Tellurium (Te) in Organic Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Tellurium (Te) in Organic Synthesis Tellurium (Te) in organic synthesis Reporter: Lin Deng Supervisor: Guangbin Dong Date: Jan 28. 2014 Petragnani, N.; Stefani, H. A. Tellurium in Organic Synthesis, 2nd ed.; Academic Press: London, 2007. Else_TOS-PETRAGNANI_ch001.qxd 12/4/2006 5:46 PM Page 1 – 1 – Introduction 1.1 SOME PHYSICAL PROPERTIES OF TELLURIUM The Pauling electronegativities of carbon and tellurium are, respectively, 2.5 and 2.1. This, in addition to the large volume of the tellurium atom (atomic radius 1.37, ionic radius 2.21), promotes easy polarization of Te–C bonds. The ionic character of the bonds increases in the order C(sp3)ϪTeϾC(sp2)ϪTeϾC(sp)ϪTe, in accordance with the elec- tronegativity of carbon accompanying the s character (Table 1.1). BriefThe TeϪC bondintroduction therefore exhibits a high reactivity, to Tellurium as demonstrated typically (Te by )the easy heterolytic cleavage towards nucleophilic reagents. 1.2 RELEVANT MONOGRAPHS AND REVIEW ARTICLES 1. Rheinboldt, H. in Houben-Weyl-Methoden der Organischen Chemie (ed. E. Muller). 4th edn, Vol. IX. Georg Thieme, Stuttgart, 1955. 2. Petragnani, N.; Moura Campos, M. Organomet. Chem. Rev. 1967, 2, 61. 3. Cooper, W. C. (ed.). Tellurium. Van Nostrand Rheinhold, New York, 1971. 4. Irgolic, K. J.; Zingaro, R. in Organometallic Reactions (eds. E. Becker; M. Tsutsui). Wiley, New York, 1971. 5. Irgolic, K. J. The Organic Chemistry of Tellurium. Gordon and Breach, New York, 1974. 6. Irgolic, K. J. J. Organomet. Chem. 1975, 103, 91. lrgolic, K. J. J. Organomet. Chem. 1977, 130, 411. Irgolic, K. J. J. Organomet. Chem. 1978, 158, 235; Irgolic, K. J. J. Organomet. Chem. 1980, 189, 65. Irgolic, K. J. J. Organomet. Chem. 1980, 203, 368. Table 1.1 Some physical properties of the VIA family of elements Element Atomic Atomic Electronic Pauling Ionization Ionic Atomic number mass configuration electronegativity potential radius radius O 8 15.99 1s22s22p4 3.5 13.61 1.40 0.66 S 16 32.06 2s22p63s23p4 2.5 10.36 1.84 1.04 Se 34 78.96 3s23p63d104s24p4 2.4 9.75 1.98 1.17 Te 52 127.6 4s24p64d105s25p4 2.1 9.01 2.21 1.37 • 2.5 for carbon & 1large volume atom • easily polarize Te-C bonds • Highly reactive 2 Tellurium (Te) in organic synthesis • Several important types of reactions • Reductions • Tellurium-Mediated Formation of anion species and their reactions with electrophiles • Organotellurium-based ring closure reactions • Remove the Tellurium • With formation of new C-C bonds • With formation of other functionalities • Application of Tellurium chemistry • Vinylic tellurides • Free radical chemistry 3 with deuterium, 100%PhCHDOD is Reductions observed aliphatic ketones and esters are not • Reduction of carbonyl compounds applicable • Using hydrogen telluride Kambe, N.; Kondo, K.; Morita, S.; Murai, S.; Sonoda, N. Angew. Chem. 1980, 92, 1009. • Using phenyl telluride (1) Akiba, M.; Cava, M. P. Synth. Commun. 1984, 12, 1119. (2) Aso, Y.; Ogura, F. et al. Nippon Kagaku Kashi 1987, 1490. Aliphatic ketones and esters are not applicable 4 Reductions • Using phenyl telluride Q1: Why the reaction will give ether instead of alcohol as product in the presence of zinc iodide? Nagakawa, K.; Osuka, M.; Sasaki, K.; Aso, Y.; Otsubo, T.; Ogura, F. Chem. Lett. 1987, 1331. 