Two Fleets - 1788 & 1988 - Some Untold History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sydney Harbour: What We Do and Do Not Know About a Highly Diverse Estuary
Marine and Freshwater Research 2015, 66, 1073-1087 © CSIRO 2015 http://dx.doi.org/10.1071/MF15159_AC Supplementary material Sydney Harbour: what we do and do not know about a highly diverse estuary E. L. JohnstonA,B, M. Mayer-PintoA,B, P. A. HutchingsC, E. M. MarzinelliA,B,D, S. T. AhyongC, G. BirchE, D. J. BoothF, R. G. CreeseG, M. A. DoblinH, W. FigueiraI, P. E. GribbenB,D, T. PritchardJ, M. RoughanK, P. D. SteinbergB,D and L. H. HedgeA,B AEvolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia. BSydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia. CAustralian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia. DCentre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia. ESchool of GeoSciences, The University of Sydney, Sydney, NSW 2006, Australia. FCentre for Environmental Sustainability, School of the Environment, University of Technology, Sydney, NSW 2007, Australia. GNew South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, NSW 2315, Australia. HPlant Functional Biology and Climate Change Cluster, University of Technology, Sydney, NSW 2007, Australia. ICentre for Research on Ecological Impacts of Coastal Cities, School of Biological Sciences, University of Sydney, NSW 2006, Australia. JWater and Coastal Science Section, New South Wales Office of Environment and Heritage, PO Box A290, Sydney, NSW 1232, Australia. KCoastal and Regional Oceanography Lab, School of Mathematics and Statistics, University of New South Wales, NSW 2052, Australia. -
Sydney Harbour a Systematic Review of the Science 2014
Sydney Harbour A systematic review of the science 2014 Sydney Institute of Marine Science Technical Report The Sydney Harbour Research Program © Sydney Institute of Marine Science, 2014 This publication is copyright. You may download, display, print and reproduce this material provided that the wording is reproduced exactly, the source is acknowledged, and the copyright, update address and disclaimer notice are retained. Disclaimer The authors of this report are members of the Sydney Harbour Research Program at the Sydney Institute of Marine Science and represent various universities, research institutions and government agencies. The views presented in this report do not necessarily reflect the views of The Sydney Institute of Marine Science or the authors other affiliated institutions listed below. This report is a review of other literature written by third parties. Neither the Sydney Institute of Marine Science or the affiliated institutions take responsibility for the accuracy, currency, reliability, and correctness of any information included in this report provided in third party sources. Recommended Citation Hedge L.H., Johnston E.L., Ayoung S.T., Birch G.F., Booth D.J., Creese R.G., Doblin M.A., Figueira W.F., Gribben P.E., Hutchings P.A., Mayer Pinto M, Marzinelli E.M., Pritchard T.R., Roughan M., Steinberg P.D., 2013, Sydney Harbour: A systematic review of the science, Sydney Institute of Marine Science, Sydney, Australia. National Library of Australia Cataloging-in-Publication entry ISBN: 978-0-646-91493-0 Publisher: The Sydney Institute of Marine Science, Sydney, New South Wales, Australia Available on the internet from www.sims.org.au For further information please contact: SIMS, Building 19, Chowder Bay Road, Mosman NSW 2088 Australia T: +61 2 9435 4600 F: +61 2 9969 8664 www.sims.org.au ABN 84117222063 Cover Photo | Mike Banert North Head The light was changing every minute. -
Macrobrachium Intermedium in Southeastern Australia: Spatial Heterogeneity and the Effects of Species of Seagrass
