© Cambridge University Press Cambridge

Total Page:16

File Type:pdf, Size:1020Kb

© Cambridge University Press Cambridge Cambridge University Press 978-0-521-85485-6 - Sulphate-Reducing Bacteria: Environmental and Engineered Systems Edited by Larry L. Barton and W. Allan Hamilton Index More information Index 523 ABC permease 147 Antibiotic inhibition 386 Acetate kinase 148 APS reductase 7, 92, 96, 97, 101, 128, Acetivibrio FISH probe 60 133, 148, 197, 227, 229 Acetobacterium 388 ApsA 97, 101 Acetyl-CoA 11, 12, 14–16, 489 ArcAB regulon 204 Acetyl-CoA synthase 16, 450 Archaea 24, 39, 274 Acetyl-phosphate 11, 14 Archaea probe 42 Acetylserine sulfhydrylase 160 Archaeoblobus lithotrophicus 316 Acid mine waters 412, 419, 421 Archaeoglobus 1, 22, 24, 39, 99, 101, 306, Acid pH stress 145, 148, 156, 158 309, 316, 321, 350 Acidic fens 41 Archaeoglobus fulgidus 6, 16, 22, 102, Adenosine phosphosulphate 5, 7 123, 124, 131, 201, 227, 228, 310, 316, Aerotaxis 172 352, 440, 447, 450 Aggregation 171 Archaeoglobus probe 42 Agmatinase 158 Archaeoglobus profundus 6, 22, 310, 316, Alcaligenes eutrophus 246 321 Alcohol dehydrogenase 129, 219 Archaeoglobus veneficus 316, 321, 348 Alkaline pH stress 145, 148, 159 Arginine decarboxylase 158 Alkane utilization 281–3, 308 Aromatic hydrocarbons oxidized 289 Alkene utilization 287 Arsenate 14 Alkyl hydroperoxide reductase 148 Arsenate reductase 441, 447 Alkylbenzene utilization 281 Arsenate reduction 447, 448 Allochromatium vinosum 101, 228 Arsenic reduction 447 Alvinella pompejana symbiont 320 Arsenic transporter 441, 447 Aminobenzoate 490 Arsenical sulphides 410, 416 Ammonification 242, 256 Arsenite pump 441, 447 Anaerofilum FISH probe 60 ATP sulphurylase 7, 96, 133 Analysis of natural systems 89 ATP synthase 10, 147, 148, 154, 215, 243 Aniline 488, 489 ATPase 10, 157–9, 441 Anoxic layers 168 a-type haem 192 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85485-6 - Sulphate-Reducing Bacteria: Environmental and Engineered Systems Edited by Larry L. Barton and W. Allan Hamilton Index More information Bacteria 39, 306, 364 Chondroitin sulphate 507, 508 Bacteria FISH probe 60 Chromate detoxification 445 Bacteria probe 42 Chromate reduction 414, 438, 440 Bacterioferritin 187, 188, 202 Chromate stress 145, 148, 195, 440 Bacteroides fragilis 170 Chromate transport 440, 441 bc1 complex 193 Chromosome size 124 bd- type oxygen reductase 187, 191, 192 Citric acid cycle 16 Bdellovibrio bacteriovorus 132 Clostridium FISH probe 60 Beggiatoa 171 CO cycling 215 Benzoyl CoA 490 Cobalamin 450 Bilophila wadsworthia 23, 99 Cobalt sorbents 394 Biofilm 159, 169, 360–2, 367, 373, 391, COD/sulphate ratio 387 406, 417, 459, 463, 469, 472, 510 Coenzyme B 9, 279 524 Biogeochemical cycling 405, 410 Coenzyme M 277, 278 Bioinformatical studies 131, 186–8 Cold stress 145, 148 Biophila wadsworthia FISH probe 60 Colonizing the gut wall 505 Bioreactors 386, 387 Community analysis 96 INDEX Bioremediation 405, 408, 452, 490 Community structure 360–2 Bisulphite disproportionation 5 Consortium 274, 490, 493 Bisulphite reductase 7, 9, 41, 92, 96, 99, CooMKLXUHF complex 11, 14, 128 101, 320 Copper inhibition 386 Bisulphite reduction 7 Copper sulphide 419 Bradyrhizobium japonicum 152 Corrosion 307, 360, 459, 460, 463, 469, BTEX utilization 282 472 b-type haem 191, 192 Corrosion models 465 Butyrate metabolism 514 Corrosion of alloys Butytyl CoA dehydrogenase 514 Corrosion of cables 460 Corrosion rates 461 C1-carrier 16 Corrosion reaction 461 caa3 oxygen reductase 192 Corrosive phosphorus 475 Caldivirga 39, 306 Cr(III) precipitates 445 Caldivirga maquilingensis 103 Crenarchaeote 39 Carbon mineralization 372 Crohn’s disease 513 Carbon monoxide 15, 16 Cryptanaerobacter FISH probe 