Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applications and Issues in Assessment
meeting of the Association of British Neurologists in April vessels: a direct comparison between intravenous and intra-arterial DSA. 1992. We thank Professor Charles Warlow for his helpful Cl/t Radiol 1991;44:402-5. 6 Caplan LR, Wolpert SM. Angtography in patients with occlusive cerebro- comments. vascular disease: siews of a stroke neurologist and neuroradiologist. AmcincalsouraalofNcearoradiologv 1991-12:593-601. 7 Kretschmer G, Pratschner T, Prager M, Wenzl E, Polterauer P, Schemper M, E'uropean Carotid Surgery Trialists' Collaboration Group. MRC European ct al. Antiplatelet treatment prolongs survival after carotid bifurcation carotid surgerv trial: interim results for symptomatic patients with severe endarterectomv. Analysts of the clinical series followed by a controlled trial. (70-90()',) or tvith mild stenosis (0-299',Y) carotid stenosis. Lantcet 1991 ;337: AstniSuirg 1990;211 :317-22. 1 235-43. 8 Antiplatelet Trialists' Collaboration. Secondary prevention of vascular disease 2 North American Svmptotnatic Carotid Endarterectomv Trial Collaborators. by prolonged antiplatelet treatment. BM7 1988;296:320-31. Beneficial effect of carotid endarterectomv in svmptomatic patients with 9 Murie JA, Morris PJ. Carotid endarterectomy in Great Britain and Ireland. high grade carotid stenosis. VEngl 7,1Med 1991;325:445-53. Br7Si(rg 1986;76:867-70. 3 Hankev CJ, Warlows CP. Svmptomatic carotid ischaemic events. Safest and 10 Murie J. The place of surgery in the management of carotid artery disease. most cost effective way of selecting patients for angiography before Hospital Update 1991 July:557-61. endarterectomv. Bt4 1990;300:1485-91. 11 Dennis MS, Bamford JM, Sandercock PAG, Warlow CP. Incidence of 4 Humphrev PRD, Sandercock PAG, Slatterv J. -
Nber Working Paper Series Human Decisions And
NBER WORKING PAPER SERIES HUMAN DECISIONS AND MACHINE PREDICTIONS Jon Kleinberg Himabindu Lakkaraju Jure Leskovec Jens Ludwig Sendhil Mullainathan Working Paper 23180 http://www.nber.org/papers/w23180 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2017 We are immensely grateful to Mike Riley for meticulously and tirelessly spearheading the data analytics, with effort well above and beyond the call of duty. Thanks to David Abrams, Matt Alsdorf, Molly Cohen, Alexander Crohn, Gretchen Ruth Cusick, Tim Dierks, John Donohue, Mark DuPont, Meg Egan, Elizabeth Glazer, Judge Joan Gottschall, Nathan Hess, Karen Kane, Leslie Kellam, Angela LaScala-Gruenewald, Charles Loeffler, Anne Milgram, Lauren Raphael, Chris Rohlfs, Dan Rosenbaum, Terry Salo, Andrei Shleifer, Aaron Sojourner, James Sowerby, Cass Sunstein, Michele Sviridoff, Emily Turner, and Judge John Wasilewski for valuable assistance and comments, to Binta Diop, Nathan Hess, and Robert Webberfor help with the data, to David Welgus and Rebecca Wei for outstanding work on the data analysis, to seminar participants at Berkeley, Carnegie Mellon, Harvard, Michigan, the National Bureau of Economic Research, New York University, Northwestern, Stanford and the University of Chicago for helpful comments, to the Simons Foundation for its support of Jon Kleinberg's research, to the Stanford Data Science Initiative for its support of Jure Leskovec’s research, to the Robert Bosch Stanford Graduate Fellowship for its support of Himabindu Lakkaraju and to Tom Dunn, Ira Handler, and the MacArthur, McCormick and Pritzker foundations for their support of the University of Chicago Crime Lab and Urban Labs. The main data we analyze are provided by the New York State Division of Criminal Justice Services (DCJS), and the Office of Court Administration. -
JSM 2017 in Baltimore the 2017 Joint Statistical Meetings in Baltimore, Maryland, Which Included the CONTENTS IMS Annual Meeting, Took Place from July 29 to August 3
Volume 46 • Issue 6 IMS Bulletin September 2017 JSM 2017 in Baltimore The 2017 Joint Statistical Meetings in Baltimore, Maryland, which included the CONTENTS IMS Annual Meeting, took place from July 29 to August 3. There were over 6,000 1 JSM round-up participants from 52 countries, and more than 600 sessions. Among the IMS program highlights were the three Wald Lectures given by Emmanuel Candès, and the Blackwell 2–3 Members’ News: ASA Fellows; ICM speakers; David Allison; Lecture by Martin Wainwright—Xiao-Li Meng writes about how inspirational these Mike Cohen; David Cox lectures (among others) were, on page 10. There were also five Medallion lectures, from Edoardo Airoldi, Emery Brown, Subhashis Ghoshal, Mark Girolami and Judith 4 COPSS Awards winners and nominations Rousseau. Next year’s IMS lectures 6 JSM photos At the IMS Presidential Address and Awards session (you can read Jon Wellner’s 8 Anirban’s Angle: The State