5 Reductions • Using other tellurides Ti (III) as reducing reagent; DCM Coupling mechanism is unclear Suzuki, S. H.; Manabe, H.; Enokiya, R.; Hanazaki, Y. Chem. Lett. 1986, 1339.; Suzuki, H.; Hanazaki, Y. Chem. Lett. 1986, 549. Me N O H NMP Suzuki, H.; Nakamura, T. J. Org. Chem. 1993, 58, 241. • Deuterium experiments • Mechanism involves radical intermediate generate Ti(III) to reduce the carbonyl group 6 Reductions • Selective Reduction of α,β-unsaturated carbonyl compounds Kambe, N.; Kondo, K.; Morita, S.; Murai, S.; Sonoda, N. Angew. Chem. 1980, 92, 1009.; Akiba, M.; Cava, M. P. Synth. Commun. 1984, 12, 1119 • Reduction of conjugated arylalkenes and arylalkynes • Works well with terminal alkenes acceptable yield (1) Akiba, M.; Cava, M. P. Synth. Commun. 1984, 12, 1119. (2) Aso, Y.; Ogura, F. et al. Nippon Kagaku Kashi 1987, 1490. 7 Reductions • Reduction of imines and enamines Kambe, N.; Inagaki, T.; Miyoshi, N.; Ogawa, A.; Sonoda, N. Chem. Lett. 1987, 7, 1275. • Reductive desulphuration and reduction of nitro groups Suzuki, H.; Manabe, H.; Kawaguchi, T.; Inouye, M. Bull. Chem. Soc. Jpn. 1987, 60, 771 8 Reductions • Reductive desulphuration and reduction of nitro groups • Protic solvent — higher reducing ability • Aprotic solvent — Azo compounds • Steric hindered nitro compounds are easier to be reduced • More practical condition Suzuki, H.; Manabe, H.; Inouye, M. Chem. Lett. 1985, 1671. Osuka, A.; Shimizu, H.; Suzuki, H. Chem. Lett. 1983, 1373. Akiba, M.; Cava, M. P. Synth. Commun. 1984, 14, 1119. Uchida, S.; Yanada; K.; Yamaguchi, H.; Meguri, H. Chem. Lett. 1986, 1069. 9 Reductions • Debromination • Application of this reactions Kambe, N.; Tsukamoto, T.; Miyoshi, N.; Murai, S.; Sonoda, N. Bull. Chem. Soc. Jpn. 1986, 59, 3013. 10 Else_TOS-PETRAGNANI_Ch004.qxd 12/12/2006 6:51 PM Page 147 4.2 TELLURIUM-MEDIATED FORMATION OF ANIONIC SPECIES 147 Chemistry.p. 309. Plenum Press, London, 1973. Mathai, I. M.; Schug, K.; Miller, S. I. J. Org. Chem. 1970, 35, 1733. Gordon, J. E.; Chang, V. S. K. J. Org. Chem. 1973, 38, 3062 and references therein. 42. Moura Campos, M.; Petragnani, N. Tetrahedron Lett. 1960, 5. 43. Suzuki, H.; Kondo, A.; Osuka, A. Bull. Chem. Soc. Jpn. 1985, 58, 1335. 44. Butcher, T. S.; Detty, M. R. J. Org. Chem. 1998, 63, 177. 45. Leonard, K. A.; Zhou, F.; Detty, M. R. Organometallics 1996, 15, 4285. 46. Petragnani, N.; Moura Campos, M. Chem. Ber. 1961, 94, 1759. 47. Ramasamy, K.; Kalyanasundaram, S. K.; Shanmugam, P. Synthesis 1978, 311. 48. Suzuki, S.; Inouye, M. Chem. Lett. 1985, 225. 49. Huang, K.; Hou, Y. Q. Synth. Commun. 1988, 18, 2201. 50. Engman, L. Tetrahedron Lett. 1982, 23, 3601. 51. Li, C. J.; Harp, D. N. Tetrahedron Lett. 1990, 31, 6291. 52. Einstein, F. B. W.; Jones, C. H. W.; Jones, T.; Sharma, R. D. Can. J. Chem. 1983, 61, 2611. 53. Engman, L.; Bystrom, S. E. J. Org. Chem. 1985, 50, 3170. 54. Kambe, N.; Tsukamoto, T.; Miyoshi, N.; Murai, S.; Sonoda, N. Bull. Chem. Soc. Jpn. 1986, 59, 3013. 55. Bargues, V.; Blay, G.; Fernandez, J.; Pedro, J. R. Synlett 1996, 655. 56. See methods reported in refs. 57–60. 57. Osuka, A.; Suzuki, H. Chem. Lett. 1983, 119. 