Photoluminescence Study of Cadmium Zinc Telluride
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Background Document on Cadmium ______
Hazardous Substances Series -------------------------------------------------------------------------------------------------------------------------------------------- Cadmium OSPAR Commission 2002 (2004 Update) OSPAR Commission, 2002: OSPAR Background Document on Cadmium _______________________________________________________________________________________________________ The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. © OSPAR Commission, 2002. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2002. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée. -
Progress in the Development of Cdte and Cdznte Semiconductor Radiation Detectors for Astrophysical and Medical Applications
Sensors 2009, 9, 3491-3526; doi:10.3390/s90503491 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications Stefano Del Sordo 1,*, Leonardo Abbene 1,2,*, Ezio Caroli 3, Anna Maria Mancini 4, Andrea Zappettini 5 and Pietro Ubertini 6 1 INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy 2 Dipartimento di Fisica e Tecnologie Relative, Università di Palermo,Viale delle Scienze, 90128 Palermo, Italy 3 INAF/IASF Bologna, Via Gobetti 101, 40129 Bologna, Italy; E-Mail: [email protected] (E.C.) 4 Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Arnesano, 73100 Lecce, Italy; E-Mail: [email protected] (A.M.M.) 5 IMEM-CNR, Parco Area delle Scienze 37/A, 43100 Parma, Italy; E-Mail: [email protected] (A.Z.) 6 INAF/IASF Roma, Via del Fosso del Cavaliere 100, 00133 Roma, Italy; E-Mail: [email protected] (P.U.) * Authors to whom correspondence should be addressed; E-Mails: [email protected]; (S.D.S.); [email protected] (L.A.); Tel. +39-091-6809563; Fax: +39-091-6882258 (S.D.S.); Tel. +39-091-6615053; Fax: +39-091-6615063 (L.A.) Received: 26 March 2009; in revised form: 5 May 2009 / Accepted: 8 May 2009 / Published: 12 May 2009 Abstract: Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. -
Cadmium- Toxfaqs™
Cadmium- ToxFAQs™ CAS # 7440-43-9 This fact sheet answers the most frequently asked health questions (FAQs) about cadmium. For more information, call the CDC Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to cadmium happens mostly in the workplace where cadmium products are made. The general population is exposed from breathing cigarette smoke or eating cadmium contaminated foods. Cadmium damages the kidneys, lungs, and bones. Cadmium has been found in at least 1,014 of the 1,669 National Priorities List (NPL) sites identified by the Environmental Protection Agency (EPA). What is cadmium? How might I be exposed to cadmium? Cadmium is a natural element in the earth’s crust. It is • Eating foods containing cadmium; low levels are usually found as a mineral combined with other elements found in all foods (highest levels are found in leafy such as oxygen (cadmium oxide), chlorine (cadmium vegetables, grains, legumes, and kidney meat). chloride), or sulfur (cadmium sulfate, cadmium sulfide). • Smoking cigarettes or breathing cigarette smoke. All soils and rocks, including coal and mineral fertilizers, • Breathing contaminated workplace air. contain some cadmium. Most cadmium used in the United States is extracted during the production of other metals • Drinking contaminated water. like zinc, lead, and copper. -
Understanding Variation in Partition Coefficient, Kd, Values: Volume II
United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater. -
Two Cadmium Zinc Telluride (CZT) Semiconductor Detectors, a Lacl3(Ce) Scintillator, and an Nai(Tl) Scintillator
