Untersuchung

Bakterien

der

dem

zellularen

Doktors

aus

Fachbereich

Erlangung

geboren

Universität

kalten,

Martin der

-

vorgelegt

Dissertation

Dr.

Juli

Fettsäuren

Naturwissenschaften

des

in

rer.

zur

Biologie/Chemie

Könneke

2001

Wolfsburg

marinen

Grades

Bremen

nat. von

Max-PanckntItLit

1entar

eines

MarIne

von

Sedimenten

der

Nr

sulfatreduzierenden

für

C&siusstr.

Bibliothek

:

Mikrohlologle

Max-Panck-

3rernrnb

Marine

/9

BibHothe 1

e

c

Mkrobkog

D-28359

Insitt

für Bremen Die vorliegende Doktorarbeit wurde in der Zeit von September 1997 bis Juni 2001 am Max

Planck-Institut fur Marine Mikrobiologie in Bremen angefertigt.

Gutachter: Prof. Dr. Friedrich Widdel

2. Gutachter: Prof. Dr. Bo Barker Jørgensen

Tag des Promotionskolloquiums: 20. August 2001

Teil Zusammenfassung

Abkürzungen

Inhaltsverzeichnis

B

A

1:

3.

2. 4.

Ergebnisse

7. 5. 3.

6. Einleitung Darstellung

2.

1.

1.

phenolica

Lebendzellzahlen

3.2. 3.1. Charakterisierung 2.3. 2.2.

Sedimenten 2.1.

bulticiim Zellulare

Neueinordnung

Einfluß Zielsetzung

Physiologische

marinen Einfluß Mikrobieller

1.2. SRB

Bakterien

Psychrophile

1.1.

Wachstumstemperaturen hydmgenophilus psychrotoleranten

Wachstumsabhängige Zellulare

Physiologische

in

Chemotaxonomische

Tiefenprofile

Abschätzung Fettsäureanalyse

Analyse

Phylogenetische

und

marinen

der

der

sulfatreduzierenden

gen.

Fettsäuren

comb.

Diskussion

der

Temperatur Temperatur

der

mittels

Abbau

und

nov.,

Fettsäurenzusammensetzung

Merkmale Arbeit

von

Sedimenten

Ergebnisse

nov.

psychrotolerante

der

der

der

Phospholipidanalysen sp.

Desiilfrbacterium

von

von

und

und

Mikroorganismenzusammensetzung

Charakterisierung

bei

Bakterienzahlen

Phospholipidfettsäuren

nov.

und

auf auf

organischem

SRB

morphologische

wechselnden

psychrophiler

Beschreibung

Einordnung

Fettsäuremuster

die die

mesophilen

Bakterien

Lipidfettsäurenzusammensetzung

zellulare

im

SRB

Gesamtzusammenhang Material

phenolicinn

mittels

Temperaturen

mittels

SRB

Fettsäurenzusammensetzung

SRB

von

mittels

Merkmale

und

von von

Desulfotignuin

bei

Bestimmung

zellularer

der

in psychrophilen,

Desuljobacter

1

verschiedenen

6S

marinen

MPN-Methode

als rRNA

Desuijobacula

Sedimenten

von

Gensequenz

der

marinen

von

von

21

23

21

21 20

20 20

18

19 16

18 ii

18

7 6

9 4

3

3 1 3.3. Phylogenetische Einordnung der neuisolierten Reinkulturen aus Svalbard 23 4. Anreicherung und Isolierung von methanogenen Archaea aus permanent kalten. marinen Sedimenten (Svalbard) 25 4.1. Anreicherung und Isolierung 25 4.2. Morphologische und physiologische Charakterisierung 27 4.3. Phylogenetische Einordnung 27

C Literaturverzeichnis 30

Teil II: Publikationen 38

A Publikationsllste mit Erläuterungen 38

B Publikationen 40

1. Effect of temperature on the composition of cellular fatty acids in sulphate-reducing 40 2. Reclassification of Desiiift.bateriu,i, phenoluii,n as Desulfibucitla phenolwci“ comb. nov. and description of strain SaxTas Desiilfrtigzum balticuin gen. nov.. sp. nov. 56 3. Aerobic and sulfate-reducing bacterial communities of Arctic sediments characterized by phospholipid analysis and cultivation rnethods 72 4. Community structure and activity of sulfate-reducing bacteria in an intertidal surface-sediment: A multi-methods approach 90

Danksagung Abkürzungen

A Arrheniuskonstante ACP Acyl carrier protein AVS Acid-volatile sulfide C-irm MS Combastion interfaced isotope ratio mass spectrometry CFA Cyclopropanfettsäure(n) d Tag

D Diffusionskoeffizient

DAPL 4 ‚6- Diamidino-2-phenylindol DGGE Denaturing gradient gel electrophoresis DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen dwt dry weight eV Elektronenvolt

Ed Aktivierungsenergie FAME Fettsäuremethylester FID Flammenionisationsdetektor FISH Fluoreszenz-in situ-Hybridisierung GC Gaschromatographie GC-C-IRMS Gaschromatography combustion interfaced isotope ratio mass spectrometry GC/MS Gaschromatographie/Massenspektroskopie h Stunde HPLC l-lighperformance liquid chromatography ICBM Institut für Chemie und Biologie des Meeres ICP-OES lnductively coupled plasma optical emission spectroscopy kPa Kilopascal MPN most-probable number MS Massenspektroskopie mlz Masse/Ladung OD Optische Dichte

PCR Polymerase cham reaction PLFA Phospholipidfettsäuren R Allgemeine Gaskonstante = 8,31 JK‘rnol‘

SRB Sulfatreduzierende Bakterien SRR Sulfatreduktionsraten

T Absolute Temperatur Maximale Wachstumstemperatur 1T Minimale Wachstumstemperatur Tri Optimale Wachstumstemperatur TOC Total organic carbon V-CDT Vienna Canyon Diablo Troilit VFA Volatile fatty acids v Reaktionsgeschwindigkeit oder Wachstumsrate Zusammenfassung

Im Mittelpunkt der vorliegenden Dissertation standen Analysen der zellularen Fettsäurenzusammensetzung von verschiedenen sulfatreduzierenden Bakterien (SRB) aus marinen Habitaten. In vergleichenden Analysen wurde erstmals der Einfluß der Wachstumstemperatur und der Wachstumsphase auf die zellularen Fettsäurenzusammensetzungen von verschiedenen SRB in Reinkulturen untersucht. Ferner wurden in situ Analysen der Phospholipide an marinen Sedimenten der Arktis (Svalbard) und des Wattenmeers (Deutschland) durchgeführt, um durch den Nachweis von Biomarkern Hinweise über die Häufigkeit und die Verteilung unterschiedlicher Mikroorganismengruppen zu erhalten. Die Bestimmung der Lebendzellzahlen verschiedener stoffwechselphysiologischer Bakterien in Sedimenten aus Svalbard wurde mit der selektiven Isolierung von neuen Mikroorganismen in Reinkulturen bei konstant niedrigen Temperaturen verbunden.

1. Erstmalig konnte gezeigt werden, daß Angehörige der Gattung Desulfobacter die Fähigkeit besitzen, ihre Fettsäurenzusammensetzung an wechselnde Temperaturen anzupassen. Dadurch regulieren sie die temperaturabhängige Fluidität ihrer Lipidmembranen.

Bei niedrigen Temperaturen (4—12 °C) besitzt Desulfobacter hydrogenophilus, wie die meisten psychrophilen oder moderat psychrophilen SRB, einen konstant hohen Anteil an fluiditäterhöhenden, cis-ungesättigten Fettsäuren. Dieser Anteil verringert sich bei der Erhöhung der Wachstumstemperatur auf Werte, wie sie in anderen mesophilen SRB gefunden wurden. Durch wachstumsabhängige Untersuchungen mit C-markiertem Substrat wurde gezeigt, daß diese Temperaturanpassung durch de novo Synthese3 der zellularen Fettsäuren stattfindet. Bei niedrigen Temperaturen konnte neben einer ‘Neusynthese von ungesättigten

Fettsäuren, eine Inhibierung der Synthese von cis-9, 10-Methylenhexadecansäure (cyc17:0) und 10-Methyl-hexadecansäure (1OMe16:0) nachgewiesen werden.

2. Ein sulfatreduzierendes Bakterium, das aus marinem Küstensediment der Ostsee isoliert wurde, stellt hinsichtlich der 16S rRNA Gensequenz, der Morphologie und des zellularen Fettsäuremusters eine neue Gattung innerhalb der 6-Proteobakterien dar. Als Bezeichnung für den vollständig-oxidierenden Typenstamm wurde Desulfotignum balticum vorgeschlagen. Aufgrund der großen Ähnlichkeit der 16S rRNA Gensequenz, der Morphologie, der Physiologie und der Fettsäuremuster in Desulfobacterium phenolicuni und Desuijobacula toluolica

Fettsäure Bezeichnung Spezifität

3. marinen

Sedimenten dominierten Nachweis Schicht nur obersten

die

Übereinstimmung

Verdünnungsserien Verwandtschaft rRNA Reinkulturen,

höchsten Konzentrationen 4.

Bedeutung Trimethylamin

isoliert ihrer

taylorii beschriebenen Verwandten isoliert

in

über

Die

Aus

Morphologie

geringen

Gensequenzen

gezeigt

werden. wurden. Sedimenten.

bzw.

wurden

lOMel6:O

spezifischer dieser

in

MPN

permanent

dieser

die

Sedimentschicht.

(Svalbard)

oberen

situ

lediglich

und für

Methanococcoides

denen

werden.

Methanogenen,

Konzentrationen

methanogene most-probable Zwei

der

zu

Fettsäure

Verdünnungsreihen

Gattung

beide

Desulfr)tignum

mit

D.

Analyse

Sedimentschicht

bekannten nachgewiesen

für

große konnten

Wasserstoff

der

der

phenolietim

kaltem.

neue Fettsäuren

zeigte

Desiilfovibrio

Methanol

Die

Stämme

sieben

Desti1/vibrio

Tiefenverteilung

als

Ähnlichkeiten

Gattungen

für

der

verschiedene ein

Archaea

marinem

Biomarker

psychrophilen

die

SRB

Die

number

Isolate

nachgewiesen

konnte

Phospholipidfettsäuren

konnte

burtonil.

als

in für

und

werden.

wurde

aus

zu

der

Elektronendonator spezifischen

mannes

spezifischen

Phospholipidfettsäuren-Profile

weisen

einer

innerhalb

selektiv Trimethylamin.

in

zeigen

permanent

die

Sediment

ein

Gattung

(MPN)

diesem

für

zu

Desulfobacula Die

von

Dieser

für

Reinkulturen

Wechsel

von

2

Sediment

den

Angehörige

aufgrund

Bakterien

auf

werden

isolierten Desiilfiibacter

kultivierbaren

bei

anaeroben

kalten

der

Biomarker Biomarker

Methode

Desulfobaciila

(Svalbard)

Befund

methylotrophen

eine

kalten,

niedrigen

einer

-Proteobakterien

und

Habitat

ihrer typisches

Die diente,

nur

Stämme

zeigten.

in

isoliert

der

widerlegt

marinen

zeigten

phenolica

von

Bakterien

ermittelt

Reinkulturen und

il7:l permanent

16S

untergeordnete Arten

aeroben

Temperaturen

konnten

Gattung

hin.

aeroben

stellen

deren

rRNA-Gensequenzen

verwerten

Tiefenprofil.

Drei

werden,

und

maximale

Archaea

als

Sedimenten

vereinigt.

die

dominierten

Bakterien

spezifisch

wurden.

aufgrund vorgeschlagen.