58. Clive, D. L. J.; Beaulieu, P. L. J. Org. Chem. 1982, 47, 1124. 59. Engman, L.; Cava, M. P. J. Org. Chem. 1982, 47, 3946. 60. Li, C. J.; Harp, D. N. Tetrahedron Lett. 1991, 32, 1545. 61. Mack, W. Angew. Chem. 1967, 6, 1083. 62. Luppold, E.; Winter, W. Chem. Ztg. 1977, 101, 303. 63. Osuka, A.; Takechi, K.; Suzuki, H. Bull. Chem. Soc. Jpn. 1984, 57, 303. 64. Suzuki, H.; Takaoka, K.; Ogura, A. Bull. Chem. Soc. Jpn. 1985, 58, 1067. 65. Huang, X.; Pi, J. H. Synth. Commun. 1990, 20, 2297. 66. Huang, X.; Pi, J. H.; Huang, Z. Phosphorus Sulfur Silicon 1992, 67, 177. 67. Padmanabhan, S.; Ogawa, T.; Suzuki, H. J. Chem. Res. (S) 1989, 266. 68. Li, C. J.; Harpp, D. N. Tetrahedron Lett. 1993, 34, 903. 69. Li, C. J.; Harpp, D. N. Tetrahedron Lett. 1992, 33, 7293. 4.2 TELLURIUM-MEDIATED FORMATION OF ANIONIC SPECIES AND THEIR REACTIONS WITH ELECTROPHILES 4.2.1Formation Reformatsky-type of reactionsanion species and their reactions Else_TOS-PETRAGNANI_Ch004.qxd 12/12/2006 6:51 PM Page 148 By treatment with sodium telluride,with bromoacetic electrophiles esters react with aromatic and non-eno- lizable• Reformatsky aldehydes in aprotic-type solvents, reactions giving α,β-unsaturated esters.1,2 Na Te/DMF/THF R 1 2 Br CO2R + RCHO 1 In accordance 148-10°C (37-73%) 4. TELLURIUM IN COORGANICR SYNTHESIS 2 with normal mechanism, 1 O In accordanceR = Me, with Et; Ra =Reformatsky Ph, o -Me, reactionp -Me2N, mechanism, p -Cl, p -FC the6H 4telluride, ion attacks theTe(-2) as bromine atom to generate an ester enolate which reacts in sequence Owith the aldehyde to PhCH = CH, Me2CPh, Me2C=CH(CH2)2CMe=CH anion afford the α,β-unsaturated ester. O- O O- 2- 1 1 Te Br CO2R - R OR -TeBr R1O R O + O H3O R OR1 TeBr- Te + Br- The reaction exhibits the following features: chloroacetates give lower yields than bro- moacetates; the E configuration is observed for the formed CϭC bond; α,β-unsaturated carbonyl compounds• E configuration lead only to 1,2-addition of double products; bond; ketones are unreactive under the described conditions;• for αa ,largeβ-unsaturated excess of the carbonylbromoacetate, only and 1,2-additionsodium telluride is required to assure high conversions.• ketone is not applicable • need large excess of bromoacetate and sodium telluride 1 Reformatsky-type reaction (typical procedure). To a solution of Na2Te (prepared from tel- lurium (0.7 g, 4 mmol), NaH (0.20 g, 8.6 mmol) and DMF (7 mL) by heating at 140°C for 30 min under N , is added dropwise at −20°C a solution of benzaldehyde (0.10 g, 1 mmol) 2 Suzuki, S.; Inouye, M. Chem. Lett. 1986, 403. in THF (1.5 mL) followed by ethyl bromoacetate (0.67 g, 4 mmol) in THF (1.5 mL). 11 Tellurium precipitates instantaneously. After stirring for 1 h, 0.5 M H2SO4 (5 mL) satu- rated with NaCl is added followed by Et2O (10 mL). Excess Na2Te is destroyed by expos- ing the mixture to air and stirring for 1 h. The mixture is filtered through Celite®,the organic phase is separated, and the aqueous layer extracted twice with Et2O. The combined extracts are washed with brine, dried (Na2SO4) and evaporated, leaving a yellow oil, which is purified by Kügelrohr distillation under reduced pressure to give ethyl cinnamate (0.10 g (60%); b.p.