MARINE ECOLOGY PROGRESS SERIES Vol. 75: 239-249, 1991 Published September 11 Mar. Ecol. Prog. Ser. Demographic patterns of the palaemonid prawn Macrobrachium intermedium in southeastern Australia: spatial heterogeneity and the effects of species of seagrass Charles A. Gray* School of Biological Sciences, University of Sydney, 2006, NSW. Australia ABSTRACT. The effects of species of seagrass (Zostera capricorni and Posidonia australis) on spatial and temporal heterogeneity in the demography of estuarine populations of the palaemonid prawn Macrobrachium intermedium across 65 km of the Sydney region, southeastern Australia, were examined. Three estuaries were sampled in 1983 and 1984 to assess the magnitude of intra- and inter- estuary variability in demographic characteristics among populations. Species of seagrass had no effect on the demographic patterns of populations: differences in the magnitude and directions of change in abundances, recruitment, reproductive characteristics, size structures and growth were as great among populations within each species of seagrass as those between the 2 seagrasses Abiotic factors, such as the location of a meadow in relation to depth of water and distance offshore, and the interactions of these factors with recruiting larvae are hypothesised to have greater influence than the species of seagrass in determining the distribution and abundance of these prawns. Spatial and temporal heterogeneity in demography was similar across all spatial scales sampled: among meadows (50 m to 3 km apart) in an estuary and among meadows in all 3 estuaries (10 to 65 km apart). Variability in demographic processes among populations in the Sydney region was most likely due to stochastic factors extrinsic to the seagrasses then~selves.I conclude that the demography of seagrass-dwelling estuarine populations of M. -
Reducing the Impact of Weirs on Aquatic Habitat
REDUCING THE IMPACT OF WEIRS ON AQUATIC HABITAT NSW DETAILED WEIR REVIEW REPORT TO THE NEW SOUTH WALES ENVIRONMENTAL TRUST SYDNEY METROPOLITAN CMA REGION Published by NSW Department of Primary Industries. © State of New South Wales 2006. This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation provided due credit is given to the author and publisher. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the Manager Publishing, NSW Department of Primary Industries, Orange, NSW. DISCLAIMER The information contained in this publication is based on knowledge and understanding at the time of writing (July 2006). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check the currency of the information with the appropriate officer of NSW Department of Primary Industries or the user‘s independent adviser. This report should be cited as: NSW Department of Primary Industries (2006). Reducing the Impact of Weirs on Aquatic Habitat - New South Wales Detailed Weir Review. Sydney Metropolitan CMA region. Report to the New South Wales Environmental Trust. NSW Department of Primary Industries, Flemington, NSW. ISBN: 0 7347 1753 9 (New South Wales Detailed Weir Review) ISBN: 978 0 7347 1833 4 (Sydney Metropolitan CMA region) Cover photos: Cob-o-corn Weir, Cob-o-corn Creek, Northern Rivers CMA (upper left); Stroud Weir, Karuah River, Hunter/Central Rivers CMA (upper right); Mollee Weir, Namoi River, Namoi CMA (lower left); and Hartwood Weir, Billabong Creek, Murray CMA (lower right). -
Jellyfish Catostylus Mosaicus (Rhizostomeae) in New South Wales, Australia
- MARINE ECOLOGY PROGRESS SERIES Vol. 196: 143-155,2000 Published April 18 Mar Ecol Prog Ser l Geographic separation of stocks of the edible jellyfish Catostylus mosaicus (Rhizostomeae) in New South Wales, Australia K. A. Pitt*, M. J. Kingsford School of Biological Sciences, Zoology Building, A08 University of Sydney, New South Wales 2006, Australia ABSTRACT: The population structure of the commercially harvested jellyfish Catostylus mosaicus (Scyphozoa, Rhizostomeae) was investigated in estuaries and bays in New South Wales, Australia. Variations in abundance and recruitment were studied in 6 estuaries separated by distances ranglng from 75 to 800 km. Patterns of abundance differed greatly among estuaries and the rank abundance among estuaries changed on 5 out of the 6 times sampling occurred. Great variation in the timing of recruitment was also observed among estuaries. Variations in abundance and recruitment were as extreme among nearby estuaries as distant ones. Broad scale sampling and detailed time series of abundance over