Max-Panck- Insitt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds. -
Biogeochemical Processes and Microbial Diversity of the Gullfaks and Tommeliten Methane Seeps (Northern North Sea)
Biogeosciences, 5, 1127–1144, 2008 www.biogeosciences.net/5/1127/2008/ Biogeosciences © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea) G. Wegener1, M. Shovitri1, K. Knittel1, H. Niemann1,2,*, M. Hovland3, and A. Boetius1,2,4 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 3Statoil, Stavanger, Norway 4Jacobs University Bremen, Bremen, Germany *now at: Institute for Environmental Geosciences, University of Basel, Switzerland Received: 21 January 2008 – Published in Biogeosciences Discuss.: 25 February 2008 Revised: 3 June 2008 – Accepted: 11 July 2008 – Published: 18 August 2008 Abstract. Fluid flow related seafloor structures and gas seeps microbial community incorporates methane or its metabo- were detected in the North Sea in the 1970s and 1980s by lites. The microbial community composition of both shallow acoustic sub-bottom profiling and oil rig surveys. A vari- seeps shows high similarities to the deep water seeps asso- ety of features like pockmarks, gas vents and authigenic car- ciated with gas hydrates such as Hydrate Ridge or the Eel bonate cements were found to be associated with sites of River basin. oil and gas exploration, indicating a link between these sur- face structures and the underlying, deep hydrocarbon reser- voirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tom- 1 Introduction meliten, Witch’s Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of The North Sea is a marginal sea of the Atlantic on the Eu- cold seep ecosystems in the Northern North Sea. -
Reclassification of Desulfobacterium Phenolicum As Desulfobacula Phenolica Comb. Nov. and Description of Strain Saxt As Desulfot
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 171–177 Printed in Great Britain Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Jan Kuever,1 Martin Ko$ nneke,1 Alexander Galushko2 and Oliver Drzyzga3 Author for correspondence: Jan Kuever. Tel: j49 421 2028 734. Fax: j49 421 2028 580. e-mail: jkuever!mpi-bremen.de 1 Max-Planck-Institute for A mesophilic, sulfate-reducing bacterium (strain SaxT) was isolated from Marine Microbiology, marine coastal sediment in the Baltic Sea and originally described as a Department of Microbiology, ‘Desulfoarculus’ sp. It used a large variety of substrates, ranging from simple Celsiusstrasse 1, D-28359 organic compounds and fatty acids to aromatic compounds as electron donors. Bremen, Germany Autotrophic growth was possible with H2,CO2 and formate in the presence of 2 Fakulta$ tfu$ r Biologie, sulfate. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur Universita$ t Konstanz, and nitrate were not reduced. Fermentative growth was obtained with Postfach 5560, D-78457 Konstanz, Germany pyruvate, but not with fumarate or malate. Substrate oxidation was usually complete leading to CO , but at high substrate concentrations acetate 3 University of Bremen, 2 Center for Environmental accumulated. CO dehydrogenase activity was observed, indicating the Research and Technology operation of the CO dehydrogenase pathway (reverse Wood pathway) for CO2 (UFT), Department of fixation and complete oxidation of acetyl-CoA. The rod-shaped cells were Marine Microbiology, Leobener Strasse, D-28359 08–10 µm wide and 15–25 µm long. Spores were not produced and cells Bremen, Germany stained Gram-negative. -
Micro-Organisms and Earth Systems--Advances In
65 Book 22/7/05 1:19 pm Page i Micro-organisms and Earth systems – advances in geomicrobiology There is growing awareness that important environmental transformations are catalysed, mediated and influenced by micro-organisms, and such knowledge is having an increasing influence on disciplines other than microbiology, such as geology and mineralogy. Geo- microbiology can be defined as the study of the role that microbes have played and are playing in processes of fundamental importance to geology. As such, it is a truly inter- disciplinary subject area, necessitating input from physical, chemical and biological sciences. The book focuses on some important microbial functions in aquatic and terrestrial environments and their influence on ‘global’ processes and includes state-of-the-art approaches to visualization, culture and identification, community interactions and gene transfer, and diversity studies in relation to key processes. Microbial involvement in key global biogeochemical