Recommended publications
  • Ge–Sb–S–Se–Te Amorphous Chalcogenide Thin Films Towards On
    www.nature.com/scientificreports OPEN Ge–Sb–S–Se–Te amorphous chalcogenide thin flms towards on- chip nonlinear photonic devices J.-B. Dory 1, C. Castro-Chavarria1, A. Verdy 1, J.-B. Jager2, M. Bernard1, C. Sabbione1, M. Tessaire1, J.-M. Fédéli1, A. Coillet 3, B. Cluzel3 & P. Noé 1* Thanks to their unique optical properties Ge–Sb–S–Se–Te amorphous chalcogenide materials and compounds ofer tremendous opportunities of applications, in particular in near and mid-infrared range. This spectral range is for instance of high interest for photonics or optical sensors. Using co-sputtering technique of chalcogenide compound targets in a 200 mm industrial deposition tool, we show how by modifying the amorphous structure of GeSbwSxSeyTez chalcogenide thin flms one can signifcantly tailor their linear and nonlinear optical properties. Modelling of spectroscopic ellipsometry data collected on the as-deposited chalcogenide thin flms is used to evaluate their linear and nonlinear properties. Moreover, Raman and Fourier-transform infrared spectroscopies permitted to get a description of their amorphous structure. For the purpose of applications, their thermal stability upon annealing is also evaluated. We demonstrate that depending on the GeSbwSxSeyTez flm composition a trade-of between a high transparency in near- or mid-infrared ranges, strong nonlinearity and good thermal stability can be found in order to use such materials for applications compatible with the standard CMOS integration processes of microelectronics and photonics. Chalcogenides are commonly defned as non-oxide compounds containing at least one chalcogen element such as S, Se and/or Te (belonging to group 16 of O) alloyed with electropositive elements (more ofen elements of group 15 (As, Sb, Bi) and/or group 14 (Si, Ge, Sn, Pb)).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Ecodesign of Large-Scale Photovoltaic (PV) Systems with Multi-Objective Optimization and Life-Cycle Assessment (LCA)
    %NVUEDELOBTENTIONDU %0$503"5%&-6/*7&34*5² %&506-064& $ÏLIVRÏPAR Institut National Polytechnique de Toulouse (INP Toulouse) $ISCIPLINEOUSPÏCIALITÏ Génie des procédés et de l'Environnement 0RÏSENTÏEETSOUTENUEPAR Jorge RaÞl PEREZ GALLARDO LE vendredi 25 octobre 2013 4ITRE Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Écoconception de systèmes photovoltaïques (PV) à grande échelle par optimisation multi-objectif et Analyse du Cycle de Vie (ACV) %COLEDOCTORALE Mécanique, Energétique, Génie civil et Procédés (MEGeP) 5NITÏDERECHERCHE Laboratoire de Génie Chimique - UMR 5503 $IRECTEURS DE4HÒSE Mme Catherine AZZARO-PANTEL (INP-Toulouse, France ) M. Stéphan ASTIER (INP-Toulouse, France) 2APPORTEURS Mme Valérie LAFOREST (ENSM-Saint-Etienne, France) M. Moises GRAELLS (UPC-Barcelone, Espagne) MEMBRES DUJURY: Mme Corinne ALONSO (LAAS CNRS-Toulouse, France ) M. Pascal ESCRIBE (EDF EN France Région Sud, France ) M. Serge DOMENECH (INP-Toulouse, France ) M. Xavier ROBOAM (INP-Toulouse, France ) M. Pascal MAUSSION (INP-Toulouse, France ) Abstract . Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Because of the increasing demand for the provision of energy worldwide and the numerous damages caused by a major use of fossil sources, the contribution of renewable energies has been increasing significantly in the global energy mix with the aim at moving towards a more sustainable development. In this context, this work aims at the development of a general methodology for designing PV systems based on ecodesign principles and taking into account simultaneously both techno-economic and environmental considerations. In order to evaluate the environmental performance of PV systems, an environmental assessment technique was used based on Life Cycle Assessment (LCA).
