Diversity and Activity of Sulfate-Reducing Bacteria In

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Activity of Sulfate-Reducing Bacteria In Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors If we knew what we are doing, it would not be called research would it? Albert Einstien ii Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 19 oktober 2007 om 10.00 uur door Shabir Ahmad DAR Master in Science of Bioprocess Technology, Asian Institute of Technology (AIT), Thailand geboren te Srinagar, J&K, India iii Dit proefschrift is goedgekeurd door de promotor: Prof. dr. J. G. Kuenen Toegevoegd promotor Dr. G. Muyzer Samenstelling promotie commissie: Rector Magnificus Voorzitter Prof. dr. J.G. Kuenen Delft University of Technology, Promotor Dr. G. Muyzer Delft University of Technology, Toegevoegd promotor Prof. dr. F. Widdel Max-Planck-Institute for Marine Microbiology, Bremen, Germany Prof. dr. ir. M.C.M. van Loosdrecht Delft University of Technology Prof. dr. H.J. Laanbroek Utrecht University Prof. dr. ir.A.J.M. Stams Wageningen University Prof. dr. ir. P.N.L. Lens Wageningen University This study was carried out in the Environmental Biotechnology group of the Department of Biotechnology at Delft University of Technology, Delft, the Netherlands. This research was financially supported by The Netherlands Organization for Scientific Research – (NWO Earth and Life Sciences). ISBN 978-90-9022271-4 Printed by: PrintPartners IPSKAMP iv Contents Chapter 1 General Introduction 1 Chapter 2 Nested PCR-Denaturing gradient gel 37 electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities Chapter 3 Analysis of diversity and activity of sulfate- 55 reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrAB genes as molecular markers Chapter 4 Co-existence of physiologically similar 85 sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single electron donor Chapter 5 Competition and coexistence of sulfate 107 reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio Chapter 6 General Discussion 131 Summary 145 Samenvatting 151 List of Publications 157 Curriculum Vitae 159 Acknowledgements 161 v vi CHAPTER 1 General Introduction Chapter 1 1 Biological sulfur cycle Sulfur is an essential element for the growth of many life forms (microorganisms, plants, animals), and their sulfur content typically varies between 0.1 and 1.5% of dry weight. The element sulfur occurs in a large variety of oxidation states (Table 1), oxidation state -2 (completely reduced) to oxidation state +6 (completely oxidized) (148). However, only three oxidation states are abundantly present in nature, i.e., -2 (sulfhydryl, R-SH and sulfide, HS-), 0 (elemental sulfur, S0), and 2- +6 (sulfate, SO4 ). Most of the sulfur is found in sediments and rocks in the form of sulfate (primarily gypsum, CaSO4) and sulfide minerals (primarily pyrite, FeS2), although the oceans constitute the most significant reservoir of sulfur for the biosphere (in the form of dissolved inorganic sulfate). Another large part is incorporated into the biomass as sulfur-containing compounds, such as cysteine and methionine. Table 1 Oxidation states of sulphur in common compounds (166) Oxidation Compounds state - -2 Dihydrogen sulfide H2S, hydrogen sulfide ion HS , sulfide ion S2-, as in FeS; thiocyanate SCN- 2- -1 Disulfane H2S2, disulfide S2 as in pyrite FeS2; 1- – - thiosulfate sulfane S ; polysulfaides S(S)nS 0 Elemental sulfur Sn; organic polysulfanes R-Sn-R; - - polythionates O3S(S)nSO3 +1 Dichlorodisulfane Cl-S-S-Cl 2- +2 Sulfur dichloride SCl2; sulfoxylate SO2 2- +3 Dithionate S2O4 2- - +4 Sulfur dioxide SO2; sulfite SO3 ; bisulfite HSO3 2- - +5 Dithionate S2O6 ; sulfonate RSO3 ; thiosulfate sulfone - SO3 2- 2- +6 Sulfur trioxide SO3; sulfate SO4 ; peroxosulfate SO5 These compounds are continuously converted into each other by a combination of biological, chemical and geochemical processes. The conversions of the inorganic sulfur compounds and to a lesser extent also those of the organic sulfur compounds are dominated by microbiological transformations. The biochemical oxidations and reductions of sulfur compounds constitute the biological sulfur cycle, which is schematically shown in Fig. 1. Reduction of sulfur compounds can be either assimilatory for the synthesis of organic sulfur compounds or dissimilatory in order to dispose of excess reducing equivalents. The sulphide produced can be either deposited as metal sulfides, or it can be oxidized to elemental 2 Introduction sulfur or sulfate. These conversions involve the metabolism of several different specific groups of bacteria and archaea. Organic