Electron Diffraction: Fifty Years Ago

Total Page:16

File Type:pdf, Size:1020Kb

Electron Diffraction: Fifty Years Ago Electron diffraction: fifty years ago A look back at the experiment that established the wave nature of the electron, at the events that led up to the discovery, and at the principal investigators, Clinton Davisson and Lester Germer. Richard K. Gehrenbeck An article that appeared in the December Before finishing his undergraduate discovery of electron diffraction; it was 1927 issue of Physical Review, "Diffrac- degree at Chicago, he became a part-time also at this time that he was joined by a tion of Electrons by a Crystal of Nickel," instructor in physics at Princeton Uni- young colleague, Lester Halbert Germer, has been referred to in countless articles, versity, where he came under the influ- just discharged from active service. monographs and textbooks as having es- ence of the British physicist Owen Rich- tablished the wave nature of the elec- ardson, who was directing electronic re- An adventurous New Yorker tron—in principle, of all matter.1 Now, search there. Davisson's PhD thesis at Germer was born on 10 October 1896, fifty years later, it is fitting to look back at Princeton, in 1911, extended Richardson's the first of two children of Hermann the events that led up to this historical research on the positive ions emitted from Gustav and Marcia Halbert Germer, in discovery and at the discoverers, Clinton salts of alkaline metals. Davisson later Chicago, where Dr Germer was practicing Davisson and Lester Germer. Figure 1 credited his own success to having caught medicine. In 1898 the family moved to shows them in their lab in 1927, together "the physicist's point of view—his habit Canastota in upper New York state, the with their assistant Chester Calbick. of mind—his way of looking at things" childhood home of Mrs Germer. Ger- from such men as Millikan and Richard- mer's father became a prominent citizen A shy midwesterner son. in the little town on the Erie canal, serving Clinton Joseph Davisson, the senior in- After completing his degree, Davisson as mayor, president of the board of edu- vestigator, was born in Bloomington, Il- married Richardson's sister, Charlotte, cation and elder in the Presbyterian linois, on 22 October 1881, the first of two who had come from England to visit her church. children. His father, Joseph, who had brother. After a honeymoon in Maine Germer attended school in Canastota settled in Bloomington after serving in the Davisson joined the Carnegie Institute of and won a four-year scholarship to Cor- Civil War, was a contract painter and Technology in Pittsburgh as an instructor nell University, graduating from there in paperhanger by trade. His mother, in physics. The 18-hour-per-week the spring of 1917, six weeks early because Mary, occasionally taught in the Bloom- teaching load left little time for research, of the outbreak of the war. The local ington school system. Their home was, and in six years there he published only newspaper, after applauding 18-year-old as Davisson's sister, Carrie, characterized three short theoretical notes. One nota- Lester for working as a laborer for the it, "a happy congenial one—plenty of love ble break during this period was the local paving contractors during his sum- but short on money." summer of 1913, when Davisson worked mer vacation, proceeded to ridicule his Davisson, slight of frame and frail with J. J. Thomson at the Cavendish lazier contemporaries for sitting "day throughout his life, graduated from high laboratory in England. after day in the lounging places of the school at age 20. For his proficiency in In 1917, after he was refused enlistment village," saying there is "nothin' doin' " mathematics and physics he received a in the military service because of his and that "a young feller has no chanst in one-year scholarship to the University of frailty, Davisson obtained a leave of ab- this durn town." (Lester, must have Chicago; his six-year career there was in- sence from Carnegie Tech to do war-re- taken a bit of ribbing from the "idle boys" terrupted several times for lack of funds. lated research at the Western Electric after this appeared!) Germer's studies at He acquired his love and respect for Company, the manufacturing arm of the Cornell were partly self-directed; in their physics from Robert Millikan; Davisson American Telephone and Telegraph junior year he and two classmates, finding was "delighted to find that physics was Company, in New York City. His work themselves "unsatisfied with the course the concise, orderly science [he) had im- was to develop and test oxide-coated in electricity and magnetism given ... agined it to be, and that a physicist [Mil- nickel filaments to serve as substitutes for bought a more advanced text and met likan] could be so openly and earnestly the oxide-coated platinum filaments then regularly in the vacant class room .. and concerned about such matters as colliding in use. At the end of World