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • Obtaining Nano Structures of Cobalt Telluride by a Simplified Ion Exchange Reaction at Aqueous Solution
    Chalcogenide Letters Vol. 16, No. 2, February 2019, p. 57 - 61 OBTAINING NANO STRUCTURES OF COBALT TELLURIDE BY A SIMPLIFIED ION EXCHANGE REACTION AT AQUEOUS SOLUTION O. ARELLANO-TÁNORIa,*, E. CHÁVEZ-MENDIOLAb,c,d, R. GÁMEZ-CORRALESe, X. M. GARCÍA-CRUZd, K. APODACA-IBARRAa, S. J. CASTILLOb aDepartamento de Ingeniería Industrial, Tecnológico Nacional de México/I. T. Hermosillo, Ave. Tecnológico y Periférico Poniente, S/N, C.P.83170, Col. Sahuaro, Hermosillo, Sonora, México bDepartamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-088, CP. 83000, Hermosillo, Sonora, México cCarrera de Ingeniería Mecatrónica, Universidad Tecnológica de Hermosillo, C.P. 83299, Parque Industrial, Hermosillo, Sonora, México dDepartamento de Metal-Mecánica, Tecnológico Nacional de México/I. T. Hermosillo, Av. Tecnológico y Periférico Poniente, S/N, C.P. 83170, Col. Sahuaro, Hermosillo Sonora, México eDepartamento de Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, CP. 83000, Hermosillo, Sonora, México How to obtain cobalt telluride through a versatile method, based on an ion exchange by aqueous chemical reaction, conformer by rongalite, sodium hydroxide and cobalt chloride. In the UV-vis characterization, a direct and indirect band gap interval of 2.32 eV and 2.04 eV was determined. In the optical absorption, two peaks are observed, one at 270 nm and 411 nm, wich correspond to this material. The FTIR study for cobalt telluride, absorption peaks are seen at 828 cm-1 corresponding to the O-Te group, while the peak of 621 cm -1 can be attributed to Te-O and finally the peak at 524 cm-1 corresponds to the vibration of Co-O links.
    [Show full text]
  • Photoluminescence Study of Cadmium Zinc Telluride
    Graduate Theses, Dissertations, and Problem Reports 2001 Photoluminescence study of cadmium zinc telluride Swati Jain West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Jain, Swati, "Photoluminescence study of cadmium zinc telluride" (2001). Graduate Theses, Dissertations, and Problem Reports. 1252. https://researchrepository.wvu.edu/etd/1252 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. PHOTOLUMINESCENCE STUDY OF CADMIUM ZINC TELLURIDE Swati Jain Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Physics Nancy C. Giles, Ph.D., Chair Larry E. Halliburton, Ph.D. Mohindar S. Seehra, Ph.D. Department of Physics Morgantown, West Virginia 2001 Keywords: Photoluminescence, PL, CdZnTe, CZT, Cd1-xZnxTe ABSTRACT PHOTOLUMINESCENCE STUDY OF CADMIUM ZINC TELLURIDE SWATI JAIN In this thesis, I present a detailed study of Cd1-xZnxTe crystals with 0 ≤ x ≤ 0.14 using photoluminescence (PL) spectroscopy.