Abwesenheit

mit

lOMel6:O

sulfatreduzierende

Desulfobucter

waren Mikroorganismen dar.

oft

kalten,

sind

Methanol

die

wie

Methanolobus

beschriebene

in

Die

Werte

ökologische

Durch

Als

eine

Reinkultur

ihre und

der die

in

Aus

ihrer

geltende

marinen

geringen

konnten

tieferen

in

in

neue

guter

Arktis ersten

SRB,

nahen

enge

den oder

den

den der 16S

und

In

in Teil 1: Darstellung der Ergebnisse im Gesamtzusammenhang

A Einleitung

1. Mikrobieller Abbau von organischem Material in marinen Sedimenten

In den Meeren findet die Primärproduktion von organischem Material durch phototrophe

Organismen in den oberflächennahen Bereichen der Wassersäule statt, in denen ausreichend Licht für die Photosynthese eindringt. Während das für die Kohlenstofffixierung notwendige

Kohlendioxid im Meerwasser in gelöster Form im Überschuß enthalten ist, limitiert meistens die Verfügbarkeit der Elemente Stickstoff, Phosphor und Eisen die Bildung von Biomasse

(Sommer. 1998: Smetacek, 1998). Das in den euphotischen Zonen gebildete organische Material dient heterotrophen Organismen als Energie- und KohlenstoffqueLle und wird von diesen in unterschiedlichem Umfang beim Herabsinken in der Wassersäule abgebaut. Der wichtigste Elektronenakzeptor ist dabei Sauerstoff. Nur ein Teil des organischen Materials sedimentiert auf den Meeresboden und wird anschließend in den Sedimenten unter oxischen und anoxischen Bedingungen überwiegend durch Mikroorganismen remineralisiert

(Jørgensen, 1983). Der Transport des in der Wassersäule nur in geringen Konzentrationen gelösten Sauerstoffs in die Sedimente verläuft überwiegend durch Diffusion. So ist in Schelfsedimenten die Verfügbarkeit von Sauerstoff infolge der Atmungsaktivität aerober Organismen und durch die chemische (abiotische) Reaktion mit Sulfid auf die oberste, nur wenige Millimeter starke Sedimentschicht begrenzt (Revsbech et al., 1980; Jørgensen, 1982). In den darunterliegenden anoxischen Sedimenten erfolgt der Abbau des organischen Materials schrittweise durch anaerobe Mikroorganismen unter Verwendung verschiedener terminaler

Elektronenakzeptoren (Abb. 1). Die in diesen Schichten noch enthaltenen, komplexen organischen Polymere werden zuerst durch fermentierende Bakterien abgebaut. Die Endoxidation der Fermentationsprodukte findet durch Bakterien über die Reduktion von Nitrat, Eisen(I[E), Mangan(IV) und Sulfat statt (Canfield, 1993). Aufgrund der hohen Konzentration von SuLfat im Vergleich zu der von Nitrat und die an vielen Orten eingeschränkte Verwertbarkeit von schwerlöslichem Eisen(IlI) stellt die dissimilatorische Sulfatreduktion den wichtigsten anaeroben Prozeß für die Mineralisation von organischem Kohlenstoff in marinen Sedimenten dar (JØrgensen, 1982). Die methanogenen Archaea spielen infolge der Konkurrenz um Abbauprodukte der fermentierenden und acetogenen Bakterien (z.B. Acetat, Formiat, Wasserstoff) mit den energetisch begünstigten SRB in den sulfatreichen marinen Sedimentschichten eine untergeordnete Rolle. Ausnahmen bilden

3 Bereiche, (z.B. Archaea Methylsulfide) werden

Sedimenten

2.

SRB besitzt,

Sulfid

Abbildung

in Bakterien:

marinen

faulendes

bilden

Energie können.

SRB

können

über

in

Acetat

(4)

Sedimenten: 1: mit

denen

innerhalb

1/

Methanogene

in Vereinfachter

Elekironentransport

verwerten,

den Pflanzenmaterial)

zu

marinen

Dadurch

Methylgruppen

durch

konservieren.

SRB

(1)

der

Lactat,

Zucker.

Bakterien.

koexistieren

Polysacchande.

Kohlenstofffluß

Fermentative die Sedimenten

die

können

Organische

Prokaryoten

Mono-

und

von

Umsetzung

Aminosäuren,

Propionat,

und

andere

C02+HS

enthaltende

die Sie den

die

und

ij, während

Alkohole

(Oremland

Bakterien;

Sulfatverfi.igbarkeit

sind

SRB

methylotrophen

Oligomere

Polymere

Fettsäuren Proteine.

des

eine

Butyrat

großer

Peptide.

anaeroben

in

nicht

heterogene

der

der

Verbindungen

4 etc.

(2)

et

dissimilatorischen

oder

etc.

Mengen

Lage

Homoacetogene

al.,

mikrobiellen

nur

1982;

methanogenen

eine

Organismengruppe.

limitiert

sehr

an

Zinder,

Vielzahl

(Methanol,

schnell

Abbaus

langsam

Bakterien:

ist.

Reduktion

E 1993).

abbaubarem

von von

Archaeen

Einige

Methansulfide

Methylamine, als

Methylamine

(3)

organischem

CO,+CH

niedermolekularen

Substrat

4

die Sulfatreduzierende

methanogene

von

die

in

Material

marinen

Fähigkeit

Sulfat

genutzt

Material

oder

zu organischen Verbindungen und auch Wasserstoff unter anoxischen Bedingungen als Elektronendonatoren zu nutzen (Rabus et al., 2000). In anoxischen marinen Habitaten, in denen Sulfat aufgrund der hohen gelösten Konzentration im Meerwasser (28 mM) meistens keinen limitierenden Faktor darstellt, wurden Acetat, Propionat und Butyrat sowie Wasserstoff als die wichtigsten Substrate von SRB bestimmt (SØrensen et al., 1981; Balba und Nedwell, 1982; Boschkeret al., 2001).

Das Wachstum von SRB ist nach bisherigen Erkenntnissen an anoxische Bedingungen gebunden. Jedoch wurden wiederholt hohe Zahlen SRB und hohe Sulfatreduktionsraten (SRR) auch in oxischen Zonen von marinen Sedimenten und mikrobiellen Matten nachgewiesen (Teske et al., 1996. 1998: Wierenga et al., 2000), wofür es noch keine vollständige Erklärung gibt. In Reinkulturen der Gattung Desulfivibrio wurde die Reduktion von Sauerstoff zu Wasser festgestellt, jedoch konnte dabei nur ein sehr geringes oder gar kein Wachstum beobachtet werden. Es wird vermutet, daß diese aerobe Atmung eine Schutzfunktion gegen Sauerstoff für die dazu befähigten SRB darstellt (Cypionka, 2000).

Ein wichtiger Faktor, der alle biologischen und chemischen Reaktionen in einem Habitat beeinflußt, ist die Temperatur. Durch in situ Messungen konnte eine mikrobielle

Sulfatreduktion in polaren marinen Sedimenten unterhalb von 0 °C (Sagemann et al., 1998) und in von geothermischen Quellen erhitzten Sedimenten oberhalb von 100 °C (Jørgensen et al., 1992) gemessen werden. Küstennahe Sedimente innerhalb der gemäßigten Breiten unterliegen jahreszeitlichen Temperaturschwankungen, die die Aktivität der dort vorkommenden mikrobiellen Gemeinschaften beeinflussen. Die 5ulfatreduktionsraten liegen daher in den Wintermonaten unterhalb der Werte des wärmeren Sommers (Jørgensen, 1977; Abdollahi, 1979). Generell konnte in lnkubationsversuchen mit marinen Sedimenten verschiedener Herkunft bei unterschiedlichen Temperaturen gezeigt werden, daß die optimalen Temperaturen für die höchsten Sulfatreduktionsraten um etwa 20 °C oberhalb der in situ -Temperaturen der jeweiligen Sedimente liegen (Nedwell, 1989; Isaksen und Jørgensen, 1996; Sagemann et al., 1998). Im größten Teil des Meeresvolumens (90 %) herrschen permanent niedrige Temperaturen ( 5 °C) (Morita, 1975), da in den offenen Ozeanen nur ein sehr langsamer Austausch zwischen dem kalten Tiefenwasser und dem hauptsächlich von der Sonnenstrahlung erwärmten Oberflächenwasser stattfindet. Weitere permanent kalte, marine Habitate befinden sich in den Polarregionen, die etwa 14 % der Erdoberfläche einnehmen. Aufgrund der im Vergleich zu Sedimenten gemäßigter Breiten niedrigeren Temperaturoptima (18-28 °C) der Sulfatreduktion in der Arktis und Antarktis

5 Lebensgemeinschaft

3. vermutet

Obwohl dortigen nur su[fatreduzierende hydrogenophilus.

Mittelmeers eingeordneter

und

vacuolatus, Wachstumstemperatur

Erst kalten, Fünf Lactat) 1996). arctica)

(Desuijojaba

Abundanz Sedimenten

2000). ebenfalls niedrigen

Desuljovibrio

letzten

(DeLong Methoden Franzmann

methanogene

Noch

wenige

kann

1999

neue

Psychrophile

Dieses

marinen Daneben

die

Abbaus

in

Jahren

oder

daher

geringer

man

Temperaturen

et gelang

noch Arten

Reinkulturen

SRB

gezeigt. dieser Sulfatreduktion

isoliert

wurde

al., und

vollständig

Stamm

gelida.

an

unvollständig-oxidierende.

als

hier

Reinkultur

bei

zeigt

von Sedimenten

haben

von

gibt

1994,

bekannt,

(Sass

es Mitarbeitern

ist

psychrotolerant

auch und

wurde (Isaksen

Bakterium,

eine

niedrigen

und

organischem

Knoblauch

daß

die

das

es

SRB

wurde

Desulfofrigus von

et

1999;

jedoch ebenfalls

nur

noch

zu

durch

Anzahl

psychrotolerante

al.,

zu Archaea

vollständig-oxidierende

isoliert.

Vorherrschen

(Widdel.

wurden

die

19

isolieren.

in

sehr

und

aus

Kohlendioxid vor

selektiv

1998; Sahm

°C.

Temperaturen

anderer,

noch

marinen

molekularbiologische gelungen.

Studien

das und

von Jørgensen,

der

wenige

der

wohingegen

Material

eingeordnet

mit

Organische

auch

Montamedi Wachstum

und

1987.

bei

bekannten Mitarbeitern.

Küste noch

fragile.

Lediglich

bei

Antarktis

bekannten

Sedimenten

Berninger,

bisher

einer

mittels

in

Studien,

10 einer

eine

D. verantwortlich

(Desu/fofrigus

bei SRB

sulfatreduzierende

Svalbards

1996; kalten,

°C

(4

Desu/fotalea

kein Idivgenop/iilus

6

Temperatur

werden.

moderat und drei

0

psychrophilen

Substrate

aus

nicht

°C)

bei an

biochemischer

Fermentationsprodukten zu

°C

Sagemann

in

obligat

Wachstum

Petersen,

Süßwasserisolate 1998.

marinen Art,

der

denen der

die

wachsen.

isolieren.

Methoden

Wachstum

0

zu

kultivierter

Ein

°C

Ostsee

psychrophile

Polarregionen

isolieren die

Kälte

Boetius, ist

werden

psychrophile

oceanense)

versucht

von

weiterer

psvchrophila

et

und (Glud

1998). Standorten

oberhalb aus

methanogenen

Sie al.,

wächst Bakterium.

isoliert

nachgewiesen

Dabei

angepaßten

und

zeigt,

4

marinem

(Knoblauch 2000). besitzt

1998).

gehören

unvollständig

et

SRB

als °C

wurde,

sind

al..

molekularbiologischer

und

umgesetzt.

optimal

von

für

moderat (lsaksen

handelt wachsen.

SRB

war

häufig

in

(Acetat.

1998),

und Bisher bisher

eine

bis

24

Desulfr.rlzopciliis

SRB

eine alle

den

Archaea.

