Human Decisions and Machine Predictions*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Price Competition with Satisficing Consumers
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Price Competition with Satisficing Consumers∗ Mauro Papiy Abstract The ‘satisficing’ heuristic by Simon (1955) has recently attracted attention both theoretically and experimentally. In this paper I study a price-competition model in which the consumer is satisficing and firms can influence his aspiration price via marketing. Unlike existing models, whether a price comparison is made depends on both pricing and marketing strategies. I fully characterize the unique symmetric equilibrium by investigating the implications of satisficing on various aspects of market competition. The proposed model can help explain well-documented economic phenomena, such as the positive correla- tion between marketing and prices observed in some markets. JEL codes: C79, D03, D43. Keywords: Aspiration Price, Bounded Rationality, Price Competition, Satisficing, Search. ∗This version: August 2017. I would like to thank the Editor of this journal, two anonymous referees, Ed Hopkins, Hans Hvide, Kohei Kawamura, Ran Spiegler, the semi- nar audience at universities of Aberdeen, East Anglia, and Trento, and the participants to the 2015 OLIGO workshop (Madrid) and the 2015 Econometric Society World Congress (Montreal) for their comments. Financial support from the Aberdeen Principal's Excel- lence Fund and the Scottish Institute for Research in Economics is gratefully acknowledged. Any error is my own responsibility. yBusiness School, University of Aberdeen - Edward Wright Building, Dunbar Street, AB24 3QY, Old Aberdeen, Scotland, UK. E-mail address: [email protected]. 1 1 Introduction According to Herbert Simon (1955), in most global models of rational choice, all alternatives are eval- uated before a choice is made. -
Nber Working Paper Series Human Decisions And
NBER WORKING PAPER SERIES HUMAN DECISIONS AND MACHINE PREDICTIONS Jon Kleinberg Himabindu Lakkaraju Jure Leskovec Jens Ludwig Sendhil Mullainathan Working Paper 23180 http://www.nber.org/papers/w23180 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2017 We are immensely grateful to Mike Riley for meticulously and tirelessly spearheading the data analytics, with effort well above and beyond the call of duty. Thanks to David Abrams, Matt Alsdorf, Molly Cohen, Alexander Crohn, Gretchen Ruth Cusick, Tim Dierks, John Donohue, Mark DuPont, Meg Egan, Elizabeth Glazer, Judge Joan Gottschall, Nathan Hess, Karen Kane, Leslie Kellam, Angela LaScala-Gruenewald, Charles Loeffler, Anne Milgram, Lauren Raphael, Chris Rohlfs, Dan Rosenbaum, Terry Salo, Andrei Shleifer, Aaron Sojourner, James Sowerby, Cass Sunstein, Michele Sviridoff, Emily Turner, and Judge John Wasilewski for valuable assistance and comments, to Binta Diop, Nathan Hess, and Robert Webberfor help with the data, to David Welgus and Rebecca Wei for outstanding work on the data analysis, to seminar participants at Berkeley, Carnegie Mellon, Harvard, Michigan, the National Bureau of Economic Research, New York University, Northwestern, Stanford and the University of Chicago for helpful comments, to the Simons Foundation for its support of Jon Kleinberg's research, to the Stanford Data Science Initiative for its support of Jure Leskovec’s research, to the Robert Bosch Stanford Graduate Fellowship for its support of Himabindu Lakkaraju and to Tom Dunn, Ira Handler, and the MacArthur, McCormick and Pritzker foundations for their support of the University of Chicago Crime Lab and Urban Labs. The main data we analyze are provided by the New York State Division of Criminal Justice Services (DCJS), and the Office of Court Administration. -
ECON 1820: Behavioral Economics Spring 2015 Brown University Course Description Within Economics, the Standard Model of Be