sulphur compounds Assimilatory mineralization Sulfidic sulfate reduction processes minerals Sulfate (e.g. reserves dissimilatory pyrites) (seawater) sulfate reduction 2- biological 2- SO4 oxidation with - S O2 or NO3 chemical dissimilatory oxidation sulfur reduction biological biological oxidation with O2 oxidation with O2 or - anaerobic NO3 anaerobic oxidation by oxidation by phototrophic bacteria 0 phototrophic S bacteria Sulfur deposits Fig. 1 The sulphur cycle (142) 1.1 Dissimilatory oxidation of reduced sulfur compounds Reduced sulfur compounds are used by many bacteria and some archaea to carry out dissimilatory sulfur oxidation. Winogradsky in 1887 suggested the name “Schwefelbacterien” (sulfur bacteria) for these bacteria. They include phototrophic green (Chlorobiaceae), and purple sulfur bacteria (Chromatiaceae and Ectothiorhodospiraceae) (54) and non-phototrophic colorless sulfur bacteria that belong either to the Proteobacteria (e.g. the genera Beggiatoa, Thiobacillus, Thiomicrospira, Thioploca, Thiospira, Thiothrix and Thiovulum) or to the archaea (Sulfolobus and Acidianus) (96, 97). The anaerobic sulfur and thiosulfate oxidizers are represented by photosynthetic green and purple sulfur bacteria. These bacteria oxidize H2S by using it as source of reducing power in CO2 fixation. Green sulfur bacteria are strict anaerobes that deposit the sulfur (So) they produce extracellularly. The purple sulfur bacteria, with the exception of Ectothiorhodospiraceae spp., deposit the sulfur 3 Chapter 1 intracellularly (127). Some of the latter can grow as chemolithoautotrophs under microaerophilic conditions. Under H2S limitation, they oxidize the sulfur further to sulfate. Non-phototrophic colorless sulfur bacteria comprise aerobes as well as anaerobes. Among the bacterial aerobes, the most important groups comprise Thiobacillaceae and Beggiatoacea. These groups include obligate and facultative autotrophs as well as mixotrophs and heterotrophs. Other H2S oxidizers found in aquatic environments include Thiovulum (autotrophic) (186), Achromatium, Thiothrix, Thiobacterium (98) and Thiomicrospira (97). Many of these groups produce intracellular and extracellular sulfur when oxidizing H2S. The archaea, Sulfolobus spp. and Acidianus spp. are able to oxidize sulfur to sulfuric acid at temperatures between 55 and 85°C (17). These organisms are facultative autotrophs. Two examples of facultative, anaerobic sulfur oxidizing bacteria are Thiobacillus denitrificans (83) and Thermothrix thiopara (15). The former a mesophile and the latter a thermophile, use nitrate as terminal electron acceptor and reduce it to oxides of nitrogen and dinitrogen. It should be noted that many other bacterial groups such as Paracoccus and Hydrogenobacter species posses the capability to oxidize sulfur compounds. 1.2 Dissimilatory sulfate reduction and the key enzymes involved. 2- The most oxidized form of sulfur is sulfate (SO4 ). A broad range of organisms, such as higher plants, algae, fungi and most prokaryotes can use sulfate as a sulfur source and carry out assimilatory sulfate- reduction. A variety of fermentative bacteria can use partially reduced sulfur. However, the ability to use sulfate as electron acceptor during the degradation of organic compounds is only restricted to the group of sulfate reducing prokaryotes. Even though an alternative microaerobic metabolism of some sulfate-reducing bacteria (SRB) was reported (43, 93), these bacteria can grow only under anoxic, reduced conditions (181). Dissimilatory sulfate reduction, the focus of this thesis, is the central metabolic pathway that drives the global sulfur cycle. The SRB reduce sulfate by oxidizing hydrogen and various organic compounds and directing the electrons arising from the oxidation to the sulfate reducing system. Compounds such as sulfur or thiosulfate are used as alternative external electron acceptor, whereas sulfide is the end product. Typical substrates (electron donors and/or carbon sources) for SRB are lactate, ethanol, propionate and H2. Three enzymes are generally involved in the dissimilatory reduction of sulfate. All of which are located inside the cytoplasm, to which sulfate is transported in an active process (66, 91). These include ATP sulfurylase, the iron-sulfur 4 Introduction flavo-protein adenosine-5’-phosphosulfate (APS) reductase and the dissimilatory sulfite reductases. 2- The free sulfate anion (SO4 ) is chemically inactive and not easily reduced and thus the initial reaction in the reduction of sulfate is an activation step where ATP and sulfate form adenylyl sulfate (APS),