Schlamm

aus

Desiilfr.bacter

mikrobiellen

Desti (Ravenschlag. °C

zu

bei

et

psychrophile psychrophil

der

bekannt, sind

und

es

vorkommen

ist

selektiv

permanent

stattfindet.

arktischen al.,

Das 42

zu

Propionat,

Die

optimale

28-30

/fotalea

es

sich

Gattung

Teske,

%

bisher

Acetat

1999).

In erste

große

einzig

des

des

°C

den

bei

die

um Methanococcojdes burtonii 0(T = 23 °C) bzw. Methanogeniurn frigidtun 0(T = 15 °C). Sie wurden aus methanhaltigem, anoxischem Wasser des Ace Lake isoliert, das eine konstant niedrige Temperatur von 1-2 °C besitzt (Franzmann et al., 1992, 1997).

Tabelle 1: Psychrophile und psychrotolerante SRB und ihre beschnebenen Wachstumstemperaturbereiche

Stamm Wachstumstemperatur (°C) 1-labitat Literaturverweis

Bereich Optimum

Des,tt‘fobacter hvdrogenophi1ii. 0-32 28-30 Mariner Schlamm Widdel, 1987

Deziiforhopaliis vucuo/a[ij.v 0-24 19 Mannes Sediment lsaksen et al., 1996 Desulfovibrio avpoeensis 4-35 25-30 Grundwasser Motamedi et al., 1998

Desitlf‘wihrio cuneatlis 0-33 28 Süßwassersee Sass eI al., 1998

Desu1foihrio litoralis 0-33 28 Süßwassersee Sass eI al., 1998

Destilfofliha gelida -1,7-10 7 Mannes Sediment Knoblauch et al., 1999

Desiilfofrigusfragile -1.7-27 18 Mannes Sediment Knoblauch et al., 1999

Destilfofrigtis oceanense -1,7-16 10 Mannes Sediment Knoblauch et al., 1999 Desulfotalea urctiLa -1,7-26 26 Mannes Sediment Knoblauch et al., 1999

Desulfotalea psvchrophila -1,7-19 10 Mannes Sediment Knoblauch et al., 1999

4. Physiologische Merkmale psychrophiler SRB Bakterien können anhand von Temperaturkardinalpunkten (Temperaturbereich, in dem Wachstum erfolgt sowie optimale Wachstumstemperatur) in Gruppen eingeordnet werden. In der vorliegenden Arbeit wurde in Anlehnung an die Definition von Wiegel (1990) die in

Tabelle 2 dargestellte Einteilung verwendet. Der Begriff “temperaturtolerante Mesophile“, der als synonyme Bezeichnung zu “psychrotroph“ verwendet wird, wurde durch den Begriff “psychrotolerant“ ersetzt. Weiterhin wurde die Einteilung durch den Begriff “moderat psychrophil“ ergänzt.

Tabelle 2: Einteilung von Bakterien hinsichtlich ihrer Temperaturanpassung aufgrund von Temperaturkardinalpunkten (in CC)(nach Wiege!. 1990, modifiziert). ,,T01 T,.

Psychrophile Bakterien 0 < 15 < 20

Moderat psychrophile Bakterien 0 < 20 20

Psychrotolerante Bakterien < 5 > 15 > 20

Mesophile Bakterien > 5 < 45 < 50

7 Wachstumsrate die Organismus Temperatur

(v

Aktivierungsenergie;

absoluten

ist Reaktionen organismenspezifische detinierbaren

E1 werden. Destilforhopalus wurden

optimalen Wachstumstemperaturen

Wachstumsraten 1982). Mechanismen Wachstumsrate

Reaktionen Wachstumsertrag.

Die

Graphisch

E4 = SRB,

für

Eine

E.

ursprünglich

aus

Reaktionsgeschwindigkeit

einen

optimale

sofern

d.h. somit

die

Temperatur

diesem weitere

bei

die

Temperaturen

zusammen

aus

Stamm

die

wird

Eigenschaft. seine

chemischen

der

Aktivierungsenergie und

als

auf

kaltem

fällt vacuolatus

Kulturen

sogenannten

Wachstumstemperatur

den

von

häufig

physiologische

Wert

psychrophil

der

Der

der

R

höchste

ändert,

dargestellt.

häufig

Zusammenhang =

Größe,

(Feiler

Temperatur Bakterien

arktischem

Ebene Allgemeine

Wachstumsertrag

(Isaksen

im

der

An

akklimatisierten

Reaktionen

ihrer

besitzen

wenn

suboptimalen

nicht Logarithmus

verschiedenen

et

Wachstumsrate korreliert

Arrheniusgraphen“

biochemischer

bzw.

al.,

und

Sulfatreduktionsraten

oder

ergeben

die

Sediment

dar. wird

mit

Größe,

1994).

Gaskonstante;

lnv=lnA

ihre

Jørgensen,

moderat

darstellt:

Zellen

zwischen v

jedoch

In

dem Wachstumsrate;

häufig

höchsten =

ist

der

der

sich

A

sich ist Temperaturbereich

Bakterien

die

isoliert

Temperaturoptimum definiert

bei

8

Anwendung

e Wachstumsrate

die

zu psychrophil

durch

besitzt. Reaktionen. an EJR‘F

aus

1996;

temperaturabhängig

verschiedenen

E

der

keiner

Wachstumsraten

T

stellt

die

Biomasse,

wurden =

vielen

die

Reaktionsgeschwindigkeit

wurde

absolute

Temperaturen

Knoblauch

1

als

bei

physiologischen

Die

um

Arrheniusgleichung

A

auf

die

der

eingeordnet.

(Knoblauch

geschwindigkeitsbestimmenden =

gezeigt,

Das

2-9

das

Beziehung

als

die

Temperatur)

Arrheniuskonstante;

bestimmt Anwendung Temperatur.

Temperaturen

und

°C Wachstum

Temperaturoptimum

Funktion

einzelner

pro

unterhalb

daß (Reichert

Jørgensen,

über

sein

umgesetzter

et

sich oder

Jedoch

wird,

al.,

zwischen

der

den

auf

von

enzymatischer

kann, von

beschrieben,

bei

der

biochemisch

1999),

vorinkubiert

und

reziproken

chemische

zwar

optimalen

1999).

20

Bakterien

lagen

Wert

und

der

Morita.

°C

ist

Menge

E

sowie

eine

der

der ein

von

und

Die

die

der

der = Substrat von einem Organismus gebildet wird. Der Wachstumsertrag wird üblicherweise in

der Einheit g Trockenmasse pro mol Substrat dargestellt. In den psychrophilen und moderat psychrophilen SRB sowie in den psychrotoleranten Süßwasserisolaten D. cuneatus und D. litoralis lagen die Temperaturen, bei denen der höchste Wachstumsertrag ermittelt wurde, unterhalb der jeweiligen optimalen Wachstumstemperaturen (Knoblauch und Jørgensen, 1999; Isaksen und Jørgensen, 1996: Sass et al., 1998). Die unterschiedlichen Kurvenverläufe des Wachstumsertrags in Abhängigkeit von der Temperatur einzelner SRB lassen jedoch kein generelles Prinzip erkennen.

5. Zellulare Fettsäuren von SRB

In Bakterien. die keine Neutralfette in Form von Trigylceriden enthalten, findet man zellulare Fettsäuren in den Lipiden der Cytoplasmamembran sowie in Gram-negativen Bakterien zusätzlich in geringeren Anteilen in den Lipopolysacchariden der äußeren Membran. Die Zusammensetzung dieser Fettsäuren bietet häufig ein Gattungs- oder sogar Art-spezifisches, chemotaxonornisches Merkmal, das bei der Einordnung und der Identifizierung von Reinkulturen oder bei der in situ Identifizierung von Bakterien hilfreich sein kann. Typische bakterielle Fettsäuren, ihre chemische Struktur und die in dieser Arbeit verwendeten

Kurzbezeichnungen sind in Tabelle 3 dargestellt. Die phylogenetische Einteilung von Bakterien beruht überwiegend auf vergleichenden Analysen der 16S rRNA Gensequenzen (Ludwig und Klenk, 2001). Innerhalb der SRB decken sich die über zellulare Fettsäuremuster ermittelten chemotaxonomischen Gruppen häufig mit den phylogenetischen Gruppen. Charakteristisch für viele SRB sind die oft hohen

Anteile verzweigter Fettsäuren, die in relativen Anteilen von über 50 % gefunden wurden (Vainshtein, 1992). Die in iso-Position verzweigte, ungesättigte Fettsäure i17:l wurde bisher nur in SRB detektiert. Den größten Anteil an i17:1 besitzen Angehörige der Gattung Desulfovibrio. So enthält Desu(frvibrio desulJiiricans beispielsweise einen relativen Anteil

i17:1 von bis zu 33 % (Kohring et al., 1994). Weiterhin wurde i17:1 in einem Anteil von 11 % in Arten der Gattung Desulfotornaculum nachgewiesen. In Desulfosarcina variabilis und

Desulfococcus nzultivorans wurde i 17:1 nur in sehr geringen Anteilen gefunden (1 %)‚ jedoch besitzen diese die anteiso-verzweigte Fettsäure a17:l in Anteilen von 4 bzw. 10 % (Kohring et al., 1994). Eine weitere für einige SRB charakteristische Fettsäure ist lOMel6:0, die bisher nur in wenigen Bakterien gefunden wurde (Kroppenstedt und Kutzner, 1978; Tsitko et al., 1999). Die Fettsäure lOMel6:0 wurde innerhalb der SRB nur in einigen Angehörigen

9 der autotrophicuni Desulfobacter

al., Merkmal SRB

Einzigartig Glycerol-Diethern sulfatreduzierenden und

Temperaturbereich Bakterien

Archaea der Fettsäuren

diese

Parkes, Verbindungen, über von Anwendungsbereich auf Tatsache.

können, Fettsäurezusammensetzung von

Reinkulturen Wachstums Fettsäurenzusammensetzung

1998).

Aufgrund

Aufgrund

Gattung

1985;

marine Familie

in

Fettsäuren

die

Fettsäuren

beiden

lOMel6:0

den

In

Art

(Dowling

1985; ist

Vainshtein

daß

vorherrschend)

vorkommt,

vielen

mit

innerhalb

Habitate

Desulfotomaculu,n

eine

Lipopolysacchariden

bei und

der

Desulfrbacteriaceae

der

Fettsäuren

gemessen

in

diese

Acylketten

die

nachgewiesen, Findlay

konstanter nur

z.T. Seltenheit

die unterschiedlichen

exakte

jedoch

Bakterien,

et

direkt

in

(Dowling

Gehalte

angesehen Thermodesuljobcicterium

Häufigkeit

einen

dieser

und der

höheren et

al.,

Actinomyceten

al..

wird

häufig

(Taylor

Quantifizierung

Bakterien und

1986;

in

nicht

aus

stabilere

Monoethern

von

Anteil Temperatur Fettsäure

den 1992).

von

jedoch

bei

Anteilen

et

Dobbs,

bis

von die nachgewiesen als

Parkes

als

lOMel6:0

vorkommender

(Langworthy,

Lebensräumen

al.,

möglich. und

Änderung

physikalischen

zu

identifiziert.

Gehalte

von Hydroxygruppen

Diese spezifische

der

ist

Anpassung

Etherbindung. 1986).

SRB

noch

Parkes, 34

als

und

das

in

1993).

äußeren

7,6

ändert

Kohlenstoffatomen

Biomarker

sind von

als Kombination

in

und

nicht Vorkommen Taylor,

durch

einzelner

So

der

%

(Rezanka

1983;

10 den

Bakterienpopulationen

commune.

charakteristisch

terrestrische der Als

(Gounot

Wachstumstemperatur Biomarker

ausmacht,

wurden

nachgewiesen

Organismengruppen 1983).

und

Während in

Membran

an

noch

unterschiedliche 1983,

SRB,

Biomarker Lipidmembranen Dowling

die

für

enthalten

physiologischen Fettsäuren

das

Für et

mit

von Desuljobacter

und

höheren

sonst

zum

1985).

al.,

wurde Die

für bildet

cycl7:0 lOMel6:0

Wachstum

Bakterien

lokalisiert

nicht-isoprenoiden,

wurden Russe!,

et

1990).

werden

SRB

(Boon Beispiel

Bakterien

nur im

für

Weiterhin in

ah,

bezeichnet

Spezifität

nachgewiesen,

sie

diversen

Gram-negative Vergleich

in

beschrieben

1986;

ein

geben.