of address in the next issue), the IMS lecturers for 2018 were announced. The Wald the World, in a few lines lecturer will be Luc Devroye, the Le Cam lecturer will be Ruth Williams, the Neyman Peter Bühlmann Yuval Peres 10 Obituary: Joseph Hilbe lecture will be given by , and the Schramm lecture by . The Medallion lecturers are: Jean Bertoin, Anthony Davison, Anna De Masi, Svante Student Puzzle Corner; 11 Janson, Davar Khoshnevisan, Thomas Mikosch, Sonia Petrone, Richard Samworth Loève Prize and Ming Yuan. 12 XL-Files: The IMS Style— Next year’s JSM invited sessions Inspirational, Mathematical If you’re feeling inspired by what you heard at JSM, you can help to create the 2018 and Statistical invited program for the meeting in Vancouver (July 28–August 2, 2018). -
The American Statistician
This article was downloaded by: [T&F Internal Users], [Rob Calver] On: 01 September 2015, At: 02:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG The American Statistician Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utas20 Reviews of Books and Teaching Materials Published online: 27 Aug 2015. Click for updates To cite this article: (2015) Reviews of Books and Teaching Materials, The American Statistician, 69:3, 244-252, DOI: 10.1080/00031305.2015.1068616 To link to this article: http://dx.doi.org/10.1080/00031305.2015.1068616 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. -
Himabindu Lakkaraju
Himabindu Lakkaraju Contact Information 428 Morgan Hall Harvard Business School Soldiers Field Road Boston, MA 02163 E-mail: [email protected] Webpage: http://web.stanford.edu/∼himalv Research Interests Transparency, Fairness, and Safety in Artificial Intelligence (AI); Applications of AI to Criminal Justice, Healthcare, Public Policy, and Education; AI for Decision-Making. Academic & Harvard University 11/2018 - Present Professional Postdoctoral Fellow with appointments in Business School and Experience Department of Computer Science Microsoft Research, Redmond 5/2017 - 6/2017 Visiting Researcher Microsoft Research, Redmond 6/2016 - 9/2016 Research Intern University of Chicago 6/2014 - 8/2014 Data Science for Social Good Fellow IBM Research - India, Bangalore 7/2010 - 7/2012 Technical Staff Member SAP Research, Bangalore 7/2009 - 3/2010 Visiting Researcher Adobe Systems Pvt. Ltd., Bangalore 7/2007 - 7/2008 Software Engineer Education Stanford University 9/2012 - 9/2018 Ph.D. in Computer Science Thesis: Enabling Machine Learning for High-Stakes Decision-Making Advisor: Prof. Jure Leskovec Thesis Committee: Prof. Emma Brunskill, Dr. Eric Horvitz, Prof. Jon Kleinberg, Prof. Percy Liang, Prof. Cynthia Rudin Stanford University 9/2012 - 9/2015 Master of Science (MS) in Computer Science Advisor: Prof. Jure Leskovec Indian Institute of Science (IISc) 8/2008 - 7/2010 Master of Engineering (MEng) in Computer Science & Automation Thesis: Exploring Topic Models for Understanding Sentiments Expressed in Customer Reviews Advisor: Prof. Chiranjib -
Overview on Explainable AI Methods Global‐Local‐Ante‐Hoc‐Post‐Hoc
00‐FRONTMATTER Seminar Explainable AI Module 4 Overview on Explainable AI Methods Birds‐Eye View Global‐Local‐Ante‐hoc‐Post‐hoc Andreas Holzinger Human‐Centered AI Lab (Holzinger Group) Institute for Medical Informatics/Statistics, Medical University Graz, Austria and Explainable AI‐Lab, Alberta Machine Intelligence Institute, Edmonton, Canada a.holzinger@human‐centered.ai 1 Last update: 11‐10‐2019 Agenda . 00 Reflection – follow‐up from last lecture . 01 Basics, Definitions, … . 02 Please note: xAI is not new! . 03 Examples for Ante‐hoc models (explainable models, interpretable machine learning) . 04 Examples for Post‐hoc models (making the “black‐box” model interpretable . 05 Explanation Interfaces: Future human‐AI interaction . 06 A few words on metrics of xAI (measuring causability) a.holzinger@human‐centered.ai 2 Last update: 11‐10‐2019 01 Basics, Definitions, … a.holzinger@human‐centered.ai 3 Last update: 11‐10‐2019 Explainability/ Interpretability – contrasted to performance Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490. Inconsistent Definitions: What is the difference between explainable, interpretable, verifiable, intelligible, transparent, understandable … ? Zachary C. Lipton 2018. The mythos of model interpretability. ACM Queue, 16, (3), 31‐57, doi:10.1145/3236386.3241340 a.holzinger@human‐centered.ai 4 Last update: 11‐10‐2019 The expectations of xAI are extremely high . Trust – interpretability as prerequisite for trust (as propagated by Ribeiro et al (2016)); how is trust defined? Confidence? . Causality ‐ inferring causal relationships from pure observational data has been extensively studied (Pearl, 2009), however it relies strongly on prior knowledge . Transferability – humans have a much higher capacity to generalize, and can transfer learned skills to completely new situations; compare this with e.g. -