Recommended publications
  • Doctoral Dissertation Template
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By QICHAO TU Norman, Oklahoma 2014 METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Jizhong Zhou, Chair ______________________________ Dr. Meijun Zhu ______________________________ Dr. Fengxia (Felicia) Qi ______________________________ Dr. Michael McInerney ______________________________ Dr. Bradley Stevenson © Copyright by QICHAO TU 2014 All Rights Reserved. Acknowledgements At this special moment approaching the last stage for this degree, I would like to express my gratitude to all the people who encouraged me and helped me out through the past years. Dr. Jizhong Zhou, my advisor, is no doubt the most influential and helpful person in pursuing my academic goals. In addition to continuous financial support for the past six years, he is the person who led me into the field of environmental microbiology, from a background of bioinformatics and plant molecular biology. I really appreciated the vast training I received from the many interesting projects I got involved in, without which I would hardly develop my broad experienced background from pure culture microbial genomics to complex metagenomics. Dr. Zhili He, who played a role as my second advisor, is also the person I would like to thank most. Without his help, I could be still struggling working on those manuscripts lying in my hard drive. I definitely learned a lot from him in organizing massed results into logical scientific work—skills that will benefit me for life.
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]
  • Desulfovibrio Vulgaris Defenses Against Oxidative and Nitrosative Stresses
    Desulfovibrio vulgaris defenses against oxidative and nitrosative stresses Mafalda Cristina de Oliveira Figueiredo Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Supervisor: Dr. Lígia M. Saraiva Co-supervisor: Prof. Miguel Teixeira Oeiras, September 2013 From left to right: Carlos Romão (president of the jury), Fernando Antunes (3rd opponent), Ana Melo (4th opponent), Lígia Saraiva (supervisor), Carlos Salgueiro (2nd opponent), Mafalda Figueiredo, Alain Dolla (1st opponent) and Miguel Teixeira (co-supervisor). 17th September 2013 Second edition, October 2013 Molecular Genetics of Microbial Resistance Laboratory Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa 2780-157 Portugal “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” Marie Curie Acknowledgments The present work would not have been possible without the help, the support and the friendship of several people whom I would like to formally express my sincere gratitude: Dr. Lígia M. Saraiva Firstly I would like to express my gratitude to my supervisor Dr. Lígia M. Saraiva, without her ideas and persistence I would not have come this far. I thank her for the constant support and encouragement when things did not go so well, for the trust she placed in me and in my work and for always being there when I needed over these five years. I have to thank Dr. Lígia for the good advices and for the careful revision of this thesis. Thanks for everything!!! Prof. Miguel Teixeira To my co-supervisor Prof.
    [Show full text]
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Promoting Autotrophic Sulfate Reduction and Elemental Sulfur Recovery in Bioelectrochemical Systems
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Escola d’Enginyeria Departament d’Enginyeria Química, Biològica i Ambiental Promoting Autotrophic Sulfate Reduction and Elemental Sulfur Recovery in Bioelectrochemical Systems PhD Thesis Programa de Doctorat de Ciència i Tecnologia Ambientals Institut de Ciència i Tecnologia Ambientals Enric Blázquez Ribas Abril 2019 GENOCOV Departament d’Enginyeria Química Escola d’Enginyeria Universitat Autònoma de Barcelona Tel: 93 5811587 JUAN ANTONIO BAEZA i LABAT, ALBERT GUISASOLA i CANUDAS i DAVID GABRIEL i BUGUÑA, professors agregats del Departament d’Enginyeria Química, Biològica i Ambiental de la Universitat Autònoma de Barcelona, CERTIFIQUEM: Que l’ambientòleg ENRIC BLÁZQUEZ RIBAS ha realitzat sota la nostra direcció el treball amb títol “Promoting Autotrophic Sulfate Reduction and Elemental Sulfur Recovery in Bioelectrochemical Systems” que es presenta en aquesta memòria i que constitueix la seva Tesi per optar al Grau de Doctor per la Universitat Autònoma de Barcelona. I per a què se’n prengui coneixement i consti als afectes oportuns, presentem a l’Escola d’Enginyeria de la Universitat Autònoma de Barcelona l’esmentada Tesi, signant el present certificat a Bellaterra, 9 d’abril de 2019 Dr.