1999; in

et

in

Kohlenstoffquellen Faktoren durch

oder

können

den

und

in

ungewöhnlich

Gram-positiven

(Wilkenson, gattungsspezifisches

al.,

des

Veränderungen

Arten

im

Aeckersberg Desiilfribacteriiim wurden

sogar

Cronan Desu[Jobacteriutn von

beschränkt Membranen

Bakterien

Das

1977;

man

in

thermophilen

thermophilen zu

und

situ

abhängig

i17:l der

verzweigten

Vorkommen

(Taylor daß

während

Estern

chemische

in

Edlund

Bakterien Aufschluß

Jr.,

Analysen

Gattung

einigen

wurden

sich

und

1988).

lange

1968).

et

SRB

von

und

sein den

(in

der der

des

al., die et

in Tabelle 3: Nomenklatur und die in dieser Arbeit verwendeten Abkürzungen sowie Strukturformeln bakterieller Fettsäuren. IUPAC Name Abkürzung* Strukturformel (Trivialname in Klammern)

Hexadecansäure 16:0 (Palmitinsäure) H0

0 cix -9-Hexadecensäure c9 16:1 — H0 (Palmitoleinsäure)

trans -9-Hexadecensäure t9 16:1 H0

cis-9. 10-Methylenhexadecansäure cyc 17:0 H0

14-Methylpentadecansäure i16:0 HO,_L_%/\./\__-\,._-\/\ 13-Methylpentadecansäure a16:0 1 lO-Methylhexadecansäure lOMel 6:0

15-Methyl-cis9-hexadecensäure ii 7:1 / HO/““““=\“sV\(/ 2-Hydroxyhexadecansäure 20H 16:0 11-10 *Die Abkürzung xn Y:Z enthält folgende Informationen: Y steht für die Anzahl der Kohlenstoffatome, Z für die

Anzahl an Doppelbindungen, deren Stellung in der Acylkette, ausgehend von der Carboxylgruppe, durch n

gekennzeichnet ist. Der Buchstabe x kennzeichnet eine cis (c)- oder rrans(t)- Doppelbindung. Die Vorsilbe cyc steht für einen Cyciopropanring in der Fettsäurenkette, während i(iso), a(anteiso) bzw. lOMe(10-Methyl) die Stellung der Methylgruppe innerhalb verzweigter Fettsäuren angibt.

6. Einfluß der Temperatur auf die Lipidfettsäurenzusammensetzung von Bakterien

Biologische Membranen bestehen aus einer Doppelschicht von amphiphilen Phospholipiden. In dieser fluiden Lipidmatrix befinden sich mosaikartig verteilt integrale und periphere Proteine. die in lateraler Richtung beweglich sind (Singer und Nicolson, 1972). Zur Beschreibung der Beweglichkeit von Molekülen innerhalb von Membranen wird gewöhnlich der Ausdruck Membranfluidität verwendet (Russe!, 1988).

11 Phospholipide liegen in der Natur in zwei unterschiedlichen Zuständen vor. Bei niedrigeren Temperaturen besitzen Phospholipide einen geordneten, gelartigen Zustand» während sie sich bei höheren Temperaturen in einem ungeordnetem, flüssig-kristallinen Zustand befinden. Die Temperatur, bei der die Phospholipide durch thermische Einwirkung von dem gelartigen in den flüssig-kristallinen Zustand i.ibergehen. wird als Phasenübergangstemperatur bezeichnet (Silvius, 1982). Diese Phasendbergangstemperatur ist abhängig von der chemischen Zusammensetzung der Phospholipide. In stoffwechselaktiven Zellen, in denen eine fluide Membran essentiell ist, müssen die Phospholipide somit überwiegend im flüssig-kristallinen Zustand vorliegen. d.h. die Phasenübergangstemperaturen der vorherrschenden Lipide müssen unterhalb der Wachstumstemperatur liegen (Jackson und Cronan, 1978). Eine Veränderung der Fettsäurezusammensetzung wirkt sich deutlich stärker als eine Veränderung der polaren Kopfgruppe auf die Phasentibergangstemperatur von Phospho!ipiden aus (Russe!, 1988). Die Phasenübergangstemperaturen künstlicher Lipide (Phosphatidylcholin). die aus unterschiedlichen Fettsäuren synthetisiert wurden, sind in Tabelle 4 dargestellt. Viele Eukaryoten und Prokaryoten sind in der Lage. ihre Lipidfettsäurenzusammensetzung bei wechselnden Umgebungstemperaturen zu verändern. Dies befähigt sie. die stark temperaturabhängige Membranfluidität in einem gewissen Temperaturbereich konstant zu halten. Beispielsweise reagieren viele Bakterien auf Temperatursenkungen mit einer Erhöhung des Anteils von Fettsäuren, die zu geringeren Phasentibergangstemperaturen der Lipide führen (Abb. 2). Dadurch wirken sie einer Abnahme der Membranfluidität bei niedrigeren Temperaturen entgegen (Gounot und Russe!, 1999).

Tabelle 4: Der Einfluß der Fettsäurenzusammensetzung in künstlich synthetisiertem Phosphatidylcholinen auf die Phasenübergangstemperatur. Das kunstliche Phosphatidylcholin besitzt jeweils zwei identische Fettsäuren.

Fettsäure Phasenübergangstemperatur (°C ) i16:0 22,0 a16:0 -3,0

16:0 41.5 cis9 16:1 -35,5 cyc 17:0 -19,9

17:0 48.8 18:0 55,8

‘Daten von Silvius (1982).

12 Die häufigste in Bakterien gefundene Regulation der Membranfluidität bei wechselnden Temperaturen ist eine Veränderung des Verhältnisses von gesättigten zu ungesättigten Fettsäuren (Gounot and Russel, 1999). Während die geraden Kohlenstoffketten gesättigter Fettsäuren optimal miteinander in hydrophobe Wechselwirkung treten können, verringern ungesättigte Fettsäuren mit eis-Doppelbindungen infolge des starren Knicks in den Kohlenstoffketten (Abb. 2) die Packungsdichte der Lipidschichten und erniedrigen so die Phasenübergangstemperatur. Einen ähnlichen, jedoch deutlich geringeren Effekt auf den Ordnungszustand der Lipide entsteht durch den Einbau von verzweigten Fettsäuren. Dabei besitzen Lipide mit anteiso-Methylverzweigungen niedrigere Phasenübergangstemperaturen als Fettsäuren mit iso-Methylverzweigungen (Tabelle 4; Russel, 1988). Ein weiterer temperaturabhängiger Regulationsmechanismus. der in einigen Bakterien zur Erhaltung der Membranfluidität dient, ist der Einbau von Fettsäuren mit unterschiedlich langen Kohlenstoffketten (Gounot und Russel, 1999). Kürzere Kohlenstoffketten besitzen untereinander geringere hydrophobe Wechselwirkungen als längere Ketten und führen somit zu geringeren Phasenübergangstemperaturen. Die Auswirkung der Kettenlänge von Lipidfettsäuren auf die Membranfluidität ist jedoch geringer als die Auswirkung des Sättigungs- oder Verzweigungsgrads (Tabelle 4). Ob und in welcher Art eine temperaturabhängige Veränderung der Lipidfettsäuren Zusammensetzung in Bakterien stattfindet, hängt von der jeweiligen enzymatischen Ausstattung des Organismus ab. Viele aerobe Bakterien besitzen sauerstoffabhängige Desaturasen, wodurch sie in der Lage sind, gesättigte Phopholipidfettsäuren in der Membran zu oxidieren und somit Doppelbindungen in diese einzufügen (Schweizer, 1989). Durch diese postsynthetische Modifikation können sie den Anteil von ungesättigten Fettsäuren direkt in der Membran erhöhen. Eine weitere Regulation der Membranfluidität, die direkt in den

Lipidschichten erfolgt, wurde in Angehörigen der Gattung Pseudomonas gefunden . Diese Bakterien besitzen Isomerasen, mit denen sie trans-Doppelbindungen in die fluiditätserhöhenden eis-Esomere umwandeln können (Okuyama, 1996). Isomerasen können die Reaktion auch von eis- zu trans-Doppelbindungen durchführen. Diese Umwandlung von eis- in trans- Isomere von ungesättigten Lipidfettsäuren wurde als Anpassung gegen sich in die Membran einlagernde, fluiditätserhöhende Substanzen beschrieben (Keweloh, 1995). Für die Regulation der Fettsäurenzusammensetzung durch Desaturasen oder Isomerasen ist kein Wachstum erforderlich.

13 Hohe Wachstums- temperatur

Abbildung

säuren-Synthase. Regulation temperatur

Syntheseweg Acylkette “Anaeroben

Hydroxydecanoyldehydratase

Die

meisten

2:

der

Beschriebene

Fettsäure

von

Fluidilät

verläuft

Bakterien

CFA-Synthase

Cyciopropan

cis-ungesättigte

Fettsäuren

10

Fettsauren M5

bei 3

Biosyntheseweg‘

Ä

Veränderungen die

Kohlenstoffatomen

unterschiedlichen

Isomerase

bilden

Bildung

den

/

/

ihre

trans-ungesättigte

weiteren

der

gesättigter

Desaturase

Neusynthese

Kurzkettige

Fettsäuren

Fettsäuren

Phospholipidfettsäuren

(Schweizer,

Lipidfettsäurenzusammensetzung

Wachstumstemperaturen.

Verlauf

14

gemeinsam,

und

1989).

zu

ungesättigter

Neusynthese Fettsäuren

Gesättigte

Verzweigte

Fettsäuren

einer

In

diesem

bevor

jedoch

gesättigten

CFA-Synthase —

von

Fettsäuren

sauerstoffunabhängigen

Hydrophobe

Polare

der über

ett

Bakterienrnembranen

sauren

oder

den

Enzymkomplex =

Kopfgruppe

Cyciopropanfett

ungesättigten

bis

sogenannten

zu

einer

zur

Veränderung

Kaneda, langsame gesättigten

(Schweizer, anschließend

Phospholipiden

Fettsäure

1991).

determiniert.

Anpassungsreaktion

in

1989).

des

in

die

in

die

Anteils

die

Man

jeweilige

Membran

Membran

Die

kann

kurzkettiger

jeweilige

daher

integriert,

ungesättigte

und

bezeichnen,

diese

somit

oder

Fettsäure

in

häufig

verzweigter

an

der

Fettsäure

15

Wachstum

die

keine

temperaturabhängige

wird

an

nachträgliche

Fettsäuren den

in

(oder

gekoppelt

die

Einbau

umgekehrt)

Phospholipide

(Gounot

von

ist.

Umwandlung

Veränderung

Gleiches

neusynthetisierten

und

stattfinden

eingebaut

Russel,

gilt

von

als

für

1999;

kann

einer

eine

und die 7.

Teil SRB

gemäßigten SRB dadurch stellen.

Bestandteile zellularen Sedimenten

sollte

Fettsäurenzusammensetzunge 1. Temperaturen verschiedenen, anderen

eingesetzt Anpassungsmechanismen 2.

Fettsäuren Fettsäuremuster phylogenetischen 3.

Organismengruppen

verschiedener die werden. Sedimente

Jadebusen). psychrophilen

der

Verteilung

spielen

isoliert,

an

Zielsetzung

Der

Zur

Bisher

Durch

marinen

wechselnde

psychrophilen,

Als

Fettsäuren

sollte werden.