ECON 1820: Behavioral Economics Spring 2015 Brown University Course Description Within economics, the standard model of behavior is that of a perfectly rational, self interested utility maximizer with unlimited cognitive resources. In many cases, this provides a good approximation to the types of behavior that economists are interested in. However, over the past 30 years, experimental and behavioral economists have documented ways in which the standard model is not just wrong, but is wrong in ways that are important for economic outcomes. Understanding these behaviors, and their implications, is one of the most exciting areas of current economic inquiry. The aim of this course is to provide a grounding in the main areas of study within behavioral economics, including temptation and self control, fairness and reciprocity, reference dependence, bounded rationality and choice under risk and uncertainty. For each area we will study three things: 1. The evidence that indicates that the standard economic model is missing some important behavior 2. The models that have been developed to capture these behaviors 3. Applications of these models to (for example) finance, labor and development economics As well as the standard lectures, homework assignments, exams and so on, you will be asked to participate in economic experiments, the data from which will be used to illustrate some of the principals in the course. There will also be a certain small degree of classroom ‘flipping’, with a portion of many lectures given over to group problem solving. Finally, an integral part of the course will be a research proposal that you must complete by the end of the course, outlining a novel piece of research that you would be interested in doing. -
Behavioral Economics and Marketing in Aid of Decision Making Among the Poor
Behavioral Economics and Marketing in Aid of Decision Making Among the Poor The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bertrand, Marianne, Sendhil Mullainathan, and Eldar Shafir. 2006. Behavioral economics and marketing in aid of decision making among the poor. Journal of Public Policy and Marketing 25(1): 8-23. Published Version http://dx.doi.org/10.1509/jppm.25.1.8 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2962609 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Behavioral Economics and Marketing in Aid of Decision Making Among the Poor Marianne Bertrand, Sendhil Mullainathan, and Eldar Shafir This article considers several aspects of the economic decision making of the poor from the perspective of behavioral economics, and it focuses on potential contributions from marketing. Among other things, the authors consider some relevant facets of the social and institutional environments in which the poor interact, and they review some behavioral patterns that are likely to arise in these contexts. A behaviorally more informed perspective can help make sense of what might otherwise be considered “puzzles” in the economic comportment of the poor. A behavioral analysis suggests that substantial welfare changes could result from relatively minor policy interventions, and insightful marketing may provide much needed help in the design of such interventions. -
Esther Duflo Wins Clark Medal
Esther Duflo wins Clark medal http://web.mit.edu/newsoffice/2010/duflo-clark-0423.html?tmpl=compon... MIT’s influential poverty researcher heralded as best economist under age 40. Peter Dizikes, MIT News Office April 23, 2010 MIT economist Esther Duflo PhD ‘99, whose influential research has prompted new ways of fighting poverty around the globe, was named winner today of the John Bates Clark medal. Duflo is the second woman to receive the award, which ranks below only the Nobel Prize in prestige within the economics profession and is considered a reliable indicator of future Nobel consideration (about 40 percent of past recipients have won a Nobel). Duflo, a 37-year-old native of France, is the Abdul Esther Duflo, the Abdul Latif Jameel Professor of Poverty Alleviation Latif Jameel Professor of Poverty Alleviation and and Development Economics at MIT, was named the winner of the Development Economics at MIT and a director of 2010 John Bates Clark medal. MIT’s Abdul Latif Jameel Poverty Action Lab Photo - Photo: L. Barry Hetherington (J-PAL). Her work uses randomized field experiments to identify highly specific programs that can alleviate poverty, ranging from low-cost medical treatments to innovative education programs. Duflo, who officially found out about the medal via a phone call earlier today, says she regards the medal as “one for the team,” meaning the many researchers who have contributed to the renewal of development economics. “This is a great honor,” Duflo told MIT News. “Not only for me, but my colleagues and MIT. Development economics has changed radically over the last 10 years, and this is recognition of the work many people are doing.” The American Economic Association, which gives the Clark medal to the top economist under age 40, said Duflo had distinguished herself through “definitive contributions” in the field of development economics. -