    [Show full text]
  • Silver Halide Photographic Materials
    Europaisches Patentamt European Patent Office © Publication number: 0 350 903 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 89112787.0 © Int. CI.4: G03C 1/043 © Date of filing: 12.07.89 ® Priority: 12.07.88 JP 173474/88 © Applicant: FUJI PHOTO FILM CO., LTD. 210 Nakanuma Minami Ashigara-shi @ Date of publication of application: Kanagawa(JP) 17.01.90 Bulletin 90/03 © Inventor: Sasaki, Hirotomo © Designated Contracting States: 210, Nakanuma, Minami DE FR GB NL Ashigara-shi Kanagawa(JP) Inventor: Shishido, Tadao 210, Nakanuma, Minami Ashigara-shi Kanagawa(JP) Inventor: Mifune, Hiroyuki 210, Nakanuma, Minami Ashigara-shi Kanagawa(JP) © Representative: Patentanwalte Dr. Solf & Zapf Zeppelinstrasse 53 D-8000 Munchen 80(DE) © Silver halide photographic materials. © A silver halide photographic material comprising silver halide emulsion including a telluroether compound of the formula (I): U-Te-L2 (I) wherein Li and Lz each independently represents a substituted or unsubstituted aliphatic group, and at least one of Li or L2 represents an aliphatic group which is substituted with at least one hydroxyl group, mercapto group, amino group, ether group, selenoether group, thioether group, ammonium group, sulfonyl group, carbamoyl group, carbonamido group, sulfamoyl group, sulfonamido group, acyloxy group, sulfonyloxy group, ureido group, thioureido group, thioamido group, oxysulfonyl group, oxycarbonylamino group, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, phosphoric ester group, sulfinic acid group or a salt thereof, phosphino group or heterocyclic group. < CO o O) LO CL LU Xerox Copy Centre EP 0 350 803 A1 SILVER HALIDE PHOTOGRAPHIC MATERIALS FIELD OF THE INVENTION This invention concerns silver halide photographic materials and, more precisely, it concerns silver 5 halide photographic materials which contain novel telluroether compounds.
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Environmental Health & Safety
    Environmental Health & Safety Chemical Safety Program Chemical Segregation & Incompatibilities Guidelines Class of Recommended Incompatible Possible Reaction Examples Chemical Storage Method Materials If Mixed Corrosive Acids Mineral Acids – Separate cabinet or storage area Flammable Liquids Heat Chromic Acid away from potential water Flammable Solids Hydrogen Chloride sources, i.e. under sink Bases Hydrochloric Acid Oxidizers Gas Generation Nitric Acid Poisons Perchloric Acid Violent Phosphoric Acid Reaction Sulfuric Acid Corrosive Bases/ Ammonium Hydroxide Separate cabinet or storage area Flammable Liquids Heat Caustics Sodium Hydroxide away from potential water Flammable Solids Sodium Bicarbonate sources, i.e. under sink Acids Gas Generation Oxidizers Poisons Violent Reaction Explosives Ammonium Nitrate Secure location away from Flammable Liquids Nitro Urea other chemicals Oxidizers Picric Acid Poisons Explosion Hazard Trinitroaniline Acids Trinitrobenzene Bases Trinitrobenzoic Acid Trinitrotoluene Urea Nitrate Flammable Liquids Acetone Grounded flammable storage Acids Fire Hazard Benzene cabinet of flammable storage Bases Diethyl Ether refrigerator Oxidizers Methanol Poisons Heat Ethanol Toluene Violent Glacial Acetic Acid Reaction Flammable Solids Phosphorus Separate dry cool area Acids Fire Hazard Magnesium Bases Heat Oxidizers Violent Poisons Reaction Sodium Hypochlorite Spill tray that is separate from Reducing Agents Fire Oxidizers Benzoyl Peroxide flammable and combustible Flammables Hazard Potassium Permanganate materials Combustibles
    [Show full text]
  • Cadmium Telluride