Einfluß

verschiedener

als Charakterisierung Svalbards

in

Breiten

ein

und

die

untersucht, ist

marinen

der

in

ein

überwiegend

Klimabereiche

SRB) weiterer

ein

Habitate

jedoch

bei

Einordnungen

Reaktionen

situ

der

mikrobiellen

der

Gerade

der

chemotaxonomisches

Anforderungen

Gattungs-

weisen

nachgewiesen

von

solch

höhere

Arbeit

enthalten,

Analysen Temperatur Sedimenten

moderat

Einfluß

noch

Aspekt

durch

Kl

marinen permanent

die

innerhalb

niedrigen

imabereiche

dagegen

in

marinen

Anteile

nicht

der

von

oder

nach

wachstumsbegleitende

Lebensgemeinschaften

psychrophilen über

sollte den

sollten

als

SRB

der

von SRB

werden.

eine neuartigen

auf

an

bekannt,

sogar

jeweiligen

niedrige

die

der

der

Temperaturen

fluiditätserhöhender

untersucht

jahreszeitliche

die

die

Standorten

die

Phospholipidfettsäuren

sowohl

bedeutende

untersucht

16S

hat. Familie

wechselnden

spezifische

Kultivierung

Art-spezifisches

vorherrschende

Sedimente Merkmal

zellulare

Durch

rRNA

welchen

16

Temperaturen

Als

und

SRB

Wachstumstemperaturbereichen

in

werden,

DesuUobacteriaceae

diese

essentielle

mesophilen Reinkulturen

werden.

isoliert

Gensequenzen

ökologische

Fettsäurenzusammensetzung

sollte

wachsen.

für

Fettsäure-Analysen Einfluß

Fettsäuren

Temperaturschwankungen

in

gemäßigter

bei

Untersuchung

den

ob

Temperaturen

die

mikrobielle

Fettsäuren

wurden.

die Muster,

herrschen,

unterschiedlichen,

die

jeweiligen

phylogenetische

die

Zellbestandteile

SRB

Küstennahe

Bestimmung

permanent

als

Rolle.

in

deckt. Temperatur

von

Breiten gezeigt

das

auch

Zum

marinen

(wie

sollten Lebensgemeinschaft

bilden

wurden

Obwohl

sich

Sedimenten

SRB

direkt

verfolgt

einen

kalten,

und beispielsweise

werden,

Sedimente

(Wattsediment,

häufig

der

Hinweise

die

auf

und

erst

Sedimenten

Einordnung

sollten

im

lagen. in konstanten

wurde

mögliche

zellularen

zellularen werden.

von arktischen

zellulare

auf,

marinen

größten

wenige

anderen die

mit

erhalten

SRB

Zum

der

von

die

über

die

den die

in

isoliert 5.

Svalbard niedrigen

methanogene Durch

verschiedener Organismen

Reihen 4.

most-probable

Bakterien Ergebnissen

von sulfatreduzierender

Bakterienpopulationen

eine

Die

werden.

Durch

dienten

ließ

Wachstumstemperaturen.

aus

Entwicklung

selektive

der

Archaea

der

auf

Elektronendonatoren

klassische

number

kalten,

der

in

eine

jeweiligen

situ

Isolierung

Bakterien

Kultivierung

aus

mögliche

(MPN)

arktischen

Phospholipidfettsäuren-Analyse

mikrobiologische

von

permanent

verschiedener

und

Sedimente.

Methode

in

Gasbiasen

Methanogenese

den

anschließenden

Sedimenten

in

und

kaltem,

marinen

anoxischem,

angewendet.

Kohlenstoffquellen

in

Die stoffwechselphysiologischer

Methoden

17

marinem

gasdicht

Sedimenten

(Svalbard)

selektive

unter

Identifizierung

sulfatfreiem

Die

kalten

Sediment

verschlossenen

sollte

verglichen

hohen

Isolierung

erfolgte

untersucht

sollten

Bedingungen

das

Verdünnungsstufen

der

Medium

von

Vorkommen

werden.

erstmals

dabei

Arktis

numerisch

von

Sedimentproben

werden

Gruppen

unter

unter Zur

(4

kälteangepaßten

angereichert

kälteangepaßte

°C)

Abschätzung

und

aerober

dominanten

der

permanent

wurde

schließen.

der

mit

Zugabe

MPN

und

und

den

aus die B

1.

Einfluß Die von

Studien Abdollahi Weiterhin Wachstumertrags

Jørgensen, die

ausgewählten,

Wachstumstemperaturbereiche

mesophile

Mit 1.1.

Desuijorhopalus und Fettsäuren bei

des

Fettsäuren-zusammensetzungen. niedrige

D. Anpassung

mit kürzerkettigen

Lipiddoppelschicht kalten

Temperaturen,

zellulare gelida

unter

unterschiedlichen

Ausnahme

Optimums

weniger

De.vul/otalea

Ergebnisse

Einfluß marinen

Zellulare mesophilen

natürlichen

in

der

0 Phasen-übergangstemperaturen

den

et

SRB

mit

1999).

zeigten

mit

°C

Temperatur

an

Fettsäurezusammensetzung

al.,

als natürlichen der

nur

Acylketten bis

von suifatreduzierenden

unterteilt

überwiegend

ihre

zeigten

Fettsiiurenzusammensetzung

Fettsäuren,

in 1979;

In

bei

Temperatur 40

16 über

Lebensraum

SRB vacuolatus)

psychrophila)

Desuijofaba

Studien und

der SRB

verringert,

permanent

%

Temperaturen

Kohlenstoffatomen denen

vorliegenden lsaksen

100

ungesättigten

auf bei

werden.

diese

Diskussion

(lsaksen

Habitaten

von

verschiedenen

°C

die

die

die

marinen

der

überwiegend in

angesehen Arten

auf

(Isaksen

kann

gelida

dissimilatorische

und SRB kalten

Temperaturabhängigkeit Sulfatreduktionsraten

psychrophile,

Die

und und

die

die

innerhalb

und

Bakterien

Jørgensen.

Arbeit

ebenfalls

keine Fettsäuren

extrem

besaßen

hohen

Jørgensen,

zellulare

moderat

Lebensräume

hydrophoben

SRB

und von in

besitzen

werden.

in

Wachstumstemperaturen

Reinkulturen

16-18

wurde

signifikanten

JØrgensen,

SRB

18

den

ihrer

Anteile können

hohe

moderat

alle von als

psychrophilen

Fettsäurenzusanimensetzung

einen

1996;

Sulfatreduktion

Kohlenstoffatomen.

Acylketten.

(siehe

1996;

untersucht

erstmals besondere

Wachstumstemperaturbereiche

psychrophilen

psychrophilen,

Anteile

angesehen

an

hohen

aufgrund

konnte Wechselwirkungen

Knoblauch

psychrophile,

1996;

Sass gezeigt

Tabelle

cis-ungesättigter

Veränderungen

der

der

(>

Anteil

Anpassung (Publikation

et

JØrgensen

bereits

Der

Einfluß

(Desulfotalea

Wachstumsraten

70

al., werden

stattfinden

4),

(Desulfrfrigus werden.

ihrer

%)

psychrotoleranten

und

vermehrte

(>70

1998:

können

psychrotolerante

Nach

an

in

der

Jørgensen,

unterschiedlichen

(Jørgensen.

et

an

vorausgehenden

%)

cis-ungesättigten

Dagegen

Knoblauch

Temperatur

ihrer

dem

al,

Fettsäuren, 1).

kann,

den

innerhalb

als

an

arctica

von

1992).

Die Einbau

Wachstum oceanense

Fettsäuren,

permanent besondere zellularen

und

unterhalb

reichen

hierfür

1999).

besitzt 1977;

Der

und und

des

und

und

auf

von

die

der Die mesophilen SRB der Gattungen Desulfovibrio, Desulfococcus und Desulfosarcina, die die seltenen Fettsäuren i17:l und a17:l enthalten, zeigten ebenfalls nach dem Wachstum bei verschiedenen Temperaturen nur geringe Veränderungen innerhalb ihrer zellularen

Fettsäurenzusammensetzungen. Die relativen Anteile ungesättigter Fettsäuren sind mit 50 % in Desitlfovibrjo desulfuricans und 23-25 % in Desulfococcus multivorans und Desiilfosai-cinavariabilis deutlich unterhalb der Anteile, die in den psychrophilen SRB enthalten sind. Im Gegensatz dazu konnte in den mesophilen Arten der Gattung Desulfobacter (D. curvatus, D. hvdrogenophilus, D. latus und D. postagatei) mit Erniedrigung der Inkubationstemperatur eine Erhöhung der Anteile an cis-ungesättigten Fettsäuren gefunden werden (1-2 % pro °C). Die signifikantesten Veränderungen der zellularen Fettsäuren- Zusammensetzung bei unterschiedlichen Temperaturen wurden in D. hydrogenophilus nachgewiesen, das als einziges der untersuchten mesophilen SRB in der Lage ist, noch bei 0 °C zu wachsen. Es kann daher als psychrotolerant eingestuft werden.

1.2. Wachstumsabhängige Fettsäuremuster von Desulfobacter hydrogenophilus bei wechselnden Temperaturen

Weil bei D. hvdrogenophilus offensichtlich die Fähigkeit zur Regulation der Fettsäuren Zusammensetzung besonders ausgeprägt ist, wurden deren mögliche Änderungen während des Wachstumsverlaufs bei mehreren konstanten Temperaturen untersucht. Die zellularen

Fettsäuremuster von D. hydrogenophilus in unterschiedlichen Phasen des Wachstums in batch-Kulturen zeigten, daß sich bei mesophilen Temperaturen beim Übergang von der Wachstumsphase in die stationäre Phase die Anteile von cycl7:0 und lOMel6:0 auf Kosten von cis9 16:1 erhöhen. Es handelt sich vermutlich um dieselbe postsynthetische Modifikation durch Methylierung mit S-Adenosylmethionin, die bereits in anderen Bakterien gefunden und aufgeklärt wurde (Grogan und Cronan Jr., 1997). Bei Herabsetzung der Wachstumstemperatur verringerte sich der Grad der Methylierung. Bei 4 °C nahmen die Anteile von cycl7:0 und lOMel6:0 bis unter die Nachweisgrenze ab. Die zellulare Fettsäurenzusammensetzung von D. hydrogenophilus war also nicht nur abhängig von der Temperatur, sondern auch von der Wachstumsphase. Infolge der Inhibierung der Synthese von lOMel6:0 bei niedrigen Temperaturen ist die Anwendung dieser häufig als spezifischer Biomarker beschriebenen

Fettsäure (Findlay und Dobbs, 1993) in kalten, marinen Sedimenten fragwürdig. Mittels Zugabe von C-markiertem Acetat konnte gezeigt werden, daß die Erhöhung des Gehalts an cis9 16:1 in D.‘3 hvdrogenophilus bei Erniedrigung der Wachstumstemperatur durch 19 eine

Metabolismus einer

2. Inhibierung

Vergleichende

(Drzyzga machten phylogenetisch

und sowie

2.1.

der Aufgrund

Sequenzähnlichkeit Desiilfobacteriurn

Sequenzähnlichkeit s

2.2.

wie Stamm

Gegensatz joergensenii. wachsen.

in Sulfit mit

unterscheidet der

ulfatreduzierendem

Stamm

verwandten

ö-Unterklasse

de

Fettsäuren Erhöhung

Fumarat

phylogenetisch

die

Neueinordnung

comb.

als

Phylogenetische

Physiologische

novo

Sax

es

zellularen

der

et

Eine

Elektronenakzeptor

Sax

der

notwendig,

zu

und

al., nov.

Synthese

16S

Untersuchungen

sich

des von

Synthese neu oder

nachgewiesen D.

Kohlendioxidfixierung

und

SRB

D.

1993)

und

rRNA

Gehalts

phenolicum

der phenolicunz einzuordnen.

Stamm

Fettsäuren D.

phenoIicun

aromatische

mit

Bakterium, mit

Malat

wurden

verwandten

Beschreibung

den und

von

Proteobakterien

erfolgt.

hydrogenophilus.