Performance comparison of four compact room- temperature detectors – two cadmium zinc telluride (CZT) semiconductor detectors, a LaCl3(Ce) scintillator, and an NaI(Tl) scintillator John K. Hartwell, Member IEEE, Robert J. Gehrke, and Michael E. Mc Ilwain measurement scenarios where portability, compact design, Abstract— The performance characteristics of four compact, and freedom from cryogenics are primary considerations. room-temperature detectors – two scintillators and two A recent publication provided performance comparison semiconductor detectors – were studied. All are commercially- data on three detectors including a ∅10 cm X 10 cm NaI(Tl), available detectors. The two scintillators were a ∅13 mm X a ∅55 mm X 54 mm HPGe detector, and a ∅9 mm X 2 mm 13 mm lanthanum chloride [LaCl3(Ce)] detector and a ∅25 mm X 25 mm sodium iodide [NaI(Tl)] detector. The two CdTe detector [1]. Our work, reported in this paper, provides semiconductor detectors were a 10 mm X 10 mm X 3 mm complimentary assessment data on a different suite of four cadmium zinc telluride (CZT) detector with a coplanar gridded highly portable detectors, including work with the promising anode and a 5 mm X 5 mm X 5 mm CZT detector with an new scintillator LaCl3(Ce). extended cathode. The efficiency, resolution, and peak shape of these devices are compared. Since LaCl (Ce) is a relatively new 3 II. EXPERIMENTAL METHOD commercial scintillator material, additional information on the performance of this detector is presented. Specifically, the The electronics system used for these evaluations consisted impact of naturally-occurring radioactive 138La and additional of a preamplifier, a linear amplifier (Tennelec TC244 or Ortec contamination from alpha-emitting radionuclides on the 460), and an multichannel analyzer (Amptek MCA8000A) background measured with this detector are discussed. -
The Place of Zinc, Cadmium, and Mercury in the Periodic Table
Information • Textbooks • Media • Resources The Place of Zinc, Cadmium, and Mercury in the Periodic Table William B. Jensen Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172; [email protected] One of the few facts that I can remember from my un- a quarter of the more recent introductory inorganic texts. In dergraduate inorganic course was my instructor’s insistence all cases, the Zn group was incorrectly labeled as being a mem- that zinc, cadmium, and mercury should be classified as main- ber of the d block or transition block. Those introductory block elements rather than as transition-block or d-block el- inorganic texts that presented some sort of systematic survey ements. Though I have always assumed that the evidence for of descriptive chemistry usually contradicted this assignment this statement was unambiguous, I have also noticed the ap- in their later discussions of the chemistry of these elements. pearance over the last decade of an increasing number of gen- On the other hand, the surveys of descriptive chemistry found eral chemistry texts, inorganic texts, and advanced inorganic in most of the general chemistry texts were so superficial that monographs that either explicitly or implicitly contradict this the existence of this inconsistency seldom became explicit. assignment. The inorganic textbook by Cotton and In light of these trends, I thought it might be of interest Wilkinson, which has served as the American standard for to summarize the evidence relating to the proper placement nearly 40 years, has always been firm in its treatment of the of the Zn group within the periodic table. -
Characterization of Cadmium Zinc Telluride Solar Cells by RF Sputtering Senthilnathan Subramanian University of South Florida
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-24-2004 Characterization of Cadmium Zinc Telluride Solar Cells by RF Sputtering Senthilnathan Subramanian University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Subramanian, Senthilnathan, "Characterization of Cadmium Zinc Telluride Solar Cells by RF Sputtering" (2004). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1261 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Characterization of Cadmium Zinc Telluride Solar Cells by RF Sputtering by Senthilnathan Subramanian A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Christos S. Ferekides, Ph.D. Don L. Morel, Ph.D. Yun L. Choiu, Ph.D Date of Approval: June 29, 2004 Keywords: czt, thin films, wide bandgap semiconductors, tandem solar cells © Copyright 2004 , Senthilnathan Subramanian DEDICATION This thesis is dedicated to my family and friends for their love and support. ACKNOWLEDGEMENT I would like to express my gratitude to my Major Professor Dr. Chris Ferekides for his invaluable guidance and support during the course of this work. He has been a great source of inspiration during my work here. I also thank Dr.Don L. Morel and Dr. -