    CADMIUM TELLURIDE Section I Kurt J. Lesker Company Emergency Phone Numbers 1925 Worthington Avenue KJLC 800/245-1656 Clairton, PA 15025 Chemtrec 800/424-9300 Ph: 412/387-9200 Fax: 412/233-4275 Poison Center 800/562-8236 Chemical Name and Synonyms Date of Last Revision Cadmium Telluride, Cadmium Monotelluride 12/2/90 Formula Chemical Family Chemical Abstract No. CdTe metal telluride 1306-25-8 TSCA Calc. Molecular Wt. Listed in the EPA TSCA Inventory 240.0 Section II Hazardous Ingredients Hazardous Ingredients CAS # % TLV OSHA PEL Cadmium Telluride 1306-25-8 100 0.05mg/m3 200mg/m3 (as (as Cd) Cd) Reported Chemical Sara Title III 0.1mg/m3 (as Te) Section III Physical Data Boiling Point (0oC): 1121 Density (gmcc): 5.850 at 15 (6.2 at 15) Vapor Pressure: NA % Volatile by Volume: NA Reaction with Water: may react Evaporation Rate (H2O -1): NA exothermically Solubility in Water: Practically Melting Point (oC): 1041 (1091) insoluble Appearance and Odor: Black/slightly gray Other Comments: Oxidizes upon powder/pieces prolonged exposure to moist air. Practically insoluble in acids; decomposes in HNO3 Section IV Fire & Explosion Hazard Data Flash Point (method) Autoignition Temp. Flammability LEI UEI NA NA NA NA NA Extinguishing Media: Do not use water. Use dry chemical, CO2 Special Fire Fighting Procedures: Wear a self-contained breathing apparatus and full protective clothing to prevent contact with skin and eyes. Unusual Fire and Explosion Hazards: Material may emit toxic fumes of Cd and Te if involved in a fire, or on contact with acids or acidic fumes. Section V Spill or Leak Process Steps to be Taken in Case Material is Released or Spilled: Wear a self- contained breathing apparatus and full protective clothing.
    [Show full text]
  • Thesis Lopez.FINAL
    STUDY OF THE TOXICITY OF SYNTHETICALLY- AND BIOLOGICALLY-PRODUCED CADMIUM TELLURIDE NANOPARTICLES AND AN EXAMINATION OF THE EFFECTS OF S- ADENOSYL METHIONINE AMENDMENT ON bnf05 BACTERIAL HEADSPACE A Thesis Presented to The Faculty of the Department of Chemistry Sam Houston State University In Partial Fulfillment of the Requirements for the Degree of Master of Science by Desiré A. Lopez May, 2014 STUDY OF THE TOXICITY OF SYNTHETICALLY- AND BIOLOGICALLY-PRODUCED CADMIUM TELLURIDE NANOPARTICLES AND AN EXAMINATION OF THE EFFECTS OF S- ADENOSYL METHIONINE AMENDMENT ON bnf05 BACTERIAL HEADSPACE by Desiré A. Lopez APPROVED: Dr. Thomas G. Chasteen Thesis Director Dr. Donovan C. Haines Dr. David E. Thompson Approved: Dr. John B. Pascarella, Dean College of Sciences ABSTRACT Lopez, Desiré A., Study of the toxicity of synthetically- and biologically-produced cadmium telluride nanoparticles and an examination of the effects of S-adenosyl methionine amendment on bnf05 bacterial headspace. Master of Science (Chemistry), May, 2014, Sam Houston State University, Huntsville, Texas. Purpose The purpose of this research was: (1) to determine the toxicity of both synthetically- and biologically-produced nanoparticles (NPs); and (2) to determine if K2TeO3 could be reduced and methylated by a metalloid-resistant bacterium isolated from Antarctica, bnf05. Methods Cadmium telluride NPs were made both synthetically and biologically. Biologically-made NPs were grown under three separate growing conditions, 1) aerobic, 2) microaerobic, and 3) aerobic for the initial growth and microaerobic after the introduction of a lacZ gene inducer, to determine which condition produced the most nanoparticle fluorescence. MIC (Minimal Inhibitory Concentration) experiments were conducted on both synthetically- and biologically-made NPs for two different bacteria, BW and LHVE, using a colony counting technique.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]