60 Carbon monoxide dehydrogenase 15, c-type haem 191, 233, 440 16, 117, 124, 129, 219, 489 Cu(II) toxicity 131 Carboxydothermus hydroformans 99 Cysteine desulfurase 441, 448 Catalase 169, 188, 196, 198, 200, 202, Cysteine synthase 441 470 Cytochrome À decahaem 224 Cathodic depolarising and corrosion Cytochrome À octahaem 224 465–7 Cytochrome bd 170 Caulobacter crescentus 152 Cytochrome bd oxygen reductase 188 cbb3 oxidases 191 Cytochrome bd quinol:oxygen Cellulomonas 446 oxidoreductase, 192 Chaperones 152, 153 Cytochrome c 8, 9, 14, 128, 148, 155, Chemoclines 168 170, 192, 195, 203, 218, 219, 222, 227, Chloroflexi 349 232, 448, 468 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85485-6 - Sulphate-Reducing Bacteria: Environmental and Engineered Systems Edited by Larry L. Barton and W. Allan Hamilton Index More information Cytochrome c oxidase 187 Desulfobacterium catecholicum 242 Cytochrome c3 222–4, 232, 414, 415, Desulfobacterium catecholicum FISH 425, 437, 439, 446, 448, 486 probe 60 Cytochrome c553 192, 193, 222, 224 Desulfobacterium cetonicum 283, 310, 313 Cytochrome c554 224 Desulfobacterium indolicum 487 Cytochrome c7 425, 437, 439 Desulfobacterium niacini FISH probe 60 Cytochrome in outer membrane 468 Desulfobacterium niacini probe 42 Desulfobacterium phenolicum 282 Denaturing gradient gel electrophoresis Desulfobacterium vacuolatum FISH (DGGE) 41 probe 60 Desulfacinum 24, 309, 318 Desulfobacterium vacuolatum probe 42 Desulfacinum hydrothermale 310, 320 Desulfobacula 24 Desulfacinum infernum 313, 320 Desulfobacula FISH probe 60 Desulfacium subterraneum 310 Desulfobacula phenolica 282 525 Desulfarculus 24 Desulfobacula toluolica 283, 284 Desulfarculus baarsii FISH probe 60 Desulfobibrionaceae 23 INDEX Desulfatibacillum 24 Desulfobotulus 24 Desulfatibacillumaliphaticivorans284,287 Desulfobotulus sapovorans FISH probe 60 Desulfatibacillum alkenivorans 284, 287 Desulfobulbaceae 24, 97, 124 Desulfitobacterium 99 Desulfobulbaceae FISH probe 60 Desulfitobacterium hafniense 470 Desulfobulbaceae probe 42 Desulfoacinum infernum 313 Desulfobulbus 1, 24, 41, 168, 274, 309, Desulfoacinum subterraneum 313 362, 364, 450, 504, 505 Desulfoarculus baarsii 97 Desulfobulbus FISH probe 60 Desulfobacca 24 Desulfobulbus mediterraneus 348 Desulfobacca acetoxidans probe 42 Desulfobulbus probe 366 Desulfobacter 1, 24, 168, 185, 320, 345, Desulfobulbus propionicus 12, 16, 242, 450, 470, 504, 505 243, 363 Desulfobacter anilini 489 Desulfobulbus rhabdoformis 310, 313 Desulfobacter FISH probe 60 Desulfocapsa 24 Desulfobacter postagatei 16, 117 Desulfocapsa thiozymogenes FISH probe Desulfobacter probe 42 60 Desulfobacter vibroformis 310 Desulfocella 24 Desulfobacterace 24, 364 Desulfocella FISH probe 60 Desulfobacteraceae FISH probe 60 Desulfococcus 24, 40, 41, 90, 91, 134, 168, Desulfobacteraceae probe 42 185, 274, 450, 470 Desulfobacterales probe 42 Desulfococcus FISH probe 60 Desulfobacteriaceae 22, 41, 97, 117, 124, Desulfococcus multivorans FISH probe 134 60, 489 Desulfobacterium 1, 24, 185, 309, 320, Desulfococcus probe 42 362, 450, 470 Desulfofaba 24 Desulfobacterium anilini 97, 99, 348, 489 Desulfofaba FISH probe 60 Desulfobacterium autotrophicum 117, Desulfofaba gelida FISH probe 60 124, 131, 320 Desulfofaba probe 42 Desulfobacterium autotrophicum FISH Desulfoferrodoxin 199 probe 60 Desulfofrigus 24, 40, 345 Desulfobacterium autotrophicum probe 42 Desulfofrigus FISH probe 60 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85485-6 - Sulphate-Reducing Bacteria: Environmental and Engineered Systems Edited by Larry L. Barton and W. Allan Hamilton Index More information Desulfofrigus probe 42 Desulfosarcina FISH probe 60 Desulfofustis 24 Desulfosarcina probe 42 Desulfofustis