Research Progress on Ultra-Precision Machining Technologies for Soft-Brittle Crystal Materials
Front. Mech. Eng. 2017, 12(1): 77–88 DOI 10.1007/s11465-017-0411-8 REVIEW ARTICLE Hang GAO, Xu WANG, Dongming GUO, Yuchuan CHEN Research progress on ultra-precision machining technologies for soft-brittle crystal materials © The Author(s) 2017. This article is published with open access at link.springer.com and journal.hep.com.cn 2017 Abstract Soft-brittle crystal materials are widely used in Mercury cadmium telluride (HgCdTe, MCT) single crystal many fields, especially optics and microelectronics. is the most significant material for infrared optoelectronic However, these materials are difficult to machine through devices and MCT-based high performance infrared traditional machining methods because of their brittle, soft, devices, and is widely used in the fields of aeronautics and anisotropic nature. In this article, the characteristics and astronautics [4]. Cadmium zinc telluride (CdZnTe, and machining difficulties of soft-brittle and crystals are CZT) single crystal is the most promising material for the presented. Moreover, the latest research progress of novel fabrication of room temperature radiation detectors [5,6] machining technologies and their applications for soft- and is also widely used as the perfect substrates for brittle crystals are introduced by using some representative growing epitaxial layers of MCT crystal [7]. CaF2 single materials (e.g., potassium dihydrogen phosphate (KDP), crystal is extensively applied in deep ultraviolet photo- cadmium zinc telluride (CZT)) as examples. This article lithography, solid-state lasers, and high-energy radiation reviews the research progress of soft-brittle crystals detection [8]. BaF2 single crystal with high transparency processing. for infrared and visible light is often used in CO2 laser hatch and infrared optical systems [9]. -
Fabrication of Small-Pixel Cdznte Sensors and Characterization with X-Rays
sensors Article Fabrication of Small-Pixel CdZnTe Sensors and Characterization with X-rays Stergios Tsigaridas 1,∗,† , Silvia Zanettini 2 , Manuele Bettelli 3 , Nicola Sarzi Amadè 3 , Davide Calestani 3 , Cyril Ponchut 1 and Andrea Zappettini 3 1 European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, F-38043 Grenoble, France; [email protected] 2 Due2lab s.r.l., via Paolo Borsellino 2, 42019 Scandiano, Italy; [email protected] 3 IMEM-CNR, Istituto Materiali per l’Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43124 Parma, Italy; [email protected] (M.B.); [email protected] (N.S.A.); [email protected] (D.C.); [email protected] (A.Z.) * Correspondence: [email protected] † Current address: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. Abstract: Over the past few years, sensors made from high-Z compound semiconductors have attracted quite some attention for use in applications which require the direct detection of X-rays in the energy range 30–100 keV. One of the candidate materials with promising properties is cadmium zinc telluride (CdZnTe). In the context of this article, we have developed pixelated sensors from CdZnTe crystals grown by Boron oxide encapsulated vertical Bridgman technique. We demonstrate the successful fabrication of CdZnTe pixel sensors with a fine pitch of 55 µm and thickness of 1 mm and 2 mm. The sensors were bonded on Timepix readout chips to evaluate their response to X-rays Citation: Tsigaridas, S.; Zanettini, S.; provided by conventional sources. Despite the issues related to single-chip fabrication procedure, Bettelli, M.; Sarzi Amadè, N.; reasonable uniformity was achieved along with low leakage current values at room temperature. -
Ge–Sb–S–Se–Te Amorphous Chalcogenide Thin Films Towards On