    [Show full text]
  • Characterization of the Deltaproteobacteria in Contaminated and Uncontaminated Stream Sediments and Identification of Potential Mercury Methylators
    Vol. 66: 271–282, 2012 AQUATIC MICROBIAL ECOLOGY Published online July 9 doi: 10.3354/ame01563 Aquat Microb Ecol Characterization of the Deltaproteobacteria in contaminated and uncontaminated stream sediments and identification of potential mercury methylators Jennifer J. Mosher1,3, Tatiana A. Vishnivetskaya1,4, Dwayne A. Elias1, Mircea Podar1, Scott C. Brooks2, Steven D. Brown1, Craig C. Brandt1, Anthony V. Palumbo1,* 1Biosciences Division, and 2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 3Present address: Stroud Water Research Center, Avondale, Pennsylvania 19311, USA 4Present address: Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37998, USA ABSTRACT: Microbial communities were examined in surface stream sediments at 5 conta - minated sites and 1 control site near Oak Ridge, TN, USA, to identify bacteria that could be con- tributing to mercury (Hg) methylation. The phylogenetic composition of the sediment bacterial community was examined over 3 quarterly sampling periods (36 samples) using 16S rRNA gene pyro sequencing. Only 3064 sequences (0.85% of the total community) were identified as Delta - proteobacteria, the only group known to methylate Hg, using the Ribosomal Database Project classifier at the 99% confidence threshold. Constrained ordination techniques indicated statisti- cally significant positive linear correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl-Hg concentrations at the Hg-contaminated sites. In contrast, the distribution of organisms related to Byssovorax spp. was significantly correlated to inorganic car- bon, nitrate and uranium concentrations but not to Hg or methyl-Hg. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in uncontaminated sediments, while the majority of the members present at the contaminated sites were either known potential metal- reducers/methylators or metal tolerant species.
    [Show full text]
  • Lipid Biomarkers of Microbial Communities Involved in Carbon Dioxide and Methane Cycling at Volcanic CO2 Vents
    Lipid biomarkers of microbial communities involved in carbon dioxide and methane cycling at volcanic CO2 vents Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften im Department Geowissenschaften der Universität Hamburg vorgelegt von Birte I. Oppermann aus Hamburg Hamburg November 2010 Als Dissertation angenommen vom Department Geowissenschaften der Universität Hamburg Auf Grund der Gutachten von Prof. Dr. Walter Michaelis Prof. Dr. Kay-Christian Emeis Tag der Disputation 28.01.2011 Prof. Dr. Jürgen Oßenbrügge Leiter des Department Geowissenschaften Vorwort und Zielsetzung Die Abtrennung und geologische Speicherung von CO2 stellt eine Möglichkeit zur Reduktion der anthropogenen CO2 Emission dar. Eine Speicherung in salinen Aquiferen und ausgebeuteten Gas- und Ölreservoirs ist bereits technisch machbar. Aber vor der Anwendung dieser Technologie ist es notwendig, die Folgen von CO2- Leckagen aus dem Speicher in die oberflächennahe Umwelt zu bewerten. Natürliche Analoge helfen dabei, die Folgen solcher Leckagen einzuschätzen. So wurden für diese Studie zwei vulkanische CO2 Austritte als natürliche Labore zur Untersuchung der Auswirkungen von CO2 induzierten Umweltveränderungen auf das mikrobielle Leben genutzt. CO2 ist das wichtigste Treibhausgas des anthropogen bedingten Klimawandels und hat schon bei vorangegangenen Klimaveränderungen eine essentielle Rolle gespielt. Zusätzlich zu den anthropogenen Emissionen haben sowohl die mikrobielle Produktion, als auch der mikrobielle Abbau von CO2 einen signifikanten Einfluss auf die Konzentration von Treibhausgasen in der Atmosphäre. In früheren geologischen Zeitabschnitten sind mikrobielle Prozesse von wesentlich größerer Bedeutung für die Konzentration von Treibhausgasen in der Atmosphäre gewesen; während des Präkambriums waren sie sogar die dominierenden biologischen Prozesse. Doch es bestehen weiterhin große Wissenslücken bezüglich der Art und Eigenschaften CO2 verbrauchender und hierbei insbesondere der anaeroben Mikroorganismen.
