic) units are conceptually different; (2) the subtended time-rock’s unit space between its “golden spiked-marked”
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2015/01 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Geologic Time – Part I - Practice Questions and Answers Revised October 2007
    Geologic Time – Part I - Practice Questions and Answers Revised October 2007 1. The study of the spatial and temporal relationships between bodies of rock is called ____________________. 2. The geological time scale is the ____________ framework in which geologists view Earth history. 3. Both _________________ and absolute scales are included in the geological time scale. 4. Beds represent a depositional event. They are _________ 1 cm in thickness. 5. Laminations are similar to beds but are ___________ 1 cm in thickness. 6. The idea that most beds are laid down horizontally or nearly so is called the (a) Principle of Original Continuity (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Horizontality (e) Principle of Superposition 7. The idea that beds extend laterally in three dimensions until they thin to zero thickness is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Original Continuity (d) Principle of Fossil Succession (e) Principle of Superposition 8. The idea that younger beds are deposited on top of older beds is called the (a) Principle of Original Horizontality (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Continuity (e) Principle of Superposition 9. The idea that a dike transecting bedding must be younger than the bedding it crosses is called the (a) Principle of Original Horizontality (b) Principle of Original Continuity (c) Principle of Fossil Succession (d) Principle of Cross-Cutting Relationships (e) Principle of Superposition 10. The idea that fossil content will change upward within a formation is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Fossil Succession (d) Principle of Original Continuity (e) Principle of Superposition 11.
    [Show full text]
  • PHANEROZOIC and PRECAMBRIAN CHRONOSTRATIGRAPHY 2016
    PHANEROZOIC and PRECAMBRIAN CHRONOSTRATIGRAPHY 2016 Series/ Age Series/ Age Erathem/ System/ Age Epoch Stage/Age Ma Epoch Stage/Age Ma Era Period Ma GSSP/ GSSA GSSP GSSP Eonothem Eon Eonothem Erathem Period Eonothem Period Eon Era System System Eon Erathem Era 237.0 541 Anthropocene * Ladinian Ediacaran Middle 241.5 Neo- 635 Upper Anisian Cryogenian 4.2 ka 246.8 proterozoic 720 Holocene Middle Olenekian Tonian 8.2 ka Triassic Lower 249.8 1000 Lower Mesozoic Induan Stenian 11.8 ka 251.9 Meso- 1200 Upper Changhsingian Ectasian 126 ka Lopingian 254.2 proterozoic 1400 “Ionian” Wuchiapingian Calymmian Quaternary Pleisto- 773 ka 259.8 1600 cene Calabrian Capitanian Statherian 1.80 Guada- 265.1 Proterozoic 1800 Gelasian Wordian Paleo- Orosirian 2.58 lupian 268.8 2050 Piacenzian Roadian proterozoic Rhyacian Pliocene 3.60 272.3 2300 Zanclean Kungurian Siderian 5.33 Permian 282.0 2500 Messinian Artinskian Neo- 7.25 Cisuralian 290.1 Tortonian Sakmarian archean 11.63 295.0 2800 Serravallian Asselian Meso- Miocene 13.82 298.9 r e c a m b i n P Neogene Langhian Gzhelian archean 15.97 Upper 303.4 3200 Burdigalian Kasimovian Paleo- C e n o z i c 20.44 306.7 Archean archean Aquitanian Penn- Middle Moscovian 23.03 sylvanian 314.6 3600 Chattian Lower Bashkirian Oligocene 28.1 323.2 Eoarchean Rupelian Upper Serpukhovian 33.9 330.9 4000 Priabonian Middle Visean 38.0 Carboniferous 346.7 Hadean (informal) Missis- Bartonian sippian Lower Tournaisian Eocene 41.0 358.9 ~4560 Lutetian Famennian 47.8 Upper 372.2 Ypresian Frasnian Units of the international Paleogene 56.0 382.7 Thanetian Givetian chronostratigraphic scale with 59.2 Middle 387.7 Paleocene Selandian Eifelian estimated numerical ages.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • North American Stratigraphic Code1
    NORTH AMERICAN STRATIGRAPHIC CODE1 North American Commission on Stratigraphic Nomenclature FOREWORD TO THE REVISED EDITION FOREWORD TO THE 1983 CODE By design, the North American Stratigraphic Code is The 1983 Code of recommended procedures for clas- meant to be an evolving document, one that requires change sifying and naming stratigraphic and related units was pre- as the field of earth science evolves. The revisions to the pared during a four-year period, by and for North American Code that are included in this 2005 edition encompass a earth scientists, under the auspices of the North American broad spectrum of changes, ranging from a complete revision Commission on Stratigraphic Nomenclature. It represents of the section on Biostratigraphic Units (Articles 48 to 54), the thought and work of scores of persons, and thousands of several wording changes to Article 58 and its remarks con- hours of writing and editing. Opportunities to participate in cerning Allostratigraphic Units, updating of Article 4 to in- and review the work have been provided throughout its corporate changes in publishing methods over the last two development, as cited in the Preamble, to a degree unprece- decades, and a variety of minor wording changes to improve dented during preparation of earlier codes. clarity and self-consistency between different sections of the Publication of the International Stratigraphic Guide in Code. In addition, Figures 1, 4, 5, and 6, as well as Tables 1 1976 made evident some insufficiencies of the American and Tables 2 have been modified. Most of the changes Stratigraphic Codes of 1961 and 1970. The Commission adopted in this revision arose from Notes 60, 63, and 64 of considered whether to discard our codes, patch them over, the Commission, all of which were published in the AAPG or rewrite them fully, and chose the last.