FISH probe 60 Desulfosarcina variabilis FISH probe 60 Desulfohalobiaceae 24, 320 Desulfospira 24 Desulfohalobiaceae FISH probe 60 Desulfospira FISH probe 60 Desulfohalobium 24 Desulfosporomuse 39 Desulfomic cavernae 346 Desulfosporosinus 24, 39, 306, 314, 345, Desulfomic macestense 346 351 Desulfomicrobiaceae 24 Desulfosporosinus 446, 447 Desulfomicrobioaceae FISH probe 60 Desulfosporosinus probe 42 Desulfomicrobium (strain Ben-RB) 448 Desulfotalea 24, 345 Desulfomicrobium 24, 314, 345, 362, 416, Desulfotalea FISH probe 60 439 Desulfotalea psychrophila 6, 123, 124, 526 Desulfomicrobium aspheronum 310 127, 131, 203, 215, 222, 225, 226, 440, Desulfomicrobium baculatum 437 447, 450 Desulfomicrobium probe 42 Desulfothermus 24 Desulfomonas hansenii FISH probe 60 Desulfotignum 24 INDEX Desulfomonas pigra 504 Desulfotignum FISH probe 60 Desulfomonile 24, 41, 95 Desulfotomaculum (strain B 10) 350 Desulfomonile FISH probe 60 Desulfotomaculum (strain B2T ) 346 Desulfomonile probe 42 Desulfotomaculum 1, 22, 24, 39, 101, 168, Desulfomonile tiedjei 97 306, 314, 345, 350, 351, 504, 505 Desulfomonile tiedjei FISH probe 60 Desulfotomaculum FISH probe 60 Desulfomusa 24 Desulfotomaculum halophilum 310, 314, Desulfomusa FISH probe 60 315 Desulfonatronovibrio 24 Desulfotomaculum kuznetsovii 310, 314, Desulfonatronovibrio hydrogenovorans 320 346 Desulfonatronum 24 Desulfotomaculum nigrificans 310, 314 Desulfonatronum lacustre 348 Desulfotomaculum norvegicum 224, 437, Desulfonatronumaceae 24 439 Desulfonauticus 24, 318 Desulfotomaculum orientis 489 Desulfonauticus submarinus 310, 320 Desulfotomaculum probe 42 Desulfonema 90, 168, 172, 345, 362–4, Desulfotomaculum reducens MI-1 103 366 Desulfotomaculum thermobenzoicum 242 Desulfonema FISH probe 60 Desulfotomaculum thermocisternum 310, Desulfonema magnum 348 314, 315 Desulfonema probe 42 Desulfotomaculum thermosapovorans 348 Desulforegula 24 Desulfovibrio (strain B) 484 Desulforegula FISH probe 60, 362 Desulfovibrio (strain Ben-RA) 448 Desulforhabdus 24 Desulfovibrio 24, 40, 41, 91, 96, 168, 185, Desulforhabdus amnigena 320 306, 309, 314, 318, 345, 364, 388, 414, Desulforhopalus 24 439, 450, 470
Recommended publications
  • Doctoral Dissertation Template
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By QICHAO TU Norman, Oklahoma 2014 METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Jizhong Zhou, Chair ______________________________ Dr. Meijun Zhu ______________________________ Dr. Fengxia (Felicia) Qi ______________________________ Dr. Michael McInerney ______________________________ Dr. Bradley Stevenson © Copyright by QICHAO TU 2014 All Rights Reserved. Acknowledgements At this special moment approaching the last stage for this degree, I would like to express my gratitude to all the people who encouraged me and helped me out through the past years. Dr. Jizhong Zhou, my advisor, is no doubt the most influential and helpful person in pursuing my academic goals. In addition to continuous financial support for the past six years, he is the person who led me into the field of environmental microbiology, from a background of bioinformatics and plant molecular biology. I really appreciated the vast training I received from the many interesting projects I got involved in, without which I would hardly develop my broad experienced background from pure culture microbial genomics to complex metagenomics. Dr. Zhili He, who played a role as my second advisor, is also the person I would like to thank most. Without his help, I could be still struggling working on those manuscripts lying in my hard drive. I definitely learned a lot from him in organizing massed results into logical scientific work—skills that will benefit me for life.