    [Show full text]
  • Physiology of Multiple Sulfur Isotope Fractionation During Microbial Sulfate
    Physiology of Multiple Sulfur Isotope Fractionation during Microbial Sulfate Reduction by ARCHIVES Min Sub Sim B.S. Earth System Sciences Seoul National University, 2002 M.S. Earth and Environmental Sciences Seoul National University, 2004 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOBIOLOGY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2012 © Massachusetts Institute of Technology 2012. All rights reserved. Signature of A uthor .................... ................................................ .................. ....... Department of Earth, Atmospheric, and Planetary Sciences May 16, 2012 Certified by .......... Tanja Bosak Professor of Geobiology -, ~ Thesis Supervisor Certified by ......... Shuhei Ono Professor of Geochemistry Thesis Supervisor Accepted by .................. ....... Robert D. van der Hilst Schlumberger Professor of Geosciences Head of the Department of Earth, Atmospheric and Planetary Sciences Physiology of Multiple Sulfur Isotope Fractionation during Microbial Sulfate Reduction by Min Sub Sim Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 16, 2012 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Geobiology Abstract Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used to trace the biogeochemical cycling of sulfur in nature, but a mechanistic understanding of factors that control the range of isotope fractionation is still lacking. This thesis investigates links between the physiology of sulfate reducing bacteria in pure cultures and multiple sulfur isotope ("S, "S, 34S, and 36S) fractionation during MSR in batch and continuous culture experiments.
    [Show full text]
  • Qt4w8938g4 Nosplash 49C152
    A physiological and genomic investigation of dissimilatory phosphite oxidation in Desulfotignum phosphitoxidans strain FiPS-3 and in microbial enrichment cultures from wastewater treatment sludge By Israel Antonio Figueroa A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John D. Coates, Chair Professor Arash Komeili Professor David F. Savage Fall 2016 Abstract A physiological and genomic investigation of dissimilatory phosphite oxidation in Desulfotignum phosphitoxidans strain FiPS-3 and in microbial enrichment cultures from wastewater treatment sludge by Israel Antonio Figueroa Doctor of Philosophy in Microbiology University of California, Berkeley Professor John D. Coates, Chair 2- Phosphite (HPO3 ) is a highly soluble, reduced phosphorus compound that is often overlooked in biogeochemical analyses. Although the oxidation of phosphite to phosphate is a highly exergonic process (Eo’ = -650 mV), phosphite is kinetically stable and can account for 10-30% of the total dissolved P in various environments. Its role as a phosphorus source for a variety of extant microorganisms has been known since the 1950s and the pathways involved in assimilatory phosphite oxidation (APO) have been well characterized. More recently it was demonstrated that phosphite could also act as an electron donor for energy metabolism in a process known as dissimilatory phosphite oxidation (DPO). The bacterium described in this study, Desulfotignum phosphitoxidans strain FiPS-3, was isolated from brackish sediments and is capable of growing by coupling phosphite oxidation to the reduction of either sulfate or carbon dioxide. FiPS-3 remains the only isolated organism capable of DPO and the prevalence of this metabolism in the environment is still unclear.
    [Show full text]
  • Isolation, Molecular & Physiological
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2015 ISOLATION, MOLECULAR & PHYSIOLOGICAL CHARACTERIZATION OF SULFATE-REDUCING, HETEROTROPHIC, DIAZOTROPHS Annaliese Katrin Jones University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Jones, Annaliese Katrin, "ISOLATION, MOLECULAR & PHYSIOLOGICAL CHARACTERIZATION OF SULFATE- REDUCING, HETEROTROPHIC, DIAZOTROPHS" (2015). Open Access Master's Theses. Paper 501. https://digitalcommons.uri.edu/theses/501 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ISOLATION, MOLECULAR & PHYSIOLOGICAL CHARACTERIZATION OF SULFATE-REDUCING, HETEROTROPHIC, DIAZOTROPHS BY ANNALIESE KATRIN JONES A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER’S OF SCIENCE IN INTEGRATIVE AND EVOLUTIONARY BIOLOGY UNIVERSITY OF RHODE ISLAND 2015 MASTER OF SCIENCE OF ANNALIESE KATRIN JONES APPROVED: Thesis Committee: Major Professor Bethany D. Jenkins Serena Moseman-Valtierra Daniel Udwary Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT Nitrogen (N2) fixation is the process by which N2 gas is converted to biologically reactive ammonia, and is a cellular capability widely distributed amongst prokaryotes. This process is essential for the input of new, reactive N in a variety of environments. Heterotrophic bacterial N fixers residing in estuarine sediments have only recently been acknowledged as important contributors to the overall N budget of these ecosystems and many specifics about their role in estuarine N cycling remain unknown, partly due to a lack of knowledge about their autecology and a lack of cultivated representatives.
    [Show full text]