    [Show full text]
  • Wind Energy Report
    AN EXAMINATION OF THE COMMUNITY LEVEL DYNAMICS RELATED TO THE INTRODUCTION OF WIND ENERGY IN INDIANA Report June 2020 Prepared by Z. Bednarikova, R. Hillberry, N. Nguyen, I. Kumar, T. Inani, M. Gordon, M. Wilcox Purdue Extension – Community Development Purdue University – College of Agriculture Purdue Center for Regional Development 1 TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................................................. 4 INTRODUCTION ............................................................................................................................................. 5 METHODOLOGY ............................................................................................................................................ 6 PROFILE OF THE WIND ENERGY SECTOR IN INDIANA ................................................................................... 7 I. Indiana’s wind resource ......................................................................................................................... 8 II. The footprint of utility-scale wind energy generation in Indiana ....................................................... 12 III. The wind industry as a source of income .......................................................................................... 15 IV. Payments to local governments ........................................................................................................ 22 V. Policy ..................................................................................................................................................
    [Show full text]
  • Aquifer List
    ARKANSAS NATURAL RESOURCES COMMISSION 101 East Capitol Avenue, Suite 350; Little Rock, AR 72201 Phone: (501) 682-1611 Fax: (501) 682-3991 www.anrc.arkansas.gov T T Arkansas Aquifer Codes E This is a list of the identified underground aquifers and their code numbers in the state. E ALLUVIUM 112ALVM EVERTON FORMATION 364EVRN PENTERS CHERT 347PNRS ANNONA CHALK 211ANNN FAYETTEVILLE SHALE 332FTVL PIKE GRAVEL 217PIKE ARKADELPHIA MARL 211AKDP FERNVALE LIMESTONE 361FRVL PITKIN LIMESTONE 331PTKN E E ARKANSAS NOVACULITE 330ARKS GASCONADE DOLOMITE 367GSCK PLATTIN LIMESTONE 364PLTN ATOKA FORMATION 326ATOK GOODLAND LIMESTONE 218GDLD PLEISTOCENE SERIES 112PLSC ATOKAN SERIES 326ATKN GUNTER SANDSTONE 367GNTR PLIOCENE SERIES 121PLCN BATESVILLE SANDSTONE 331BSVL HALE FORMATION 328HALE POLK CREEK SHALE 361PKCK H H BIGFORK CHERT 364BGFK HARTSHORNE SANDSTONE 325HRSR PORTERS CREEK CLAY 125PRCK BLACK ROCK FORMATION 367PKRK HATTON TUFF LENTIL 330HNTF POTOSI DOLOMITE 371POTS BLAKELY SANDSTONE 367BLKL HINDSVILLE LIMESTONE 331HDVL POWELL DOLOMITE 368PWLL BLAYLOCK SANDSTONE 350BLCK HOLLY CREEK FORMATION 218HLCK PRAIRIE GROVE 328PRGV S S BLOYD SHALE 328BLVD HOLOCENE ALLUVIUM 111ALVM PRECAMBRIAN ERATHEM 400PCMB BOGGY SHALE 325BGGY HOLOCENE SERIES 111HLCN PRECAMBRIAN IGNEOUS ROCKS 400IGNS BONNETERRE DOLOMITE 371BNTR HOT SPRINGS SANDSTONE 330HSPG QUATERNARY ALLUVIUM 110ALVM BOONE FORMATION 330BOON JACKFORK SANDSTONE 328JKFK REDFIELD FORMATION 124RDFD BRASSFIELD LIMESTONE 357BFLD JACKSON GROUP 124JCKS ROUBIDOUX FORMATION 367RBDX T T BRENTWOOD LIMESTONE 328 BRND JEFFERSON
    [Show full text]
  • Manufacturing Climate Solutions Carbon-Reducing Technologies and U.S