War I he really learned something." bodies." turned down an offered promotion at LTpon graduation from Cornell, Germer Carnegie Tech to accept a permanent obtained a research position at Western position at Western Electric. It was at Electric, which he held for about two Richard K. Gehrenbeck is an assistant professor this time that he began the sequence of of physics and astronomy at Rhode Island Col- months before volunteering for the Army lege, Providence, Rhode Island. investigations that ultimately led to the (aviation section of the signal corps). He 34 PHYSICS TODAY / JANUARY 1978 0031-9228/78/3101-34 $0.50 © 1978 American of Physics apparently made no contact with Davis- years 1913 to 1916, before Davisson and Physical Review in 1920, concluding that son then. Lieutenant Germer, among Germer appeared on the scene. Never- positive-ion bombardment has a negligi- those piloting the first group of airplanes theless, because AT&T was deeply con- ble effect on the electron emission from on the Western Front, was officially cerned about the efficiency and effec- oxide-coated cathodes.' credited with having brought down four tiveness of its triode amplifiers—key With this problem settled, a related German warplanes. Discharged on 5 components in its recently constructed question came up: What is the nature of February 1919, Germer was treated in transcontinental telephone lines—Arnold secondary electron emission from grids New York City for severe headache, ner- assigned Davisson and Germer the task of and plates subjected to electron bom- vousness, restlessness and loss of sleep, conducting tests on oxide-coated cath- bardment? Davisson was assigned this conditions attributed to his military odes. They published their results in the new task and given an assistant. Charles campaigns, but he refused to file for compensation because "others were worse BELL LABORATORIES off." After three weeks of rest, he was re-hired by Western Electric—and had as his first assignment the preparation of an annotated bibliography for a new project being directed by his new supervisor, Davisson. That fall Germer married his Cornell sweetheart, Ruth Woodard of Glens Falls, New York. Electron emission—in court The assignment that engaged Davisson and Germer in their first joint effort re- flects one of the chief interests of the parent company, AT&T, at this time: to conduct a fundamental investigation into the role of positive-ion bombardment in electron emission from oxide-coated cathodes. Although Germer later re- membered this project as having been directly related to the famous Arnold- Langmuir patent suit, that occupied Western Electric (Harold Arnold) and General Electric (Irving Langmuir) from 1916 until it was finally settled2 by the US Supreme Court (in favor of Western Electric) in 1931, a careful examination of the documents makes it clear that Dav- isson and Germer's project could have related to it only in a very indirect way. The patent case concerned improvements Davisson, Germer and Calbick in 1927, the year they demonstrated electron diffraction. In their New York City laboratory are Clinton Davisson, age 46; Lester Germer, age 31, and their assistant to the earliest deForest triode tubes with Chester Calbick, age 23. Germer, seated at the observer's desk, appears ready to read and record metallic (tungsten or tantalum) cathodes; electron current from the galvanometer (seen beside his head); the banks of dry cells behind Davisson it dealt with evidence obtained in the supplied the current for the experiments. Figure 1 PHYSICS TODAY , JANUARY 1978 35 link together their data, the model and the predictions were anything but defi- nite—quite out of keeping with the Rutherford-Geiger-Marsden tradition. Although Davisson (and Kunsman) must have been somewhat disappointed at the limited success of their initial ven- ture, they pressed on with additional ex- periments. In the next two years they built several new tubes, tried five other metals (in addition to nickel) as targets, developed rather sophisticated experi- mental techniques at high vacuum ("the pressure became less than could be mea- sured, i.e., less than 10~* mm Hg,") and made valiant theoretical attempts to ac- count for the observed scattering inten- 50 100 150 200 sities. The results were uniformly un- ENERGY OF SCATTERED ELECTRONS (eV) impressive; several of the studies were not Electron-scattering peak. The energy of the scattered electrons varies from almost zero to that even published. In fact, the generally of the incident beam (indicated by the arrow). This is a reconstruction of the type of observation disheartened atmosphere that seems to that led Davisson and Charles Kunsman to conclude that some electrons were being scattered have prevailed by the end of 1923 is indi- elastically. Davisson saw these as possible probes of the electronic structure of the atom, in analogy cated by the fact that Kunsman left the to Rutherford's use of alpha particles to explore the nucleus.