cycles is exemplified by aquatic and terrestrial examples. All major groups of geochemically active microbes are represented, including cyanobacteria, bacteria, archaea, microalgae and fungi, in a wide range of habitats, reflecting the wealth of diversity in both the natural and the microbial world. This book represents environmental microbiology in its broadest sense and will help to promote exciting collaborations between microbiologists and those in complementary physical and chemical disciplines. Geoffrey Michael Gadd is Professor of Microbiology and Head of the Division of Environmental and Applied Biology in the School of Life Sciences at the University of Dundee, UK. Kirk T. Semple is a Reader in the Department of Environmental Science at Lancaster University, UK. Hilary M. -
Copyright © 2018 by Boryoung Shin
HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO A Dissertation Presented to The Academic Faculty by Boryoung Shin In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Georgia Institute of Technology Georgia Institute of Technology May 2018 COPYRIGHT © 2018 BY BORYOUNG SHIN HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO Approved by: Dr. Joel E. Kostka, Advisor Dr. Kuk-Jeong Chin School of Biologial Sciences Department of Biology Georgia Institute of Technology Georgia State University Dr. Martial Taillefert Dr. Karsten Zengler School of Earth and Atmospheric Sciences Department of Pediatrics Georgia Institute of Technology University of California, San Diego Dr. Thomas DiChristina School of Biological Sciences Georgia Institute of Technology Date Approved: 03/15/2018 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor Prof. Joel E Kostka for the continuous support of my Ph.D studies and related research, for his patience, and immense knowledge. His guidance greatly helped me during the research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Martial Taillefert, Prof. Thomas DiChristina, Prof. Kuk-Jeong Chin, and Prof. Karsten Zengler for their insightful comments and encouragement, but also for the hard questions which provided me with incentive to widen my research perspectives. I thank my fellow labmates for the stimulating discussions and for all of the fun we had in the last six years. Last but not the least, I would like to greatly thank my family: my parents and to my brother for supporting me spiritually throughout my whole Ph.D period and my life in general. -
Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. -
An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435355; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An ecological basis for dual genetic code expansion in marine deltaproteobacteria 1 Veronika Kivenson1, Blair G. Paul2, David L. Valentine2* 2 1Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, CA 3 93106, USA 4 2Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, 5 CA 93106, USA 6 * Correspondence: 7 David L. Valentine 8 [email protected] 9 Present Address 10 VK: Oregon State University, Corvallis, OR 97331 11 BGP: Marine Biological Laboratory, Woods Hole, MA 02543 12 13 Keywords: microbiome, pyrrolysine, selenocysteine, metabolism, metagenomics 14 15 Abstract 16 Marine benthic environments may be shaped by anthropogenic and other localized events, leading to 17 changes in microbial community composition evident decades after a disturbance. Marine sediments 18 in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary 19 strategies. Genetic code expansion may increase the structural and functional diversity of proteins in 20 cells, by repurposing stop codons to encode noncanonical amino acids: pyrrolysine (Pyl) and 21 selenocysteine (Sec). Here, we show that the genomes of abundant Deltaproteobacteria from the 22 sediments of a deep-ocean chemical waste dump site, have undergone genetic code expansion. Pyl 23 and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, 24 representing key drivers of their ecology. -
Reconstruction, Modeling & Analysis of Haloarchaeal Metabolic Networks