Sendhil Mullainathan [email protected]
Sendhil Mullainathan [email protected] _____________________________________________________________________________________ Education HARVARD UNIVERSITY, CAMBRIDGE, MA, 1993-1998 PhD in Economics Dissertation Topic: Essays in Applied Microeconomics Advisors: Drew Fudenberg, Lawrence Katz, and Andrei Shleifer CORNELL UNIVERSITY, ITHACA, NY, 1990-1993 B.A. in Computer Science, Economics, and Mathematics, magna cum laude Fields of Interest Behavioral Economics, Poverty, Applied Econometrics, Machine Learning Professional Affiliations UNIVERSITY OF CHICAGO Roman Family University Professor of Computation and Behavioral Science, January 1, 2019 to present. University Professor, Professor of Computational and Behavioral Science, and George C. Tiao Faculty Fellow, Booth School of Business, July 1, 2018 to December 31, 2018. HARVARD UNIVERSITY Robert C Waggoner Professor of Economics, 2015 to 2018. Affiliate in Computer Science, Harvard John A. Paulson School of Engineering and Applied Sciences, July 1, 2016 to 2018. Professor of Economics, 2004 (September) to 2015. UNIVERSITY OF CHICAGO Visiting Professor, Booth School of Business, 2016-17. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mark Hyman Jr. Career Development Associate Professor, 2002-2004 Mark Hyman Jr. Career Development Assistant Professor, 2000-2002 Assistant Professor, 1998- 2000 SELECTED AFFILIATIONS Co - Founder and Senior Scientific Director, ideas42 Research Associate, National Bureau of Economic Research Founding Member, Poverty Action Lab Member, American Academy of Arts -
Chapter 4: Conceptual Illusions
CHAPTER 4: CONCEPTUAL ILLUSIONS In this chapter we will consider some fallacies and peculiarities of the way we reason. We’ll briefly consider the fallacy of denying the evidence and then confirmation bias, the paradox of choice, the conjunction fallacy and implicit bias. 1 DENYING THE EVIDENCE My scale is broken. It shows a higher figure every day so I have to keep adjusting it down. 2 CONFIRMATION BIAS "It is the peculiar and perpetual error of the human understanding to be more moved and excited by affirmatives than by negatives." --Francis Bacon Confirmation bias refers to a type of selective thinking whereby one tends to notice and to look for what confirms one's beliefs, and to ignore, not look for, or undervalue the relevance of what contradicts one's beliefs. For example, if you believe that during a full moon there is an increase in admissions to the emergency room where you work, you will take notice of admissions during a full moon, but be inattentive to the moon when admissions occur during other nights of the month. A tendency to do this over time unjustifiably strengthens your belief in the relationship between the full moon and accidents and other lunar effects. 52 This tendency to give more attention and weight to data that support our beliefs than we do to contrary data is especially pernicious when our beliefs are little more than prejudices. If our beliefs are firmly established on solid evidence and valid confirmatory experiments, the tendency to give more attention and weight to data that fit with our beliefs should not lead us astray as a rule. -
Sendhil Mullainathan Education Fields of Interest Professional
Sendhil Mullainathan Robert C Waggoner Professor of Economics Littauer Center M-18 Harvard University Cambridge, MA 02138 [email protected] 617 496 2720 _____________________________________________________________________________________ Education HARVARD UNIVERSITY, CAMBRIDGE, MA, 1993-1998 PhD in Economics Dissertation Topic: Essays in Applied Microeconomics Advisors: Drew Fudenberg, Lawrence Katz, and Andrei Shleifer CORNELL UNIVERSITY, ITHACA, NY, 1990-1993 B.A. in Computer Science, Economics, and Mathematics, magna cum laude Fields of Interest Behavioral Economics, Poverty, Applied Econometrics, Machine Learning Professional Affiliations HARVARD UNIVERSITY Robert C Waggoner Professor of Economics, 2015 to present. Affiliate in Computer Science, Harvard John A. Paulson School of Engineering and Applied Sciences, July 1, 2016 to present Professor of Economics, 2004 (September) to 2015. UNVIRSITY OF CHICAGO Visiting Professor, Booth School of Business, 2016-17. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mark Hyman Jr. Career Development Associate Professor, 2002-2004 Mark Hyman Jr. Career Development Assistant Professor, 2000-2002 Assistant Professor, 1998- 2000 SELECTED AFFILIATIONS Co - Founder and Senior Scientific Director, ideas42 Research Associate, National Bureau of Economic Research Founding Member, Poverty Action Lab Member, American Academy of Arts and Sciences Contributing Writer, New York Times Sendhil Mullainathan __________________________________________________________________ Books Scarcity: Why Having Too Little Means So Much, joint with Eldar Shafir, 2013. New York, NY: Times Books Policy and Choice: Public Finance through the Lens of Behavioral Economics, joint with William J Congdon and Jeffrey Kling, 2011. Washington, DC: Brookings Institution Press Work in Progress Machine Learning and Econometrics: Prediction, Estimation and Big Data, joint with Jann Spiess, book manuscript in preparation. “Multiple Hypothesis Testing in Experiments: A Machine Learning Approach,” joint with Jens Ludwig and Jann Spiess, in preparation. -
Himabindu Lakkaraju
Himabindu Lakkaraju Contact Information 428 Morgan Hall Harvard Business School Soldiers Field Road Boston, MA 02163 E-mail: [email protected] Webpage: http://web.stanford.edu/∼himalv Research Interests Transparency, Fairness, and Safety in Artificial Intelligence (AI); Applications of AI to Criminal Justice, Healthcare, Public Policy, and Education; AI for Decision-Making. Academic & Harvard University 11/2018 - Present Professional Postdoctoral Fellow with appointments in Business School and Experience Department of Computer Science Microsoft Research, Redmond 5/2017 - 6/2017 Visiting Researcher Microsoft Research, Redmond 6/2016 - 9/2016 Research Intern University of Chicago 6/2014 - 8/2014 Data Science for Social Good Fellow IBM Research - India, Bangalore 7/2010 - 7/2012 Technical Staff Member SAP Research, Bangalore 7/2009 - 3/2010 Visiting Researcher Adobe Systems Pvt. Ltd., Bangalore 7/2007 - 7/2008 Software Engineer Education Stanford University 9/2012 - 9/2018 Ph.D. in Computer Science Thesis: Enabling Machine Learning for High-Stakes Decision-Making Advisor: Prof. Jure Leskovec Thesis Committee: Prof. Emma Brunskill, Dr. Eric Horvitz, Prof. Jon Kleinberg, Prof. Percy Liang, Prof. Cynthia Rudin Stanford University 9/2012 - 9/2015 Master of Science (MS) in Computer Science Advisor: Prof. Jure Leskovec Indian Institute of Science (IISc) 8/2008 - 7/2010 Master of Engineering (MEng) in Computer Science & Automation Thesis: Exploring Topic Models for Understanding Sentiments Expressed in Customer Reviews Advisor: Prof. Chiranjib -
Overview on Explainable AI Methods Global‐Local‐Ante‐Hoc‐Post‐Hoc
00‐FRONTMATTER Seminar Explainable AI Module 4 Overview on Explainable AI Methods Birds‐Eye View Global‐Local‐Ante‐hoc‐Post‐hoc Andreas Holzinger Human‐Centered AI Lab (Holzinger Group) Institute for Medical Informatics/Statistics, Medical University Graz, Austria and Explainable AI‐Lab, Alberta Machine Intelligence Institute, Edmonton, Canada a.holzinger@human‐centered.ai 1 Last update: 11‐10‐2019 Agenda . 00 Reflection – follow‐up from last lecture . 01 Basics, Definitions, … . 02 Please note: xAI is not new! . 03 Examples for Ante‐hoc models (explainable models, interpretable machine learning) . 04 Examples for Post‐hoc models (making the “black‐box” model interpretable . 05 Explanation Interfaces: Future human‐AI interaction . 06 A few words on metrics of xAI (measuring causability) a.holzinger@human‐centered.ai 2 Last update: 11‐10‐2019 01 Basics, Definitions, … a.holzinger@human‐centered.ai 3 Last update: 11‐10‐2019 Explainability/ Interpretability – contrasted to performance Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490. Inconsistent Definitions: What is the difference between explainable, interpretable, verifiable, intelligible, transparent, understandable … ? Zachary C. Lipton 2018. The mythos of model interpretability. ACM Queue, 16, (3), 31‐57, doi:10.1145/3236386.3241340 a.holzinger@human‐centered.ai 4 Last update: 11‐10‐2019 The expectations of xAI are extremely high . Trust – interpretability as prerequisite for trust (as propagated by Ribeiro et al (2016)); how is trust defined? Confidence? . Causality ‐ inferring causal relationships from pure observational data has been extensively studied (Pearl, 2009), however it relies strongly on prior knowledge . Transferability – humans have a much higher capacity to generalize, and can transfer learned skills to completely new situations; compare this with e.g. -