www.nature.com/scientificreports OPEN Ge–Sb–S–Se–Te amorphous chalcogenide thin flms towards on- chip nonlinear photonic devices J.-B. Dory 1, C. Castro-Chavarria1, A. Verdy 1, J.-B. Jager2, M. Bernard1, C. Sabbione1, M. Tessaire1, J.-M. Fédéli1, A. Coillet 3, B. Cluzel3 & P. Noé 1* Thanks to their unique optical properties Ge–Sb–S–Se–Te amorphous chalcogenide materials and compounds ofer tremendous opportunities of applications, in particular in near and mid-infrared range. This spectral range is for instance of high interest for photonics or optical sensors. Using co-sputtering technique of chalcogenide compound targets in a 200 mm industrial deposition tool, we show how by modifying the amorphous structure of GeSbwSxSeyTez chalcogenide thin flms one can signifcantly tailor their linear and nonlinear optical properties. Modelling of spectroscopic ellipsometry data collected on the as-deposited chalcogenide thin flms is used to evaluate their linear and nonlinear properties. Moreover, Raman and Fourier-transform infrared spectroscopies permitted to get a description of their amorphous structure. For the purpose of applications, their thermal stability upon annealing is also evaluated. We demonstrate that depending on the GeSbwSxSeyTez flm composition a trade-of between a high transparency in near- or mid-infrared ranges, strong nonlinearity and good thermal stability can be found in order to use such materials for applications compatible with the standard CMOS integration processes of microelectronics and photonics. Chalcogenides are commonly defned as non-oxide compounds containing at least one chalcogen element such as S, Se and/or Te (belonging to group 16 of O) alloyed with electropositive elements (more ofen elements of group 15 (As, Sb, Bi) and/or group 14 (Si, Ge, Sn, Pb)). -
Reducing Cadmium Exposure in Your Garden Faqs About Cadmium In
FAQs About Cadmium in Fertilizer: Reducing Cadmium Exposure in Your Garden Can I reduce my cadmium exposure by growing my own vegetables? Maintaining vegetable gardens can be a great way to If you are engaged in urban gardening and are increase your consumption of vegetables, reduce food concerned about possible soil contamination, we costs, and control contamination from cadmium and recommend reading the short guide, Soil Safety other toxics. Analytical results from both the PPRC Resource Guide for Urban Food Growers from Survey of Cadmium Contamination in Northwest the Johns Hopkins Center for a Livable Future. Vegetables and from the FDA’s most recent Total Diet In addition to providing best practices to prevent Study suggest that growing your own vegetables may exposure to heavy metals, this guide lists health significantly reduce cadmium exposures.1 resources commonly used in the Baltimore area.2 For help finding similar resources in your own area, The gardening choices you make can directly affect we recommend consulting with your city or county the cadmium content in soil and in vegetables, even government, your state environmental or health if you live in an urban area. You can likely reduce the authority, or contacting PPRC for help amount of cadmium available for plant uptake by (www.pprc.org). carefully evaluating soils, fertilizers, and other soil amendments, as well as by improving soil health, growing winter cover crops, and following best management practices. You do not need to be an expert or invest a huge amount of money in testing. Personal home gardens and urban places set aside for community gardens are ideal places for growing your own clean, healthy vegetables. -
Cd,-,Zn,Te Materials
Source of Acquisition NASA Goddard Space Flight Center Temperature Evolution of Excitonic Absorptions in Cd,-,Zn,Te Materials Manuel A. Quijada and Ross Henry Goddard Space Flight Center, Code 551, Greenbelt, MD 20771, USA ABSTRACT The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the W/Visible and infrared frequency ranges for Cdl-,Zn,Te materials for x=O and XI-0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors. Keywords: Keywords: CdZnTe, UV/Vis infrared, transmittance, reflectance, semiconducting gap, photolumi- nescence, exciton 1. INTRODUCTION The ternary compound Cdl-,Zn,Te (CdZnTe) is a semiconducting alloy that is widely used as a base material for x-ray and infrared detectors. In particular, single crystals of CdZnTe wafers are the principal material on which HgCdTe epitaxial layers have been recently grown for the fabrication of infrared sensors on lattice matched CdZnTe substrate.l This has been possible due to recent advances through use of new detector growth technologies2 which involve p/n double layer planar heterostructure arrays grown by Molecular Beam Epitaxy (MBE).