Statistical Tips for Interpreting Scientific Claims
Research Skills Seminar Series 2019 CAHS Research Education Program Statistical Tips for Interpreting Scientific Claims Mark Jones Statistician, Telethon Kids Institute 18 October 2019 Research Skills Seminar Series | CAHS Research Education Program Department of Child Health Research | Child and Adolescent Health Service ResearchEducationProgram.org © CAHS Research Education Program, Department of Child Health Research, Child and Adolescent Health Service, WA 2019 Copyright to this material produced by the CAHS Research Education Program, Department of Child Health Research, Child and Adolescent Health Service, Western Australia, under the provisions of the Copyright Act 1968 (C’wth Australia). Apart from any fair dealing for personal, academic, research or non-commercial use, no part may be reproduced without written permission. The Department of Child Health Research is under no obligation to grant this permission. Please acknowledge the CAHS Research Education Program, Department of Child Health Research, Child and Adolescent Health Service when reproducing or quoting material from this source. Statistical Tips for Interpreting Scientific Claims CONTENTS: 1 PRESENTATION ............................................................................................................................... 1 2 ARTICLE: TWENTY TIPS FOR INTERPRETING SCIENTIFIC CLAIMS, SUTHERLAND, SPIEGELHALTER & BURGMAN, 2013 .................................................................................................................................. 15 3 -
Algorithms, Platforms, and Ethnic Bias: an Integrative Essay
BERKELEY ROUNDTABLE ON THE INTERNATIONAL ECONOMY BRIE Working Paper 2018-3 Algorithms, Platforms, and Ethnic Bias: An Integrative Essay Selena Silva and Martin Kenney Algorithms, Platforms, and Ethnic Bias: An Integrative Essay In Phylon: The Clark Atlanta University Review of Race and Culture (Summer/Winter 2018) Vol. 55, No. 1 & 2: 9-37 Selena Silva Research Assistant and Martin Kenney* Distinguished Professor Community and Regional Development Program University of California, Davis Davis & Co-Director Berkeley Roundtable on the International Economy & Affiliated Professor Scuola Superiore Sant’Anna * Corresponding Author The authors wish to thank Obie Clayton for his encouragement and John Zysman for incisive and valuable comments on an earlier draft. Keywords: Digital bias, digital discrimination, algorithms, platform economy, racism 1 Abstract Racially biased outcomes have increasingly been recognized as a problem that can infect software algorithms and datasets of all types. Digital platforms, in particular, are organizing ever greater portions of social, political, and economic life. This essay examines and organizes current academic and popular press discussions on how digital tools, despite appearing to be objective and unbiased, may, in fact, only reproduce or, perhaps, even reinforce current racial inequities. However, digital tools may also be powerful instruments of objectivity and standardization. Based on a review of the literature, we have modified and extended a “value chain–like” model introduced by Danks and London, depicting the potential location of ethnic bias in algorithmic decision-making.1 The model has five phases: input, algorithmic operations, output, users, and feedback. With this model, we identified nine unique types of bias that might occur within these five phases in an algorithmic model: (1) training data bias, (2) algorithmic focus bias, (3) algorithmic processing bias, (4) transfer context bias, (5) misinterpretation bias, (6) automation bias, (7) non-transparency bias, (8) consumer bias, and (9) feedback loop bias. -
Bayesian Sensitivity Analysis for Offline Policy Evaluation
Bayesian Sensitivity Analysis for Offline Policy Evaluation Jongbin Jung Ravi Shroff [email protected] [email protected] Stanford University New York University Avi Feller Sharad Goel UC-Berkeley [email protected] [email protected] Stanford University ABSTRACT 1 INTRODUCTION On a variety of complex decision-making tasks, from doctors pre- Machine learning algorithms are increasingly used by employ- scribing treatment to judges setting bail, machine learning algo- ers, judges, lenders, and other experts to guide high-stakes de- rithms have been shown to outperform expert human judgments. cisions [2, 3, 5, 6, 22]. These algorithms, for example, can be used to One complication, however, is that it is often difficult to anticipate help determine which job candidates are interviewed, which defen- the effects of algorithmic policies prior to deployment, as onegen- dants are required to pay bail, and which