Recommended publications
  • Wave Nature of Matter: Made Easy (Lesson 3) Matter Behaving As a Wave? Ridiculous!
    Wave Nature of Matter: Made Easy (Lesson 3) Matter behaving as a wave? Ridiculous! Compiled by Dr. SuchandraChatterjee Associate Professor Department of Chemistry Surendranath College Remember? I showed you earlier how Einstein (in 1905) showed that the photoelectric effect could be understood if light were thought of as a stream of particles (photons) with energy equal to hν. I got my Nobel prize for that. Louis de Broglie (in 1923) If light can behave both as a wave and a particle, I wonder if a particle can also behave as a wave? Louis de Broglie I’ll try messing around with some of Einstein’s formulae and see what I can come up with. I can imagine a photon of light. If it had a “mass” of mp, then its momentum would be given by p = mpc where c is the speed of light. Now Einstein has a lovely formula that he discovered linking mass with energy (E = mc2) and he also used Planck’s formula E = hf. What if I put them equal to each other? mc2 = hf mc2 = hf So for my photon 2 mp = hfhf/c/c So if p = mpc = hfhf/c/c p = mpc = hf/chf/c Now using the wave equation, c = fλ (f = c/λ) So mpc = hc /λc /λc= h/λ λ = hp So you’re saying that a particle of momentum p has a wavelength equal to Planck’s constant divided by p?! Yes! λ = h/p It will be known as the de Broglie wavelength of the particle Confirmation of de Broglie’s ideas De Broglie didn’t have to wait long for his idea to be shown to be correct.
    [Show full text]
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Physics Here at Uva from 1947-49
    PHYS 202 Lecture 22 Professor Stephen Thornton April 18, 2005 Reading Quiz Which of the following is most correct? 1) Electrons act only as particles. 2) Electrons act only as waves. 3) Electrons act as particles sometimes and as waves other times. 4) It is not possible by any experiment to determine whether an electron acts as a particle or a wave. Answer: 3 In some cases we explain electron phenomena as a particle –for example, an electron hitting a TV screen. In other cases we explain it as a wave – in the case of a two slit diffraction experiment showing interference. Exam III Wednesday, April 20 Chapters 25-28 20 questions, bring single sheet of paper with anything written on it. Number of questions for each chapter will be proportional to lecture time spent on chapter. Last time Blackbody radiation Max Planck and his hypothesis Photoelectric effect Photons Photon momentum Compton effect Worked Exam 3 problems Today de Broglie wavelengths Particles have wavelike properties Wave-particle duality Heisenberg uncertainty principle Tunneling Models of atoms Emission spectra Work problems Finish last year’s exam problems de Broglie wavelength We saw that light, which we think of as a wave, can have particle properties. Can particles also have wavelike properties? A rule of nature says that if something is not forbidden, then it will probably happen. h λ = all objects p How can we demonstrate these wavelike properties? Typical wavelengths Tennis ball, m = 57 g, v = 60 mph; λ ~ 10-34 m. NOT POSSIBLE to detect!! 50 eV electron; λ ~ 0.2 x 10-9 m or 0.2 nm We need slits of the order of atomic dimensions.