a period of 2.7 yr at 2 locations showed no consistent seasonal trend in abundance at 1 location, but there was some indication of seasonality at the second location. At Botany Bay, the abun- dance of medusae increased with distance into the estuary and on 19 out of the 30 times sampling occurred medusae were found at sites adjacent to where rivers enter the bay. Medusae were found to be strong swimmers and this may aid medusae in maintaining themselves in the upper-reaches of estu- aries, where advection from an estuary is least likely. Variability in patterns of abundance and recruit- ment suggested regulation by processes occurring at the scale of individual estuaries and, combined with their relatively strong swimming ability, supported a model of population retention within estuar- ies. -
Contaminant Chemistry and Toxicity of Sediments in Sydney Harbour, Australia: Spatial Extent and Chemistry–Toxicity Relationships
Vol. 363: 71–87, 2008 MARINE ECOLOGY PROGRESS SERIES Published July 15 doi: 10.3354/meps07445 Mar Ecol Prog Ser Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: spatial extent and chemistry–toxicity relationships Gavin F. Birch1,*, Stephanie McCready1, Edward R. Long2, Stuart S. Taylor1, 3, Gina Spyrakis1 1School of Geosciences, Environmental Geology Group, The University of Sydney, New South Wales, 2006, Australia 2ERL Environmental, 3691 Cole Road South, Salem, Oregon 97306, USA 3URS, 116 Miller St., North Sydney, New South Wales, 2060, Australia ABSTRACT: The spatial distribution of chemical contamination and toxicity of surficial sediments in Sydney Harbour, Australia, was investigated in a 3-tiered, hierarchical approach. An initial chemical investigation throughout the entire estuary (Stage 1) indicated wide ranges and different spatial patterns in sediment chemical concentrations. Sediment quality guidelines (SQGs) were used as a preliminary estimate of possible toxicity in Stage 2 of the investigation. Assessment of chemical mixtures indicated that sediments in a small part (~2%) of the harbour had the highest probability of being toxic (~75%), whereas sediment in almost 25% of the port was estimated to have an inter- mediate (~50%) probability of being toxic. The SQG assessment in Stage 2 enabled careful stratifica- tion of the harbour into areas with different toxicity risks, reducing cost and time commitments in the final tier of assessment. The spatial survey carried out in Stage 3 involved concurrent chemical and ecotoxicological analyses. In this final stage, the degree of response in tests of amphipod survival in whole sediment samples, as well as in tests of microbial metabolism (Microtox©) and sea urchin egg fertilisation and embryo development in pore waters, generally increased with increasing chemical concentrations. -
Sydney Short Ocean Racing Championships
24 & 25 November 2018 SAILING INSTRUCTIONS www.ssorc.mhyc.com.au Organising Authority Middle Harbour Yacht Club Lower Parriwi Road, The Spit Mosman, NSW 2088 PO Box 106, Seaforth, NSW 2092 P: 02 9969 1244 F: 02 9969 3326 W: www.mhyc.com.au SAILING INSTRUCTIONS Premier Class Series - IRC /ORCi Performance Class Series - PHS (Incorporating the MHYC & CYCA Ocean Pointscores) The Organising Authority is the Middle Harbour Yacht Club (MHYC). Racing will be conducted with the assistance and support of the Cruising Yacht Club of Australia (CYCA). 1.0 RULES 1.1 The Championship will be governed by: the current Rules as defined in the Racing Rules of Sailing (RRS) the current Prescriptions and Special Regulations of Australian Sailing (AS) the IRC Class Rules 2017, Parts A, B and C (if applicable) the ORCi Class Rules 2017 (if applicable) the Class Rules of any One Design Class or Association, if applicable the current MHYC Conditions of Entry 1.2 Racing Rules of Sailing (RRS) will be changed as follows: RRS 52 does not apply to the adjustment and operation of sails or to the adjustment of movable appendages on any boat. RRS 78.2 - Valid Rating / Class certificates shall be produced by the due date specified in this Notice of Race. 1.3 Competing Crew are reminded of RRS 46 & RRS 56 and the requirement that all crew must be Members of a Club affiliated to its World Sailing Member National Authority (MNA). 2 NOTICES TO COMPETITORS 2.1 Notices to competitors will be posted on the Official Notice Board located in the ‘Breezeway’ adjacent to the main office at MHYC. -