loan applicants are granted erally cannot use historical data to directly observe what would credit. When determining whether to implement a proposed policy, have happened had the actions recommended by the algorithm it is important to anticipate its likely effects using only historical been taken. A common strategy is to model potential outcomes data, as ex-post evaluation may be expensive or otherwise imprac- for alternative decisions assuming that there are no unmeasured tical. This general problem is known as offline policy evaluation. confounders (i.e., to assume ignorability). But if this ignorability One approach to this problem is to first assume that treatment as- assumption is violated, the predicted and actual effects of an al- signment is ignorable given the observed covariates, after which a gorithmic policy can diverge sharply. -
IMS Council Election Results
Volume 42 • Issue 5 IMS Bulletin August 2013 IMS Council election results The annual IMS Council election results are in! CONTENTS We are pleased to announce that the next IMS 1 Council election results President-Elect is Erwin Bolthausen. This year 12 candidates stood for six places 2 Members’ News: David on Council (including one two-year term to fill Donoho; Kathryn Roeder; Erwin Bolthausen Richard Davis the place vacated by Erwin Bolthausen). The new Maurice Priestley; C R Rao; IMS Council members are: Richard Davis, Rick Durrett, Steffen Donald Richards; Wenbo Li Lauritzen, Susan Murphy, Jane-Ling Wang and Ofer Zeitouni. 4 X-L Files: From t to T Ofer will serve the shorter term, until August 2015, and the others 5 Anirban’s Angle: will serve three-year terms, until August 2016. Thanks to Council Randomization, Bootstrap members Arnoldo Frigessi, Nancy Lopes Garcia, Steve Lalley, Ingrid and Sherlock Holmes Van Keilegom and Wing Wong, whose terms will finish at the IMS Rick Durrett Annual Meeting at JSM Montreal. 6 Obituaries: George Box; William Studden IMS members also voted to accept two amendments to the IMS Constitution and Bylaws. The first of these arose because this year 8 Donors to IMS Funds the IMS Nominating Committee has proposed for President-Elect a 10 Medallion Lecture Preview: current member of Council (Erwin Bolthausen). This brought up an Peter Guttorp; Wald Lecture interesting consideration regarding the IMS Bylaws, which are now Preview: Piet Groeneboom reworded to take this into account. Steffen Lauritzen 14 Viewpoint: Are professional The second amendment concerned Organizational Membership. -
The Royal Statistical Society Getstats Campaign Ten Years to Statistical Literacy? Neville Davies Royal Statistical Society Cent
The Royal Statistical Society getstats Campaign Ten Years to Statistical Literacy? Neville Davies Royal Statistical Society Centre for Statistical Education University of Plymouth, UK www.rsscse.org.uk www.censusatschool.org.uk [email protected] twitter.com/CensusAtSchool RSS Centre for Statistical Education • What do we do? • Who are we? • How do we do it? • Where are we? What we do: promote improvement in statistical education For people of all ages – in primary and secondary schools, colleges, higher education and the workplace Cradle to grave statistical education! Dominic Mark John Neville Martignetti Treagust Marriott Paul Hewson Davies Kate Richards Lauren Adams Royal Statistical Society Centre for Statistical Education – who we are HowWhat do we we do: do it? Promote improvement in statistical education For people of all ages – in primary and secondary schools, colleges, higher education and theFunders workplace for the RSSCSE Cradle to grave statistical education! MTB support for RSSCSE How do we do it? Funders for the RSSCSE MTB support for RSSCSE How do we do it? Funders for the RSSCSE MTB support for RSSCSE How do we do it? Funders for the RSSCSE MTB support for RSSCSE How do we do it? Funders for the RSSCSE MTB support for RSSCSE How do we do it? Funders for the RSSCSE MTB support for RSSCSE Where are we? Plymouth Plymouth - on the border between Devon and Cornwall University of Plymouth University of Plymouth Local attractions for visitors to RSSCSE - Plymouth harbour area The Royal Statistical Society (RSS) 10-year -
Designing Alternative Representations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance
153 Designing Alternative Representations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance HONG SHEN, Carnegie Mellon University, USA HAOJIAN JIN, Carnegie Mellon University, USA ÁNGEL ALEXANDER CABRERA, Carnegie Mellon University, USA ADAM PERER, Carnegie Mellon University, USA HAIYI ZHU, Carnegie Mellon University, USA JASON I. HONG, Carnegie Mellon University, USA Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction ofreading the data, were most useful in improving objective understanding.