    [Show full text]
  • Electron Diffraction V2.1
    Electron Diffraction v2.1 Background. This experiment demonstrates the wave-like nature of an electron as first postulated by Louis de Brogile in 1924. All particles including electrons have a wavelength inversely related to momentum: l = h/p. (1) It was well known at the time that the light could be diffracted by a periodic grating, where the grating period is of the order of the electromagnetic wavelength. If an electron has wave properties, then there might be a suitable physical grating to diffract it. Max von Laue had first suggested that periodic planes of atoms in a solid could serve as a grating. X- ray reflection experiments of Lawrence Bragg confirmed this and gave an estimate of the inter- Davisson and Germer in 1927 atomic spacing. Planes of atoms in a solid can also provide the appropriate grating spacing to cause electron diffraction. In a Nobel Prize winning experiment at Bell Labs in New Jersey, Clinton Davisson and Lester Germer used crystalline nickel to diffract electrons and prove their existence as waves. An independent experiment was done around the same time by George Thomson in Scotland. This was foundational work for the transmission electron microscope (TEM). The present experiment uses an ultra-thin polycrystalline graphite layer in place of nickel as the diffraction grating. Graphite forms as single planes of carbon atoms in a hexagonal arrangement shown in Figure 1. Vertical planes are not chemically bonded to adjacent planes. Instead they are more loosely held by the electrostatic van der Waals force but the atoms are remain aligned vertically.
    [Show full text]
  • Nobel Prizes Social Network
    Nobel prizes social network Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Sir J. J. Thomson (Phys.1906) Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Charlotte Richardson = Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J.
    [Show full text]
  • 1 the Principle of Wave–Particle Duality: an Overview
    3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave.
    [Show full text]
  • INDUSTRIAL STRENGTH by MICHAEL RIORDAN
    THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther.
    [Show full text]
  • (Owen Willans) Richardson
    O. W. (Owen Willans) Richardson: An Inventory of His Papers at the Harry Ransom Center Descriptive Summary Creator: Richardson, O. W. (Owen Willans), 1879-1959 Title: O. W. (Owen Willans) Richardson Papers Dates: 1898-1958 (bulk 1920-1940) Extent: 112 document boxes, 2 oversize boxes (49.04 linear feet), 1 oversize folder (osf), 5 galley folders (gf) Abstract: The papers of Sir O. W. (Owen Willans) Richardson, the Nobel Prize-winning British physicist who pioneered the field of thermionics, contain research materials and drafts of his writings, correspondence, as well as letters and writings from numerous distinguished fellow scientists. Call Number: MS-3522 Language: Primarily English; some works and correspondence written in French, German, or Italian . Note: The Ransom Center gratefully acknowledges the assistance of the Center for History of Physics, American Institute of Physics, which provided funds to support the processing and cataloging of this collection. Access: Open for research Administrative Information Additional The Richardson Papers were microfilmed and are available on 76 Physical Format reels. Each item has a unique identifying number (W-xxxx, L-xxxx, Available: R-xxxx, or M-xxxx) that corresponds to the microfilm. This number was recorded on the file folders housing the papers and can also be found on catalog slips present with each item. Acquisition: Purchase, 1961 (R43, R44) and Gift, 2005 Processed by: Tessa Klink and Joan Sibley, 2014 Repository: The University of Texas at Austin, Harry Ransom Center Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 2 Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 Biographical Sketch The English physicist Owen Willans Richardson, who pioneered the field of thermionics, was also known for his work on photoelectricity, spectroscopy, ultraviolet and X-ray radiation, the electron theory, and quantum theory.