Reconstruction, Modeling & Analysis of Haloarchaeal Metabolic Networks Orland Gonzalez M¨unchen, 2009 Reconstruction, Modeling & Analysis of Haloarchaeal Metabolic Networks Orland Gonzalez Dissertation an der Fakult¨at f¨ur Mathematik, Informatik und Statistik der Ludwig-Maximilians-Universit¨at M¨unchen vorgelegt von Orland Gonzalez aus Manila M¨unchen, den 02.03.2009 Erstgutachter: Prof. Dr. Ralf Zimmer Zweitgutachter: Prof. Dr. Dieter Oesterhelt Tag der m¨undlichen Pr¨ufung: 21.01.2009 Contents Summary xiii Zusammenfassung xvi 1 Introduction 1 2 The Halophilic Archaea 9 2.1NaturalEnvironments............................. 9 2.2Taxonomy.................................... 11 2.3PhysiologyandMetabolism.......................... 14 2.3.1 Osmoadaptation............................ 14 2.3.2 NutritionandTransport........................ 16 2.3.3 Motility and Taxis ........................... 18 2.4CompletelySequencedGenomes........................ 19 2.5DynamicsofBlooms.............................. 20 2.6Motivation.................................... 21 3 The Metabolism of Halobacterium salinarum 23 3.1TheModelArchaeon.............................. 24 3.1.1 BacteriorhodopsinandOtherRetinalProteins............ 24 3.1.2 FlexibleBioenergetics......................... 26 3.1.3 Industrial Applications ......................... 27 3.2IntroductiontoMetabolicReconstructions.................. 27 3.2.1 MetabolismandMetabolicPathways................. 27 3.2.2 MetabolicReconstruction....................... 28 3.3Methods.................................... -
Desulfonatronovibrio Halophilus Sp. Nov., a Novel Moderately Halophilic Sulfate-Reducing Bacterium from Hypersaline Chloride–Sulfate Lakes in Central Asia
Extremophiles (2012) 16:411–417 DOI 10.1007/s00792-012-0440-5 ORIGINAL PAPER Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia D. Y. Sorokin • T. P. Tourova • B. Abbas • M. V. Suhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 22 March 2012 / Published online: 10 April 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Four strains of lithotrophic sulfate-reducing soda lakes. The isolates utilized formate, H2 and pyruvate as bacteria (SRB) have been enriched and isolated from electron donors and sulfate, sulfite and thiosulfate as electron anoxic sediments of hypersaline chloride–sulfate lakes in acceptors. In contrast to the described species of the genus the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH Desulfonatronovibrio, the salt lake isolates could only tolerate 7.5. According to the 16S rRNA gene sequence analysis, high pH (up to pH 9.4), while they grow optimally at a neutral the isolates were closely related to each other and belonged pH. They belonged to the moderate halophiles growing to the genus Desulfonatronovibrio, which, so far, included between 0.2 and 2 M NaCl with an optimum at 0.5 M. On the only obligately alkaliphilic members found exclusively in basis of their distinct phenotype and phylogeny, the described halophilic SRB are proposed to form a novel species within the genus Desulfonatronovibrio, D. halophilus (type strain T T T Communicated by A. Oren. HTR1 = DSM24312 = UNIQEM U802 ). The GenBank/EMBL accession numbers of the 16S rRNA gene Keywords Sulfate-reducing bacteria (SRB) Á sequences of the HTR strains are GQ922847, HQ157562, HQ157563 and JN408678; the dsrAB gene sequences of (halo)alkaliphilic SRB Desulfonatronovibrio Á Hypersaline lakes Á Halophilic obtained in this study are JQ519392-JQ519396. -
1 the Diversity and Evolution of Microbial Dissimilatory Phosphite Oxidation 1 Sophia D. Ewens1, 2, Alexa F. S. Gomberg1,Tyler P
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.28.424620; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Diversity and Evolution of Microbial Dissimilatory Phosphite Oxidation 2 Sophia D. Ewens1, 2, Alexa F. S. Gomberg1, Tyler P. Barnum1, Mikayla A. Borton4, 3 Hans K. Carlson3, Kelly C. Wrighton4, John D. Coates1, 2 4 5 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA 6 2Energy & Biosciences Institute, University of California, Berkeley, CA, USA 7 3Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, 8 Berkeley, CA, USA 9 4Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA 10 11 Corresponding Author: John D. Coates 12 Coates Laboratory, Koshland Hall, Room 241, University of California, Berkeley, Berkeley, CA 13 94720 | (510) 643-8455 | [email protected] 14 15 ORCIDs: 16 Kelly C. Wrighton: 0000-0003-0434-4217 17 Hans K. Carlson: 0000-0002-1583-5313 18 Alexa F. S. Gomberg: 0000-0002-3596-9191 19 20 Classification 21 Major: Biological Sciences 22 Minor: Microbiology 23 24 Keywords 25 reduced phosphorous, phosphite, phosphorus, energy metabolism, genome-resolved 26 metagenomics, ancient metabolism 27 28 Author Contributions 29 S.E., T.B., and J.C. conceived and planned metagenomic experimentation and analyses. S.E. 30 and J.C. conceived and planned wet-lab experiments. S.E., M.B., K.W., and J.C. conceived and 31 planned taxonomic and metabolic analyses.