Towra Point Nature Reserve Ramsar Site: Ecological Character Description in Good Faith, Exercising All Due Care and Attention
Towra Point Nature Reserve Ramsar site Ecological character description Disclaimer The Department of Environment, Climate Change and Water NSW (DECCW) has compiled the Towra Point Nature Reserve Ramsar site: Ecological character description in good faith, exercising all due care and attention. DECCW does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or of the Minister for Environment Protection, Heritage and the Arts. Acknowledgements Phil Straw, Australasian Wader Studies Group; Bob Creese, Bruce Pease, Trudy Walford and Rob Williams, Department of Primary Industries (NSW); Simon Annabel and Rob Lea, NSW Maritime; Geoff Doret, Ian Drinnan and Brendan Graham, Sutherland Shire Council; John Dahlenburg, Sydney Metropolitan Catchment Management Authority. Symbols for conceptual diagrams are courtesy of the Integration and Application Network (ian.umces.edu/symbols), University of Maryland Center for Environmental Science. This publication has been prepared with funding provided by the Australian Government to the Sydney Metropolitan Catchment Management Authority through the Coastal Catchments Initiative Program. © State of NSW, Department of Environment, Climate Change and Water NSW, and Sydney Metropolitan Catchment Management Authority DECCW and SMCMA are pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. -
Contextual Analysis and Urban Design Objectives
Rozelle Interchange Urban Design and Landscape Plan Contextual Analysis and Urban Design Objectives Artists impression: Pedestrian view along Victoria Road Caption(Landscape - Image shown description at full maturity and is indicative only). 03 White Bay Power Station Urban Design Objectives 3 Contextual analysis 3.1 Contextual analysis Local context WestConnex will extend from the M4 Motorway at The Rozelle Interchange will be a predominately Parramatta to Sydney Airport and the M5 underground motorway interchange with entry and Motorway, re-shaping the way people move exit points that connect to the wider transport through Sydney and generating urban renewal network at City West Link, Iron Cove and Anzac opportunities along the way. It will provide the Bridge. critical link between the M4 and M5, completing Sydney’s motorway network. Iron Cove and Rozelle Rail Yards sit on and are adjacent to disconnected urban environments. While the character varies along the route, the These conditions are the result of the historically WestConnex will be sensitively integrated into the typical approach to building large individual road built and natural environments to reconnect and systems which disconnect suburbs and greatly strengthen local communities and enhance the reduce the connectivity and amenity of sustainable form, function, character and liveability of Sydney. modes of transport such as cycling and walking. Rather than adding to the existing disconnection, An analysis of the Project corridor was undertaken the Project will provide increased -
Coastal Storms in Nsw and Their Effect on the Coast
I I. COASTAL STORMS IN N.s.w. .: AUGUST & NOVEMBER 1986 .1 and Their Effect on the Coast I 'I I 1'1 ! I I I I I I I I I I , . < May 198,8 , 'I " I I : COASTAL STORMS· IN N.s.w. I AUGUST & NOVEMBER 1986 I and Their Effect on the Coast I I I I I 1: 1 I I I I I M.N. CLARKE M.G. GEARY I Chief Engineer Principal Engineer I Prepared by : University of N.S.W. Water Research Laboratory I bID IPTIID311IIcr: ~Th'¥@~ , I May 1988 ------..! Coaat a Rivera Branch I I I I CONTENTS LIST OF FIGURES ( ii ) I LIST OF TABLES (iv) 1. INTRODUCTION I 2. SUMMARY 2 3. ENVIRONMENTAL CONDITIONS 5 I 3.1 METEOROLOGICAL DATA 5 3.2 TIDE LEVELS 7 3.3 WAVE HEIGHTS AND PERIODS 10 I 3.4 STORM mSTORY - AUGUST 1985 TO AUGUST 1986 13 4. WAVE RUN-UP 15 I 4.1 MANLY WARRINGAH BEACHES 15 4.2 BATEMANS BAY BEACHES 15 I 4.3 THEORETICAL ASSESSMENT 16 4.4 COMPARISON OF MEASURED AND THEORETICAL RUN-UP LEVELS 23 5. BEACH SURVEYS 25 ·1 5.1 GOSFORD BEACHES 25 5.2 MANLY W ARRINGAH BEACHES 28 I 5.3 BATEMANS BAY BEACHES 29 6. OFFSHORE SURVEYS . 30 6.1 SURVEY METHODS 30 I 6.2 GOSFORD BEACHES 30 6.3 WARRINGAH BEACHES 31 I 6.4 ASSESSMENT OF ACCURACY OF OFFSHORE SURVEYS 32 7. OFFSHORE SEDIMENT SAMPLES - GOSFORD BEACHES 34 7.1 SAMPLE COLLECTION 34 I 7.2 SAMPLE CLASSIFICATION 34 , 7.3 SAMPLE DESCRIPTIONS 34 I 7.4 COMPARISON OF 1983/84 AND POST STORM OFFSHORE DATA 36 8. -