Charakterisierung

von

dem

Desuifobacteriurn und Gensequenz-Analyse

an

Sax

ursprünglich Desulfobacterium

morphologische

durch

lOMel6:O

die

fluiditätserhöhenden

werden. Desulfobacterium

nächsten

nutzen. als

der

weist

morphologisch

Dieser Desuijobacula

kann jeweiligen

sind Als

Verbindungen

chemotaxonomisches

16S

Gärung

SRB

weitere

98,8 in

von

Stamm

Stamm

Neben

über

rRNA

und

Befund

Verwandten

der

dar.

als

Desulfobacterium Desulfotignum

%

Bei

physiologischen

cycl7:O

den

phenolicum.

Lage, DesulJoarculus mittels

zu

Charakteristika

Merkmale

Stamm

Ähnlichkeit

Gensequenzen 20 Sulfat

phenolicurn

Sax

Sax

stellt

toluolica,

von

niedrigen

ist Kohlenmonoxid-Dehydrogenase-Weg

wachsen.

vollständig

eine

Fettsäuren.

war

phenoIiiiin

mit

im

den

16S

sowie Stamm

konnte

Desulfospira

Sax

Einklang

in

Vielzahl

Merkmal

Wasserstoff

ovalen

rRNA

auf.

balticum

der

mit teilt

Die die

Temperaturen

als

Durch

Sax

spec.

Stamm

und

zu

von

von

Lage

Neusynthese Desulfobacula

der

phenolicum

maximal

16S

Gensequenz-Analyse Zellen

Kohlendioxid

eine

morphologischen

von

Stamm

bestimmt

SRB mit

(Bak

eingeordneten

vom

die joergensenii

gen.

mit

Sax

rRNA

oder

neue organischen

dem

der

bzw.

gerade

nächsten

und

Pyruvat,

auch

nov.,

Sax,

94,1

ö-Proteobakterien führen

Gattung

Formiat

strikt

(Publikation

Gensequenz

von

und vibrioiden

Widdel,

phenolica

D.

Thiosulfat

abzubauen.

sp.

%

Stäbchenform

cis9

phenolicuni

Stamm

jedoch

Desulfrspira

und

verwandten

anaeroben

16S

nov.

Substraten,

also

Merkmale

innerhalb

autotroph

16:1

93.9

rDNA

konnte 1986)

Zellen

eine

nicht

Sax

2).

oder

von

zu

Im

% 2.3. Chemotaxonomische Einordnung mittels zellularer Fettsäureanalyse

Das zeflulare Fettsäuremuster von Stamm Sax mit den markanten Fettsäuren lOMel6:O und cycl7:O zeigte große Ähnlichkeit mit Fettsäuremustern von Angehörigen der Gattung Desitifobacula und Desulfrbacter und unterstreicht damit die phyLogenetischeVerwandschaft zu diesen. Das Fettsäuremuster des phylogenetisch nächsten Verwandten, Desulfospira joergensenii, unterschied sich vor allem durch das Fehlen von lOMel6:O und das Vorhandensein von 3-Hydroxyfettsäuren vom Muster von Stamm Sax. Die große Ähnlichkeit

der zellularen Fettsäurenzusammensetzung zwischen D. phenolica und D. toluolica stimmt

mit ihrer engen phylogenetischen Beziehung überein und unterstützt die Einordnung in eine gemeinsame Gattung. Basierend auf den 16S rRNA Gensequenz-Analysen und unter Einbeziehung der morphologischen, physiologischen und chemotaxonomischen Merkmale stellt Stamm Sax eine neue Art innerhalb einer neuen Gattung dar. Es wurde der Name Desiiljotignu,n balticuni vorgeschlagen. Unter den gleichen Aspekten muß Desulfobacteriurn phenolicum in die Gattung Desulfobacula eingeordnet werden. Es wurde die neue Artbezeichn ung Desuijobacula phenolica vorgeschlagen. Durch den Nachweis von lOMel6:O im marinen SRB Desulfotignurn balticurn und der Gattung Desulfobacula ist die Spezifität dieser Fettsäure als Biomarker für Angehörige der Gattung Desulfobacter in marinen Sedimenten nicht mehr gegeben.

3. Charakterisierung der Mikroorganismenzusammensetzung von marinen Sedimenten mittels Phospholipidanalysen und Bestimmung der Lebendzellzahlen

Die Zusammensetzungen der aeroben und sulfatreduzierenden Mikroorganismengemein schaften von vier Fjorden Svalbards (Arktischer Ozean) wurden mittels der kultivierungsunabhängigen Analyse der Phospholipide und der Bestimmung der Lebendzellzahl untersucht (Publikation 3). Um mögliche Einflüsse der im arktischen Ozean vorherrschenden permanent niedrigen Temperaturen auf die dort vorkommende Mikroorganismengemeinschaft darzustellen, wurden die Ergebnisse mit denen aus Untersuchungen von Wattsediment des Jadebusen (Deutschland) verglichen (Publikation 4).

3.1. Tiefenprofile der Phospholipidfettsäuren

Die Analyse der Phospholipide und der in ihnen enthaltenden Fettsäuren bietet die Möglichkeit, ohne Kultivierung und ohne Selektion von Bakteriengruppen Aussagen über das

21 Vorkommen Dobbs, Schichten Phospholipiden als im

Phosphatkonzentrationen Svalbards unterschiedlich Organismengruppen spezifischen

mehrfach-ungesättigten typische werden. diesen

vermutlich verzweigten zeigte Mikroorganismenpopulation zeigten

Die Maxima (siehe Konzentrationen Dieser

numerische Desulfobacter nicht Durch

Dagegen

Zur

Große

Wattsediment

Die

beiden

die

unbedingt

Abschätzung

Bereichen

Publikation sich

1993).

Verteilungen

die

Befund

Unterschiede

PLFA

Diese

(0-1

Ähnlichkeiten

der

in

wurden

zeigten

Biomarker

aus

in niedrigen

von

und

Häufigkeit

den

cm).

Phospholipidfettsäuren

starken

gebundene beiden

durch kalten

der aerober

auf bestätigt

lebenden

Dominanz

wurde

anderen

i17:1,

des

obersten

1), deutlich dabei

Dabei

Verfügbarkeit eine

der

und

Sediments.

zugeordnet

niedrige zwischen

konnten

weisen terrestrischen

[-labitaten Konzentrationen

deren

die

PLFA,

Organismen

dieser

lebenden Sedimente

geringe

Häufigkeiten für

zwischen

mit

die Organismen

unterschiedliche lagen

Phosphat

größte

zu

der

höhere fakultativ

Anteil

Sedimentschichten der

in

auf

Temperaturen

in

Gattung

einer die

den die

Anzahl

Mit

molekularbiologischen

eukaryotischen

den

Tiefe

mit

Biomasse Biomasse

eine

werden

von

charakteristisch

analysiert.

Werte

in beiden

Eintrag

Sedimenten

von

Konzentrationen

in

zunehmender

kalten

Svalbards.

zunehmender

Reinkulturen in

der

und

geringe

Sauerstoff,

den

ab.

in

von

anaeroben ihren

(PLFA). lOMel6:0,

des

für den

können.

obligat

Die

Habitaten

aus pro oberen Profile. Sedimenten

in

SRB

22

inhibiert

Wattsediments Sowohl

SRB

natürlichen

den

Anzahl Sedimenten

den

g

Sedimente

aus

der Trockengewicht

und

anaerobe

nachgewiesen Tiefe

organischem

für In

beiden

Bakterien

nicht Sedimentschichten spezifischen

die angrenzenden

So

Tiefe

Die

Svalbard

deren

Familie

in

wird

prokaryotischen zeigten

eukaryotische

dieser

SRB

beiden

konnten

nur

Untersuchungen erhöhte

den

verschiedenen

von

Ursachen

Habitaten

marinen

ein

aus

Svalbards (siehe

in Synthese Bakterien

der

Sedimenten

der etwa

dominierten Desulfobacteriaceae

Biomarker

geringen

und

Wechsel

auch

vier

Gattung

sich

PLFA

[labitaten Material

Temperatur

die

Gletschern.

Sediment

Publikation

um

werden.

denen

Habitaten

zu

verschiedenen

liegen

die

der

Organismen

größten

spezifische

in

das

(Ravenschlag,

(0-1 treffen

i17:1

Konzentrationen

Aerobier

von

Svaibards

relative

Tiefenprofile Desulfovibrio

ermittelte,

SRB

Gemeinschaft.

des

physiologischen

und

im

Zehnfache

vermutlich cm)

in

Die

beeinflußt

und

nahmen

einer

wurde

Wattenmeers.

Wattsediment

(Findlay

den

Anteile von

1),

der

festgestellt

Anteil

PLFA.

lOMel6:0

niedrigen

sind,

schließen. kann

resultiert

obersten

als

Licht Fjorden

aeroben

Gattung

geringe

das

höher

2000).

auch

und

wird

von

von

und die

man

von

hin. am

mit

in

So

in gefunden. Die Tiefenprofile der relativen Anteile von i17:l und lOMel6:0 zeigten eine weitgehend konstante Verteilung der Biomarker unterhalb der oxischen Sedimentschicht von 0,5 cm.

Die unterschiedlichen Temperaturen zur Zeit der Probenentnahme von etwa 0 °C in den

Sedimenten Svalbards und 17 °C des Wattsediments hatten offensichtlich auf die PLFA Zusammensetzung nur geringfügigen Einfluß. Die relativen Anteile an ungesättigten PLFA waren in beiden Habitaten in der obersten, oxischen Schicht mit etwa 60 % am häufigsten und nahmen mit der Tiefe ab. Unterschiede hinsichtlich der Länge oder der Verzweigung der Acylketten der PLFA konnten ebenfalls nicht festgestellt werden.

3.2. Abschätzung der Bakterienzahlen mittels der MPN-Methode

In guter Übereinstimmung mit den PLFA-Profilen wurden in den kalten Sedimenten Svalbards die höchsten MPN-Zahlen von aeroben heterotrophen Bakterien und von SRB (mit Formiat oder Wasserstoff als Elektronendonator) in der obersten Sedimentschicht gefunden.

Während die Zahl der aeroben Bakterien von 4,6 . l0 Zellen 3cm in der obersten Schicht auf 2,4 Zellen• 3cm in 5-6 cm Tiefe abnahm, zeigten die SRB nur eine geringe Abnahme mit zunehmender Tiefe. Die ermittelten SRB Zahlen bei 4 °C aus Svalbard mit einem Maximum von 2,4 io Zellen 3cm nach 18 Monaten Inkubation waren um etwa zwei Zehnerpotenzen geringer als die maximalen Werte aus dem Watt (20 °C, 10 Monate Inkubation). Die MPN Zahlen der SRB aus Svalbard liegen im gleichen Größenbereich wie vorhergehende MPN Bestimmungen in verschiedenen Sedimenten Svalbards, die mit den Substraten Lactat, Propionat oder Acetat durchgeführt wurden (Knoblauch et al., 1999b). Die Abschätzungen der Bakterienzahlen mittels der MPN Methode liegen jedoch unter denen, die mittels molekularer Methoden ermittelt wurden und wohl eher die natürliche Populationsgröße widerspiegeln. Die deutlich geringeren MPN Zahlen sind zum einen in den selektiven Kulturbedingungen und zum anderen in der Tendenz der marinen SRB zur Aggregatbildung zu sehen.

3.3. Phylogenetische Einordnung der neuisolierten Reinkulturen aus Svalbard

Aliquots aus den höchsten MPN Verdünnungsröhrchen, in denen Wachstum festgestellt wurde, dienten als Inoculum für Isolierungsansätze. Dadurch sollten die am Standort häufigsten vorkommenden Bakterien der jeweiligen stoffwechselphysiologischen Gruppe isoliert werden. Aus dem permanent kalten Sedimenten Svalbards konnten durch wiederholtes

23 werden. Ausstreichen

Pseudoinonas schon

(Morita, psvchrophila, Smeerenburgfjord als

Hybridisierung beiden 16S

psychrophil

diesem verschiedenen

Wasserstoff Sedimenten

sie Smeerenburgfjorden

Stamm singaporensis.