    [Show full text]
  • Diversity and Activity of Sulfate-Reducing Bacteria In
    Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors If we knew what we are doing, it would not be called research would it? Albert Einstien ii Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 19 oktober 2007 om 10.00 uur door Shabir Ahmad DAR Master in Science of Bioprocess Technology, Asian Institute of Technology (AIT), Thailand geboren te Srinagar, J&K, India iii Dit proefschrift is goedgekeurd door de promotor: Prof. dr. J. G. Kuenen Toegevoegd promotor Dr. G. Muyzer Samenstelling promotie commissie: Rector Magnificus Voorzitter Prof. dr. J.G. Kuenen Delft University of Technology, Promotor Dr. G. Muyzer Delft University of Technology, Toegevoegd promotor Prof. dr. F. Widdel Max-Planck-Institute for Marine Microbiology, Bremen, Germany Prof. dr. ir. M.C.M. van Loosdrecht Delft University of Technology Prof. dr. H.J. Laanbroek Utrecht University Prof. dr. ir.A.J.M. Stams Wageningen University Prof. dr. ir. P.N.L. Lens Wageningen University This study was carried out in the Environmental Biotechnology group of the Department of Biotechnology at Delft University of Technology, Delft, the Netherlands. This research was financially supported by The Netherlands Organization for Scientific Research – (NWO Earth
    [Show full text]
  • Biogeochemical Processes and Microbial Diversity of the Gullfaks and Tommeliten Methane Seeps (Northern North Sea)
    Biogeosciences, 5, 1127–1144, 2008 www.biogeosciences.net/5/1127/2008/ Biogeosciences © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea) G. Wegener1, M. Shovitri1, K. Knittel1, H. Niemann1,2,*, M. Hovland3, and A. Boetius1,2,4 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 3Statoil, Stavanger, Norway 4Jacobs University Bremen, Bremen, Germany *now at: Institute for Environmental Geosciences, University of Basel, Switzerland Received: 21 January 2008 – Published in Biogeosciences Discuss.: 25 February 2008 Revised: 3 June 2008 – Accepted: 11 July 2008 – Published: 18 August 2008 Abstract. Fluid flow related seafloor structures and gas seeps microbial community incorporates methane or its metabo- were detected in the North Sea in the 1970s and 1980s by lites. The microbial community composition of both shallow acoustic sub-bottom profiling and oil rig surveys. A vari- seeps shows high similarities to the deep water seeps asso- ety of features like pockmarks, gas vents and authigenic car- ciated with gas hydrates such as Hydrate Ridge or the Eel bonate cements were found to be associated with sites of River basin. oil and gas exploration, indicating a link between these sur- face structures and the underlying, deep hydrocarbon reser- voirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tom- 1 Introduction meliten, Witch’s Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of The North Sea is a marginal sea of the Atlantic on the Eu- cold seep ecosystems in the Northern North Sea.