    [Show full text]
  • Quantum Interference of Molecules--Probing the Wave Nature of Matter
    Anu Venugopalan is on the faculty of the School of Basic and Applied Sciences, GGS Indraprastha University, Delhi. Her primary research interests are in the areas of Foundations of Quantum mechanics, Quantum Optics and Quantum Information. Address for Correspondence: University School of Basic and Applied Sciences, GGS Indraprastha University Kashmere Gate, Delhi - 11 0 453 e-mail: [email protected] arXiv:1211.3493v1 [physics.pop-ph] 15 Nov 2012 1 Quantum Interference of Molecules - Probing the Wave Nature of Matter Anu Venugopalan November 16, 2012 Abstract The double slit interference experiment has been famously described by Richard Feynman as containing the ”only mystery of quantum mechanics”. The history of quantum mechanics is intimately linked with the discovery of the dual nature of matter and radiation. While the double slit experiment for light is easily undert- sood in terms of its wave nature, the very same experiment for particles like the electron is somewhat more difficult to comprehend. By the 1920s it was firmly established that electrons have a wave nature. However, for a very long time, most discussions pertaining to interference experiments for particles were merely gedanken experiments. It took almost six decades after the establishment of its wave nature to carry out a ’double slit interference’ experiment for electrons. This set the stage for interference experiments with larger particles. In the last decade there has been spectacular progress in matter-wave interefernce experiments. To- day, molecules with over a hundred atoms can be made to interfere. In the following we discuss some of these exciting developments which probe new regimes of Nature, bringing us closer to the heart of quantum mechanics and its hidden mysteries.
    [Show full text]
  • Diffraction of Light Prelab by Dr
    Diffraction of Light Prelab by Dr. Christine P. Cheney, Department of Physics and Astronomy, 401 Nielsen Physics Building, The University of Tennessee, Knoxville, Tennessee 37996-1200 © 2018 by Christine P. Cheney* *All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without the permission in writing from the author. Read the introduction to Diffraction in your lab manual.1 Light is very interesting because it can behave as a wave or as a particle. You will observe both types of properties in the Diffraction of Light lab but will focus on the wave-like properties. (The particle-like properties come from the two light sources, a helium-neon laser and a mercury discharge lamp. The colors of light that these sources emit are discrete colors that have energy E=hn where E is the energy of the light, h is Planck’s constant, and n is the frequency of the light. Each photon of light has energy hn. This aspect of light is particle-like, and you will learn more about the particle-like behavior of light next week in the Photoelectric Effect lab.) Diffraction is used to study materials. The lattice spacing in crystalline materials is very small. For example the lattice spacing of a NaCl crystal is 5.64 Å.2 This small spacing can be used as a diffraction grating for x-rays. X-rays have a wavelength range of 0.01- 10 nm.
    [Show full text]
  • Report and Opinion 2016;8(6) 1
    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
    [Show full text]
  • From the Executive Director Kathryn Sullivan to Receive Sigma Xi's Mcgovern Award
    May-June 2011 · Volume 20, Number 3 Kathryn Sullivan to From the Executive Director Receive Sigma Xi’s McGovern Award Annual Report In my report last year I challenged the membership to consider ormer astronaut the characteristics of successful associations. I suggested that we Kathryn D. emulate what successful associations do that others do not. This FSullivan, the first year as I reflect back on the previous fiscal year, I suggest that we need to go even further. U.S. woman to walk We have intangible assets that could, if converted to tangible outcomes, add to the in space, will receive value of active membership in Sigma Xi. I believe that standing up for high ethical Sigma Xi’s 2011 John standards, encouraging the earlier career scientist and networking with colleagues of diverse disciplines is still very relevant to our professional lives. Membership in Sigma P. McGovern Science Xi still represents recognition for scientific achievements, but the value comes from and Society Award. sharing with companions in zealous research. Since 1984, a highlight of Sigma Xi’s Stronger retention of members through better local programs would benefit the annual meeting has been the McGovern Society in many ways. It appears that we have continued to initiate new members in Lecture, which is made by the recipient of numbers similar to past years but retention has declined significantly. In addition, the the McGovern Medal. Recent recipients source of the new members is moving more and more to the “At-large” category and less and less through the Research/Doctoral chapters. have included oceanographer Sylvia Earle and Nobel laureates Norman Borlaug, Mario While Sigma Xi calls itself a “chapter-based” Society, we have found that only about half of our “active” members are affiliated with chapters in “good standing.” As long Molina and Roald Hoffmann.
    [Show full text]