7 a Short Geological and Environmental History of the Sydney
View metadata,citationandsimilarpapersatcore.ac.uk effect on floods and droughts in Australia', Climatic change, vol. 25, pp. 289–317. 7 Wilby R L, 2005. 'Uncertainty in water resource model parameters used for climate change impact assessment', Hydrological Processes, vol. 19, pp. 3201–3219. Young P, 2003. 'Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale', Hydrological Processes, A short geological and environmental history vol. 17, pp. 2195–2217. of the Sydney estuary, Australia Young W, Brandis K & Kingsford R, 2006. 'Modelling monthly streamflows in two Australian dryland rivers: matching model complexity to spatial scale and data availability', Journal of Hydrology, Gavin Birch vol. 331, pp. 242–256. Zhang L, Dawes W R & Walker G R, 2001. 'Response of mean annual evapotranspiration to vegetation changes a catchment scale', Water Abstract Resources Research, vol. 37, pp. 701–708. Zhang L, Walker G R & Fleming M, 2002. 'Surface water balance for Sydney is blessed with one of the most beautiful harbours in the world. recharge estimation', CSIRO publishing, Collingwood, Victoria. However, like many large, capital ports world-wide, this environment has been exposed to relentless stress due to a rapidly increasing population density and extensive residential, commercial and industrial expansion. In this chapter, we explain why the coastal zone is such an important environment, especially for the people of Australia, and describe changes to the Sydney estuary as an example of environmental transformation due to anthropogenic pressure. The geologic development of the Sydney estuary is briefly traced, showing how the feature was eroded into the Hawkesbury Sandstone, mainly during low sea levels of the glacial periods. -
True Believers
Magazine of the Confederation of Bushwalking Clubs (NSW) Inc ISSN 0313 2684 Summer issue - November1996 Vol 22 No 2 http://www.fastlink.com.au/subscrib/bushwalking/index.htm Time for ‘True Believers’ to Speak out on Wilderness agree that we should preserve our by Brian Walker Older bushwalkers like me remaining natural areas in perpe- sible for much of this damage. can remember when there were tuity. But we are all very reluctant • Tracks leading to many no walking tracks in the Blue to accept any restrictions on our popular Blue Mountains canyons Mountains. own activities. All the conflicts are now seriously eroded. The Now there are so many tracks over recreational access to na- worst damage occurred after the it’s hard to believe that only a cou- tional parks and wilderness areas publication of a route guide that led ple of decades ago you rarely saw a arise from this anomaly. to an enormous increase in the footprint in many of today’s most The huge increase in activities number of visitors to the more ac- popular bushwalking areas. away from developed visitor fa- cessible canyons. Until the middle of this century cilities is creating major prob- Continued on page 16 most wilderness areas in NSW were lems. For example: visited by only a handful of hardy • Abseiling instruction at VRA Honors people on foot or on horseback. Mount Portal Lookout on the east- Bulldozers and the motor car ern edge of the Blue Mountains Bushwalkers changed all that. When fire trails be- National Park has increased to The Volunteer Rescue Asso- came the fashion in the ’60s, such an extent that a large area ciation Inc (VRA) honored Peter bushfire authorities pushed trails has been badly damaged.