Svalbard Desulforhopalus

einer

zeigt D.

eingeordnet Desulfobulbaceae ein

nächsten

zeigt Bande,

1996).

c‘atecholicum Elektronendonator

rRNA

neue

Angehöriger

eine von

weiterhin

Klon-Sequenz

bereits

Die

Habitat

Dt-tAl

Stamm

2000).

die

Taxa

Verwandten

anderen

Gensequenz-Analysen

(Sahm

enge

aus

Isolate

werden.

eingeordnet

als

auf

stammen

zugeordenet

organischen

aus

nachgewiesen

Die teilt bekannten

Zusammen

innerhalb der JHAI

(Knoblauch

Verwandtschaft

98,6

Elektronendonator

vacuolatus

der

Agarpiatten

et

Arbeitsgruppen

wurden

y-Proteobakterien ist

Wassersäule

lsfjorden

dabei

mittels

(JHAI)

und

Der

al.,

Desulfobacteriaceae

%

stellt

Desulfobacula

bisher

wurden

aus

ebenfalls

Ähnlichkeit

Stamm

99,9 (Knoblauch

der könnte

1999)

Substraten

Arten

werden. in

Svalbard-Sediment bilden

aufgrund

isoliert

et

Fluoreszenz (Ravenschlag,

abtrennen

einem

der

Familien

21

%

(Stamm ausschließlich

al.,

des

mit

konnten

JHAI dieser und aus

Sequenzähnlichkeit

einzige

aus

gemeinsam

Reinkulturen

diese

werden. 1999b). Dabei

komplexen

Manager

der

inkubiert wurden

wachsenden

mit

phenolica. marinem

der

95,9

permanent

et

läßt.

ist

Gattung,

Desitlfobulbaceae

von

diese

DHAI),

einer

phylogenetischen

einen

al.,

handelt

aufgrund

vollständig-oxidierende

in 2000).

%

und

Aufgrund Aus

Die

ebenfalls

Desulfobacteriurn

24

Fjords

sita

SRB

den

Sequenzähnlichkeit 1999a).

Sediment

mit

wurden,

partiellen

Medium

(Sva0999,

aerober,

teilt Cluster,

Die

16S

den

kalten,

SRB

Desuijotczlea

Aus

Gattungen

es

Hybridisierung

Krossfjorden der

Stamm

seiner

(Dänemark)

rRNA

16S

MPN-Verdünnungsröhrchen,

sich

94,8 mit

ihrer

in

bestätigt den

Der

Gattung

bei

marinen

großer

konnten

der

rDNA einem

16S der heterotropher

um anaeroben

%

16S

16S

Untersuchungen

Gensequenz 4 97,3

erneute

G1HA

bzw.

Küste Moritella,

°C

Sequenzähnlichkeit

sich

rDNA y-Proteobakterien,

rRNA

ihre

rRNA

Häufigkeit

catecholicum

arctua

Sequenz Desulfotalea

Isolat

isoliert

%) kultiviert.

Habitaten

Desul[obacteraceae.

bisher

(Stamm

Vertreter

Svalbards vermutete

als

mit

und

in

Nachweis

(Ravenschlag.

Ansätzen

Sequenz

Gensequenz

Gensequenzen

(Stamm

eine

Psvchrotnonas

neue

wurde

Bakterien

Desulforhopalits

von

und

rRNA

drei von

in

Durch

isoliert

ebenfalls

Stamm

neue

Sediment

GIHA

innerhalb

Häufigkeit Gattung (97,2

Desulfotalea

Stamm

und isoliert.

einer mit

(Teske

Isolate

LSv53)

dieser

siot

die

partielle

eindeutig

Formiat mit sind

wurden

isoliert

Gattung

die

%)

GIHA

2000). bilden

DGGE

auch

JHA1

et

einen

blot und

Die des

und von

dem

Der

auf

von

mit

und

aus

als

der

al.,

in Kandidaten für die Etablierung einer neuen Gattung dar. Für eine vollständige Einordnung der neuen Isolate sind jedoch weitere, detailiertere Charakterisierungen notwendig.

4. Anreicherung und Isolierung von methanogenen Archaea aus permanent kalten, marinen Sedimenten (Svalbard)

Diese Arbeit liegt bislang nicht jn Form eines Manuskriptes vor. Einige Versuche wurden von Christine Selz in Rahmen eines Studienprojekts durchgeführt. Die phylo genetische Charakterisierung wurde gemeinsam mit Enrique Liobet-Brossa (MPJ für marine Mikrobiologie) durchgeführt. Methanogene Archaea sind vorwiegend in anoxischen Süßwasserhabitaten von ökologischer Relevanz (Cavicchioli et al., 2000). Jedoch haben Studien in den letzten Jahren mittels biochemischer und molekularbiologischer Methoden gezeigt, daß die Archaea auch in kalten marinen Standorten abundant und an verschiedenen geochemischen Prozessen, wie beispielsweise der anaeroben Oxidation von Methan, beteiligt sein könnten (DeLong et al., 1994, 1999; Sahm and Berninger, 1998; Boetius et al, 2000). Bisher ist es einzig Franzmann und seinen Mitarbeitern gelungen, eine moderat psychrophile und eine psychrophile methanogene Reinkultur aus der Antarktis zu isolieren. Dabei handelt es sich um

Methanococcoides burtonjj (Tmn= -2,5 °C, 0T = 23 °C) und Methanogeniumfrigidum (Tmrn -10 °C, 0T = 15 °C). Sie wurden aus methanhaltigem, anoxischem Wasser des Ace Lake isoliert, das eine konstant niedrige Temperatur von 1-2 °C besitzt (Franzmann et al., 1992, 1997). Weitere Standorte, in denen die Methanogenese bei niedrigen Bedingungen nachgewiesen wurde, sind kalte, sumpfige Böden in Russland und der Bodensee (Zhilina und Zavazin, 1991; Schulz und Conrad, 1996). Reinkulturen methanogener Archaea, die noch bei niedrigen Temperaturen wachsen, konnten aus letzteren Habitaten noch nicht isoliert werden.

4.1. Anreicherung und Isolierung

Mit einer Sedimentprobe aus dem Hafenbereich von Ny-Älesund (Svalbard) wurden Kulturen für die Anreicherung von Methanogenen beimpft. Das selektive Medium entsprach hinsichtlich der Zusammensetzung der gelösten Salze weitgehend dem Meerwasser. Zur Unterdrückung des Wachstums von SRB wurde lediglich das üblicherweise zugesetzte Magnesiumsulfat durch eine aquimolare Menge Magnesiumchlorid ersetzt. Als Energie- und Kohlenstoffquelle wurden Verbindungen gewählt, die von Methanogenen verwertet werden können (Wasserstoff + Kohlendioxid, Formiat, Acetat und Methanol). Nach vier Monaten Inkubation bei einer Temperatur von 4 °C konnte in den Ansätzen mit Methanol eine

25 Methanbildung

Verwendung erkennbar, Anregung

Abbildung

mit

erfolgreich.

bisher Hemmung

neben Propionat,

zugesetzt Substratverwertung nicht

2 untersuchten

gebildeten

Inkubation Menge,

Versuche

Methanol

Monaten

verwertet

sieben den

die

des 3:

die

wurden,

des bei

Capronat,

bei bereits Autofluoreszenzinikroskopische

Methans Mittels

nach

der

zur

Inkubation

überwiegend

Zeitraums

für

4

mittels

Reinkulturen

Wachstums

°C.

12

wurde,

Isolierung

Epi-Autofluoreszenzmikroskopie

Methanogene

9

Der

°C

zeigten,

untersuchten Monaten aufeinander

bestanden.

Lactat.

entsprach 1,2 gaschromatographischer

eingezeichnete

von

wurden

des

%

in

von

dieser

daß

9

der

isoliert

Aggregaten

gebildet

Palmitat,

Ansatzes

Monaten

Wähiencl

Bakterien spezifischen

die

folgender

zwischen

Menge.

Wasserstoff,

Substraten

Maßstab

Methanogenen

gebildete

werden.

wurde.

Aufnahme

Benzoat)

bei

mit

vorlagen

die

Benzoat

entspricht

zugesetzt

Fltissigverdünnungsreihen,

4

beiden

Methanol Co-Faktors

und

Menge

nach

In

Weitere verschiedene

26

Methoden

Trimethylamin

den der

oder

12

(Abb.

als

über

12

Temperaturen

9

Ani

wurde,

Ansätzen

(Doddema

Methan

um.

°C

Monaten

einziges

Trimethylamin

eicherungskultui

Anreicherungsexperimente,

Agarverdünnungsreihen bei

3).

keine

F42,

nachgewiesen

konnten

4 organische

nach

waren

mit

°C

der

Unterschiede

gebildet

und

und

vollständig

2

Triniethylamin entsprach

zugesetzten

Monaten

aus

fluoreszierende Methanol

von

als

denen

Vogels,

wurde.

Fettsäuren werden.

den

methanogenen

mögliche

Anreicherungen

umgesetzt.

hinsichtlich

Antibiotika

bereits

die

Verbindungen

innerhalb

Während

1978)

waren

Durch

entsprachen Menge

Substrate

in

(Butyrat,

53 Zellen

Aichaea

denen

nicht

zur

%

die

Nach

zur

des der

des

der

dci die Mengen Methan nach 2 Monaten bei 4 °C 16 % und bei 12 °C 56 % der Menge nach vollständigem Substratumsatz. Die methanogene Umsetzung der eingesetzten Substrate verläuft offensichtlich bei 4 °C langsamer als 12 °C, obwohl die in situ Temperatur der Probenentnahmestelle -0,5 °C betrug. Die optimale Temperatur der Methanogenese wurde in diesem Sediment nicht bestimmt.

4.2. Morphologische und physiologische Charakterisierung

Die neu isolierten methanogenen Archaea wiesen alle eine coccoide Zellform mit einem Durchmesser zwischen 0,8 und 1,7 um auf. Zwei der sieben Isolate (l6SvalB und l6Svall) wuchsen als einzelne Zellen, während die Zellen der anderen Stämme (4Svall, 4Sval2, l6Sval2, l6SvalA und I2TMAI) Aggregate bildeten. Bei Anregung des für Methanogenen spezifischen Co-Faktors )F47 zeigten alle Isolate eine deutlich sichtbare Autofluoreszenz. Die Untersuchung des Substratspektrums ergab, daß die Stämme l6Sval(A), l6Sval(B) und I2TMA1 lediglich Methanol und Trimethylamin verwerten können. Dimethylsulfid wurde von keinem der Stämme zu Methan umgesetzt. Die Umsetzung verläuft vermutlich, wie in anderen methylotrophen Methanogenen beschrieben, durch eine Disproportionierung gemäß folgender Gleichungen (Zehnder, 1993): 3OH4CH -‘ 3CH+CO,+2H,O 4 )3NW(CH +6 H,O -4 49 4CH +3 2CO +4 4NH Die Zugabe von Biotin war für das Wachstum von l6Sval(A), l6Sval(B) und I2TMAI essentiell, während Thiamin das Wachstum beschleunigte, jedoch nicht absolut notwendig war.