    [Show full text]
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Lipid Biomarkers of Microbial Communities Involved in Carbon Dioxide and Methane Cycling at Volcanic CO2 Vents
    Lipid biomarkers of microbial communities involved in carbon dioxide and methane cycling at volcanic CO2 vents Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften im Department Geowissenschaften der Universität Hamburg vorgelegt von Birte I. Oppermann aus Hamburg Hamburg November 2010 Als Dissertation angenommen vom Department Geowissenschaften der Universität Hamburg Auf Grund der Gutachten von Prof. Dr. Walter Michaelis Prof. Dr. Kay-Christian Emeis Tag der Disputation 28.01.2011 Prof. Dr. Jürgen Oßenbrügge Leiter des Department Geowissenschaften Vorwort und Zielsetzung Die Abtrennung und geologische Speicherung von CO2 stellt eine Möglichkeit zur Reduktion der anthropogenen CO2 Emission dar. Eine Speicherung in salinen Aquiferen und ausgebeuteten Gas- und Ölreservoirs ist bereits technisch machbar. Aber vor der Anwendung dieser Technologie ist es notwendig, die Folgen von CO2- Leckagen aus dem Speicher in die oberflächennahe Umwelt zu bewerten. Natürliche Analoge helfen dabei, die Folgen solcher Leckagen einzuschätzen. So wurden für diese Studie zwei vulkanische CO2 Austritte als natürliche Labore zur Untersuchung der Auswirkungen von CO2 induzierten Umweltveränderungen auf das mikrobielle Leben genutzt. CO2 ist das wichtigste Treibhausgas des anthropogen bedingten Klimawandels und hat schon bei vorangegangenen Klimaveränderungen eine essentielle Rolle gespielt. Zusätzlich zu den anthropogenen Emissionen haben sowohl die mikrobielle Produktion, als auch der mikrobielle Abbau von CO2 einen signifikanten Einfluss auf die Konzentration von Treibhausgasen in der Atmosphäre. In früheren geologischen Zeitabschnitten sind mikrobielle Prozesse von wesentlich größerer Bedeutung für die Konzentration von Treibhausgasen in der Atmosphäre gewesen; während des Präkambriums waren sie sogar die dominierenden biologischen Prozesse. Doch es bestehen weiterhin große Wissenslücken bezüglich der Art und Eigenschaften CO2 verbrauchender und hierbei insbesondere der anaeroben Mikroorganismen.
    [Show full text]
  • A First Acetate-Oxidizing, Extremely Salt-Tolerant
    Extremophiles (2015) 19:899–907 DOI 10.1007/s00792-015-0765-y ORIGINAL PAPER Desulfonatronobacter acetoxydans sp. nov.,: a first acetate‑oxidizing, extremely salt‑tolerant alkaliphilic SRB from a hypersaline soda lake D. Y. Sorokin1,2 · N. A. Chernyh1 · M. N. Poroshina3 Received: 6 May 2015 / Accepted: 26 May 2015 / Published online: 18 June 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Recent intensive microbiological investigation alkaliphile, growing with butyrate at salinity up to 4 M total of sulfidogenesis in soda lakes did not result in isolation of Na+ with a pH optimum at 9.5. It can grow with sulfate as any pure cultures of sulfate-reducing bacteria (SRB) able to e-acceptor with C3–C9 VFA and also with some alcohols. The directly oxidize acetate. The sulfate-dependent acetate oxida- most interesting property of strain APT3 is its ability to grow tion at haloalkaline conditions has, so far, been only shown in with acetate as e-donor, although not with sulfate, but with two syntrophic associations of novel Syntrophobacteraceae sulfite or thiosulfate as e-acceptors. The new isolate is pro- members and haloalkaliphilic hydrogenotrophic SRB. In the posed as a new species Desulfonatronobacter acetoxydans. course of investigation of one of them, obtained from a hyper- saline soda lake in South-Western Siberia, a minor component Keywords Soda lakes · Haloalkaliphilic · Acetate was observed showing a close relation to Desulfonatrono- oxidation · Sulfate-reducing bacteria (SRB) · bacter acidivorans—a “complete oxidizing” SRB from soda Desulfobacteracea lakes. This organism became dominant in a secondary enrich- ment with propionate as e-donor and sulfate as e-acceptor.