2018 Annual Report Alfred P
2018 Annual Report Alfred P. Sloan Foundation $ 2018 Annual Report Contents Preface II Mission Statement III From the President IV The Year in Discovery VI About the Grants Listing 1 2018 Grants by Program 2 2018 Financial Review 101 Audited Financial Statements and Schedules 103 Board of Trustees 133 Officers and Staff 134 Index of 2018 Grant Recipients 135 Cover: The Sloan Foundation Telescope at Apache Point Observatory, New Mexico as it appeared in May 1998, when it achieved first light as the primary instrument of the Sloan Digital Sky Survey. An early set of images is shown superimposed on the sky behind it. (CREDIT: DAN LONG, APACHE POINT OBSERVATORY) I Alfred P. Sloan Foundation $ 2018 Annual Report Preface The ALFRED P. SLOAN FOUNDATION administers a private fund for the benefit of the public. It accordingly recognizes the responsibility of making periodic reports to the public on the management of this fund. The Foundation therefore submits this public report for the year 2018. II Alfred P. Sloan Foundation $ 2018 Annual Report Mission Statement The ALFRED P. SLOAN FOUNDATION makes grants primarily to support original research and education related to science, technology, engineering, mathematics, and economics. The Foundation believes that these fields—and the scholars and practitioners who work in them—are chief drivers of the nation’s health and prosperity. The Foundation also believes that a reasoned, systematic understanding of the forces of nature and society, when applied inventively and wisely, can lead to a better world for all. III Alfred P. Sloan Foundation $ 2018 Annual Report From the President ADAM F. -
Algorithms, Platforms, and Ethnic Bias: an Integrative Essay
BERKELEY ROUNDTABLE ON THE INTERNATIONAL ECONOMY BRIE Working Paper 2018-3 Algorithms, Platforms, and Ethnic Bias: An Integrative Essay Selena Silva and Martin Kenney Algorithms, Platforms, and Ethnic Bias: An Integrative Essay In Phylon: The Clark Atlanta University Review of Race and Culture (Summer/Winter 2018) Vol. 55, No. 1 & 2: 9-37 Selena Silva Research Assistant and Martin Kenney* Distinguished Professor Community and Regional Development Program University of California, Davis Davis & Co-Director Berkeley Roundtable on the International Economy & Affiliated Professor Scuola Superiore Sant’Anna * Corresponding Author The authors wish to thank Obie Clayton for his encouragement and John Zysman for incisive and valuable comments on an earlier draft. Keywords: Digital bias, digital discrimination, algorithms, platform economy, racism 1 Abstract Racially biased outcomes have increasingly been recognized as a problem that can infect software algorithms and datasets of all types. Digital platforms, in particular, are organizing ever greater portions of social, political, and economic life. This essay examines and organizes current academic and popular press discussions on how digital tools, despite appearing to be objective and unbiased, may, in fact, only reproduce or, perhaps, even reinforce current racial inequities. However, digital tools may also be powerful instruments of objectivity and standardization. Based on a review of the literature, we have modified and extended a “value chain–like” model introduced by Danks and London, depicting the potential location of ethnic bias in algorithmic decision-making.1 The model has five phases: input, algorithmic operations, output, users, and feedback. With this model, we identified nine unique types of bias that might occur within these five phases in an algorithmic model: (1) training data bias, (2) algorithmic focus bias, (3) algorithmic processing bias, (4) transfer context bias, (5) misinterpretation bias, (6) automation bias, (7) non-transparency bias, (8) consumer bias, and (9) feedback loop bias.