    Manufacturing Climate Solutions Carbon-Reducing Technologies and U.S. Jobs CHAPTER 11 Wind Power: Generating Electricity and Employment Gloria Ayee, Marcy Lowe and Gary Gereffi Contributing CGGC researchers: Tyler Hall, Eun Han Kim This research is an extension of the Manufacturing Climate Solutions report published in November 2008. It was prepared on behalf of the Environmental Defense Fund (EDF) (http://www.edf.org/home.cfm). Cover Photo Credits: 1. Courtesy of DOE/NREL, Credit – Iberdrola Renewables, Inc. (formerly PPM Energy, Inc.) 2. Courtesy of DOE/NREL, Credit – Iberdrola Renewables, Inc. (formerly PPM Energy, Inc.) 3. Courtesy of DOE/NREL, Credit – Reseburg, Amanda; Type A Images © September 22, 2009. Center on Globalization, Governance & Competitiveness, Duke University The complete report is available electronically from: http://www.cggc.duke.edu/environment/climatesolutions/ As of September 22, 2009, Chapter 11 is not available in hardcopy. 2 Summary Wind power is a cost effective, renewable energy solution for electricity generation. Wind power can dramatically reduce the environmental impacts associated with power generated from fossil fuels (coal, oil and natural gas). Electricity production is one of the largest sources of carbon dioxide (CO2) emissions in the United States. Thus, adoption of wind power generating technologies has become a major way for the United States to diversify its energy portfolio and reach its expressed goal of 80% reduction in green house gas (GHG) emissions by the year 2050. The benefits of wind power plants include no fuel risk, no carbon dioxide emissions or air pollution, no hazardous waste production, and no need for mining, drilling or transportation of fuel (American Wind Energy Association, 2009a).
    [Show full text]
  • Powering Indiana's Economic Future November 2020 Powering Indiana’S Economic Future
    POWERING INDIANA'S ECONOMIC FUTURE NOVEMBER 2020 POWERING INDIANA’S ECONOMIC FUTURE This study was made possible through these supporting organizations and the work of the Advisory Council, co-chaired by Ron Christian and Tom Easterday. We thank them for their efforts: Champion: Advisory Council* Kari Fluegel, Alcoa Corporation Evan Midler, Alliance Resource Partners Cyril Martinand, ArcelorMittal Susan Zlajic, ArcleorMittal Wendell Carter, ArcelorMittal Mike Crossey, CountryMark Stan Pinegar, Duke Energy Gold: Amy Kurt, EDP Renewables Scott Glaze, Fort Wayne Metals Jean Neel, Haynes International, Inc. Matt Prine, Indiana American Water John Gasstrom, Indiana Electric Cooperatives Danielle McGrath, Indiana Energy Association Brian Bergsma, Indiana Michigan Power Joe Rompala, INDIEC Silver: Nick Heiny, Metal Technologies, Inc. Alliance Resource Partners Melissa Seymour, MISO ArcelorMittal Brandon Seitz, NIPSCO CountryMark Tom Easterday, North American Subaru, Inc. Fort Wayne Metals Sam Schlosser, Plymouth Foundry Haynes International Ron Christian, Retired-Vectren Indiana American Water Rachel Hazaray, Subaru of Indiana Automotive, Inc. Indiana Electric Cooperatives Jamalyn Sarver, Sunrise Coal Indiana Energy Association Mike Roeder, Vectren, A CenterPoint Energy Company INDIEC (Indiana Industrial Energy Consumers) Steve Chriss, Walmart Inc. Metal Technologies Kevin Thompson, Walmart Inc. NIPSCO Subaru of Indiana Automotive *The Indiana Chamber of Commerce Foundation commissioned Sunrise Coal London Economics International LLC (LEI) to
    [Show full text]