    [Show full text]
  • Psychrophi I Ic Sulf Ate-Reducing Bacteria
    international Journal of Systematic Bacteriology (1 999), 49, 1 63 1-1 643 Printed in Great Britain Psychrophi Iic sulf ate-reducing bacteria isolated from permanently cold Arctic marine sediments : description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Christian Knobtauch, Kerstin Sahm and Bo B. Jcbrgensen Author for correspondence: Christian Knoblauch. Tel: +49 421 2028 653. Fax: +49 421 2028 690. e-mail : [email protected] Max-PIa nc k-I nst it Ute for Five psychrophilic, Gram-negative, sulfate-reducing bacteria were isolated Mari ne M icro bio logy, from marine sediments off the coast of Svalbard. All isolates grew at the in Celsiusstr. 1, 28359 Bremen, Germany situ temperature of -1.7 "C. In batch cultures, strain PSv29l had the highest growth rate at 7 "C, strains ASV~~~and LSv54l had the highest growth rate at 10 "C, and strains LSv21Tand LS~514~had the highest growth rate at 18 "C. The new isolates used the most common fermentation products in marine sediments, such as acetate, propionate, butyrate, lactate and hydrogen, but only strain ASv26' was able to oxidize fatty acids completely to CO,. The new strains had growth optima at neutral pH and marine salt concentration, except for LSv54l which grew fastest with 1O/O NaCI. Sulfite and thiosulfate were used as electron acceptors by strains ASv26'. PSv29l and LSv54l, and all strains except PSv29' grew with Fe3+(ferric citrate) as electron acceptor. Chemotaxonomy based on cellular fatty acid patterns and menaquinones showed good agreement with the phylogeny based on 165 rRNA sequences.
    [Show full text]
  • Desulfoconvexum Algidum Gen. Nov., Sp. Nov., a Psychrophilic Sulfate-Reducing Bacterium Isolated from a Permanently Cold Marine Sediment
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 959–964 DOI 10.1099/ijs.0.043703-0 Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated from a permanently cold marine sediment Martin Ko¨nneke,13 Jan Kuever,2 Alexander Galushko14 and Bo Barker Jørgensen11 Correspondence 1Max-Planck Institute for Marine Microbiology, Bremen, Germany Martin Ko¨nneke 2Bremen Institute for Materials Testing, Bremen, Germany [email protected] A sulfate-reducing bacterium, designated JHA1T, was isolated from a permanently cold marine sediment sampled in an Artic fjord on the north-west coast of Svalbard. The isolate was originally enriched at 4 6C in a highly diluted liquid culture amended with hydrogen and sulfate. Strain JHA1T was a psychrophile, growing fastest between 14 and 16 6C and not growing above 20 6C. Fastest growth was found at neutral pH (pH 7.2–7.4) and at marine concentrations of NaCl (20– 30 g l”1). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain JHA1T was a member of the family Desulfobacteraceae in the Deltaproteobacteria. The isolate shared 99 % 16S rRNA gene sequence similarity with an environmental sequence obtained from permanently cold Antarctic sediment. The closest recognized relatives were Desulfobacula phenolica DSM 3384T and Desulfobacula toluolica DSM 7467T (both ,95 % sequence similarity). In contrast to its closest phylogenetic relatives, strain JHA1T grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity indicated the operation of the reductive acetyl-CoA pathway for inorganic carbon assimilation. Beside differences in physiology and morphology, strain JHA1T could be distinguished chemotaxonomically from the genus Desulfobacula by the absence of the cellular fatty acid C16 : 0 10-methyl.
    [Show full text]
  • Estudo Da Atividade Microbiológica Associada À Glicerina Como Doador De Elétrons E Substrato Em Processos De Redução Microbiana
    RENORBIO Programa de Pós-Graduação em Biotecnologia Estudo da atividade microbiológica associada à glicerina como doador de elétrons e substrato em processos de redução microbiana Sidnei Cerqueira dos Santos Salvador-BA 2013 SIDNEI CERQUEIRA DOS SANTOS Estudo da atividade microbiológica associada à glicerina como doador de elétrons e substrato em processos de redução microbiana Defesa de tese apresentado ao Programa de Pós- Graduação em Biotecnologia, da Rede Nordeste de Biotecnologia (RENORBIO), ponto focal Universidade Federal da Bahia (UFBA), como requisito para obtenção do título de Doutor em Biotecnologia. Orientador: Profa. Dra. Cristina M. Quintella Co-Orientador: Prof. Dr. Paulo F. Almeida Salvador-BA 2013 Ficha catalográfica elaborada pela Biblioteca Universitária de Saúde, SIBI - UFBA. S237 Santos, Sidnei Cerqueira dos Estudo da atividade microbiológica associada à glicerina como doador de elétrons e substrato em processos de redução microbiana / Sidnei Cerqueira dos Santos. – Salvador, 2013. 86 f. Orientadora: Profª. Drª. Cristina Maria Quintella. Tese (Doutorado) – Universidade Federal da Bahia. Instituto de Ciências da Saúde, 2013. 1. Glicerina Bruta. 2. Glicerina Comercial. 3. Bactérias. 4. Microbiologia. I. Quintella, Cristina Maria. II. Universidade Federal da Bahia. III. Título. CDU 579.67 AGRADECIMENTOS Especiais agradecimentos a Deus, aos meus pais e irmãos, que me apoiaram e incentivaram na minha trajetória como doutorando. Também demonstro a minha gratidão aos meus orientadores: Profa. Dra. Cristina M. Quintella, Prof. Dr. Paulo Fernando de Almeida e Prof. Dr. Fons Stams; e ao meu supervisor Ton van Gelder por ter confiado no meu trabalho e por ter participado intensamente no desenvolvimento da minha tese. Meu reconhecimento é dedicado a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão das bolsas de doutorado e a Petróleo Brasileiro S.A.
    [Show full text]
  • Sulphate-Reducing Bacterial Diversity in a Calcareous Sandy Sediment Of
    DEPARTAMENTO DE MICROBIOLOGÍA Sulphate‐reducing bacterial diversity in a calcareous sandy sediment of Mallorca and community response to hydrocarbon contamination TESIS DOCTORAL Ana Belén Suárez Suárez Palma de Mallorca, 2012 The study was supported by the ECOSIP project (200530F0182‐200530F0183) funded by the CSIC, the FBBVA project BIOCON05/094, and the Spanish Ministry of Science and Innovation projects Consolider Ingenio 2010 CE‐CSD2007‐0005 and VEM2003‐0075‐C02‐01 (both co‐ financed with FEDER funding); additional funding was provided by the Max‐Planck Society and the Helmholtz Association. 2 Contents Resume ......................................................................................................................5 General Introduction..................................................................................................7 1. Anthropocene ‐ Mankind as a major geological force ............................................. 8 1.1. Fossil fuel consumption .............................................................................................................. 8 1.2. Petroleum composition .............................................................................................................. 9 1.3. Petroleum formation ................................................................................................................ 12 1.4. Environmental consequences of fossil fuel consumption ‐ hydrocarbon pollution in the marine environment ....................................................................................................................................14
    [Show full text]
  • Groundwater Chemistry and Microbiology in a Wet
    GROUNDWATER CHEMISTRY AND MICROBIOLOGY IN A WET-TROPICS AGRICULTURAL CATCHMENT James Stanley B.Sc. (Earth Science). Submitted in fulfilment of the requirements for the degree of Master of Philosophy School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty. Queensland University of Technology 2019 Page | 1 ABSTRACT The coastal wet-tropics region of north Queensland is characterised by extensive sugarcane plantations. Approximately 33% of the total nitrogen in waterways discharging into the Great Barrier Reef (GBR) has been attributed to the sugarcane industry. This is due to the widespread use of nitrogen-rich fertilisers combined with seasonal high rainfall events. Consequently, the health and water quality of the GBR is directly affected by the intensive agricultural activities that dominate the wet-tropics catchments. The sustainability of the sugarcane industry as well as the health of the GBR depends greatly on growers improving nitrogen management practices. Groundwater and surface water ecosystems influence the concentrations and transport of agricultural contaminants, such as excess nitrogen, through complex bio-chemical and geo- chemical processes. In recent years, a growing amount of research has focused on groundwater and soil chemistry in the wet-tropics of north Queensland, specifically in regard to mobile - nitrogen in the form of nitrate (NO3 ). However, the abundance, diversity and bio-chemical influence of microorganisms in our wet-tropics groundwater aquifers has received little attention. The objectives of this study were 1) to monitor seasonal changes in groundwater chemistry in aquifers underlying sugarcane plantations in a catchment in the wet tropics of north Queensland and 2) to identify what microbiological organisms inhabit the groundwater aquifer environment.
    [Show full text]