4.3. Phylogenetische Einordnung

Durch Klonierung und Sequenzierung von 16S rRNA Genen konnten die Isolate l6Sval(A) und l6Sval(B) zwei Verwandtschaftsgruppen innerhalb der Methanosarcinaceae zugeordnet werden (Abb. 4). Zu den anderen Isolaten lagen zur Zeit der Fertigstellung der Dissertation noch keine Ergebnisse vor. Der Stamm l6Sval(A) zeigt sehr große Ähnlichkeit (>99 %) mit dem mesophilen Archaeon Methanolobus taylorii. Alle bisher bekannten Angehörigen der Gattung Methanolobus stammen aus marinen Sedimenten und verwerten ebenfalls nur Methylgruppen-enthaltende Verbindungen. Sie sind mesophil ,0(T = 28—40°C) und im Gegensatz zu Stamm l6SvaI(A) nicht in der Lage, bei Temperaturen unterhalb von 7 °C zu

27 wachsen Stamm aus 23

theoretische auf 5.6

Methanogeniiimfrigidurn (Franzmann

sulfidreichen

Archaeon Kohlendioxid

Gensequenzen. Abbildung

Aminoverbindungen

Methylamin-Oxiden Substrate begünstigten (Oremland

°C

i‘1ethan

Methylamine

Methanol °C,

einem

A4ethanosczeta

(Franzmann,

l6Sval(B)

jedoch

A4ethanolohus

(Kadam

“Ivlethanolohus

olohus

in

permanent

4:

stehen

et

Tmn

Reinkultur,

Phylogenetische

Methanolohus

et und

al.,

(8

oder

SRB

wurde

homhaensis

Iv!

von

al.,

mM)

und

Methylamine

ist

1982; sind

ethanolohus

concilii /

1992).

die

mit

und

Methanococcoides —

tindarjus

kalten,

und

Boone,

1992).

(z.B. 2,5 mittels

oregone!;sis“

Ace

unter

Methanogenen

das

Zinder,

Formiat

können

(Franzmann

Die

in

°C

vulcani

Einordnung

noch —

Lake

marinen

terrestrischen Cholin

1995).

tavlorii

Das

anderem errechnet.

geringste

des

begrenzt.

1993).

bei

optimal

mit

(Antarktis) einzige

Quadratwurzel-Modells

Der

0

und

der

Sedimenten

°C

et

diesen

Temperatur,

Produkte

nicht

burtonii

Das

nächste

Stlimme Wachstum

al.,

wachsen

Betain),

bei

va Gewässer

bisher

Substratspektrum

28

1997).

in

in

15 1

isoliert

l6SvaI(A)

phylogenetisch

(Ähnlichkeit

sulfatreichen

°C.

Substratkonkurrenz

des

weit

kann.

sowie

bekannte

auf

bei

M.

der

M.

anaeorben

verbreitet.

Wasserstoff der

und

frigidurn

Metha,zosarci,za

Antarktis

und

frigidunz

der

Wachstum

(Ratkowsky

wächst

l6Sval(B)

Methanohalohiurn

>

“Methanococcoides

psychrophile

von PvI‘ethanococcoides

mikrobiellen

Lebensräumen

16

99

Verwandte

Abbaus wurde

Durch

Sval

M.

%).

und

wurde

ist

mit

burtonii

aufgrund

beobachtet

mit

M.

wächst

(B)

das

et bei

die

Wasserstoff

von

burtonii nicht

den

al., Organismus

bisher

Reduktion

Nutzung

8

Archaeon

ihrer

ei‘estigatuin

°C

ist

methylierten

optimal

co-existieren

burtonii

1983)

beobachtet

‚nethvlutens“

energetisch

wurde

ebenfalls

aus

16S

stammt

einzige

dieser

eine

dem

rRNA

und

bei

zu

von ist

ist Im zeitlichen Rahmen dieser Arbeit konnten keine weiteren Versuche zur Charakterisierung oder hinsichtlich möglicher Kälteanpassungen der neuisolierten Methanogenen durchgeführt werden. Die neuisolierten Stämme sind die ersten marinen methanogenen Archaea, die aus permanent kaltem, arktischem Sediment in Reinkultur isoliert wurden und die Fähigkeit besitzen, noch bei 4 °C zu wachsen.

29 Abdollahl, C

Aeckersberg,

Bak,

Balba,

Boetius,

Boon,

Boschker,

Canfield,

Cavicchioli,

Cronan Cypionka,

DeLong,

alkanes fatty

Desulfobacteriu,n

in

Amann, consortium

taxonomic Desulf(wibrio 1415-1422. 2001. bacterial in

and

(eds.).

Extremophiles

Bacteriol.

archaea

827-848.

F. anoxic

anoxic

Literaturverzeichnis

T.

J.J.,

S

acids

und

biogeochemical Bacterial

Jr., A.,

und

Berlin:

D.E. underanoxicconditions.

E.F.,

H.T.S.,

in

R.,

H.

II. sulfate

de

sediment

brackish

Widdel,

95:

R., and Ravenschlag,

va!ue

F.,

Antarctic

J.E.

apparently

Nedwell,

2000.

Jørgensen,

und

1993.

Leeuw,

Wu,

destilfuricans.

2054-2061. Springer Rainey,

Thomas,

4:

metabolic

populations

reduction

of dc

1968.

phenolicitm

321-331.

Nedwell,

Oxygen

sediment.

Organic

F.

from K.Y.,

iso

Graaf,

marine

D.B.

J.W.,

mediating 1986.

cycies

ancl F.A.

Verlag,

Phospho!ipid

T. the B.B.,

Prezelin,

adaptations in

K.,

1982.

respiration

anteiso

matter

und and

W.,

und

J.

plankton. v.d. a D.B. Colne

Anaerobic

FEMS

and

sp.

saltmarsh

Schubert,

Bacteriol.

Witte,

pp.

Arch.

processes

Köster, Microbia! anaerobic

Curmi,

nov.. Widdel,

Hoek, global

oxidation

1979.

monoenoic

333-363.

Point

Microbiol.

B.B.

U.

by

Nature Microbiol. of

alterations

Arch.

degradation

change. sediment.

G.J.

sulfate-reducing 129:

und

Saltrnarsh, Seasonal Desiilfuvibrio M.,

P.M.G.

und

F.

C.J.,

involved

oxidation

30 metabolism

in

Microbiol.

1998.

371:

Meyer-Rel!,

1183-1191. Pfannkuche,

und

fatty

marine Jovine, Ecol.

Rickert,

Wollast,

170:

2000.

during

Microbiol.

695-697.

Growth,

Vosjan, temperature

acids

in

of

35: Essex,

of

sediments.

361-369. acetate

of

phenol

R.V.M. methane.

.

146:

97-103.

Cold

and

R.,

acetate,

growth

bacteria

D.,

L.-A.

U.K:.

0.

natura!

J.H.

Mackenzie,

177-180.

Ecol.

branched

and

stress

Widdel,

and

2000.

Annu.

1994.

as

Nature

In

und

J.

propionate

propionate

1977.

of

that

5:

phenol

relationships,

lnteractions

a

Gen.

response

Escherichia

73-79.

A

factor

Cappenberg,

Rev.

High

f3-hydroxy

utilize

F.,

Significance 407:

marine

F.T.

Microbiol.

derivatives

Microbiol.

Gieseke,

abundance

and

consumption

623-626.

influencing

und

in long-chain

ofC, microbial

butyrate Archaea.

cellular

CIou.

acids

cvii.

128: T.E.

N,

and

A.,

by

54:

in

L.

of

J. P DeLong, E.F., Taylor, L.T., Marah, Ti. und Preston, C.M. 1999. Visualization and enumaration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appi. Environ. Microbiol. 65: 5554-5563.

Doddema, H.J. und Vogels, G.D. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. App!. Environ. Microbiol. 36: 752-754. Dowling, N.J.E., Widdel, F. and White, D.C. 1986. Phospholipid ester-linked fatty acid

biomarkers of acetate-oxidizing sulphate-reducers and other suiphide-forming bacteria. J.

Gen. Microbiol. 132: 1815-1825.

Drzyzga, 0., Küver, J. und Blotevogel, K.-H. 1993. Complete oxidation of benzoate and 4- hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus. Arch.

Microbiol. 159: 109-113. Edlund, A., Nichols, P.D., Roffey, R. und White, D.C. 1985. Extractable and

lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfbvibrio species. J. Lipid Res. 26: 982-988. Feller, G., Narinx, E., Arpigny, J.L., Zekhnini, Z., Swings, J. and Gerday, C. 1994. Temperature depence of growth, enzyme secretion and activity of psychrophilic Antarctica bacteria. App!. Microbiol. Biotechnol. 41: 477-479. Findlay, R.H. and Dobbs, F.C. 1993. Quantitative description of microbial communities

using lipid analysis In: Handbook of methods in aquatic microbial ecology, Kemp, P. (ed.)

Boca Raton: Lewis Publishers, pp. 27 1-284. Franzmann, P.D., Springer, N., Ludwig, W., Conway de Macario, E. and Rhode, M. 1992. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii

sp. nov.. Syst. App!. Micorbiol. 15: 573-581.

Franzmann, P.D., Liu, V., Balkwill, D.L., Aldrich, H.C., Conway de Macario, E. and Boone, D.R. 1997. Ivlethanogeniurn Jrigidurn sp. nov., a psychrophilic, 2H-using methanogen from Ace Lake, Antarctica. mt.J. Syst. Bacteriol. 47: 1068-1072. Glud, R.N., Holby, 0., Hoffmann, F. und Canfield, D.E. 1998. Benthic mineralization and

exchange in Arctic sediments (Svalbard, Norway). Mar. Ecol. Prog. Ser. 173: 237-251.

Gounot, A.M. and Russel, N.J. 1999. Physiology of cold-adapted microorganisms. In: Cold- adapted organisms, Margesin. R. and Schinner, F. (eds.) New York: Springer-Verlag,

Berlin, Heidelberg, pp. 33-55. Grogan, D.W. and Cronan Jr., J.E. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mo!. Biol. Rev. 61: 429-441

31 Isaksen,

Jackson, Isaksen,

Jørgensen,

Jørgensen,

Jørgensen,

Kadam,

Kaneda,

Keweloh,

Knoblauch,

Knoblauch,

Knoblauch,

Kohring,

sulfate-reducing

Microbiol.

temperate moderatly

reduction.

description

taxonomic

100°C

bacteria Baktenen

Desuijofrigus nov., lipid Limnol.

nov..

rates

Microbiol.

growth sediments.

D.C.

required

M.F. M.F.

of

mt.

sp.

1994. M.

T. P.C. in

L.L.,

H., rate

psychrophilic

B.B.,

Oceanogr.

B.B. B.B.

nov., estuary.

J. deep-sea

isolated — Nature. 62: B.

psychrophilic

C.,

C., significance.

1991.

C. of

65: und

und Environ.

Syst.

Vorkommen,

Comparison

Loffeld,

and

and

und Ringelberg,

Methanolobits 408-414.

for

1977.

oceanense Isaksen,

1982.

and

Jørgensen,

Sahm,

Desuljtaiea

4230-4233.

Teske,

Jørgensen,

growth bacteria

Bacteriol.

the

Arch.

Iso-and 296:

Cronan,

hydrothermal

from

Boone, 22:

Jørgensen,

The

Mineralization

Microbiol.

growth

B.

sulfate-reducing K.

643-645.

8

M.F.

A.

Microbiol.

Microbiol.

sulfur 14-832.

yield

of

sulfate-reducing

gen.

permanently and

Synthese

and to

D.B.,

anteiso-fatty

1996.

B.B.

Jr., 49: phylogenetic

psvchrophila

D.R. of B.B. viticani.

and

permanently

nov.,

in

Heipieper,

cycle

E,ccherichia Jørgensen,

1631-1643.

J.E.

1:

Devereux,

B.B.

vent und

five

Desulfr.rhopalu.c

Jannasch,

457-467. 1996.

Rev.

und

166: 1995.

of

Desulfofrigus

of

1978.

mt.

sediments. psychrophilic

Harder,

1999.

organic

bacteria

Bedeutung.

a

cold

55: 160-168.

Adaptation

relationships

J. acids

coastal

gen.

bacterium

Physiological

32 H.J.

Sys. An

cold

R.,

coli.

288-302.

B.B.

Effect

H.W.

Arctic

matter

estimate Stahl,

nov.,

J.

in

in Bacteriol.

Biochim.

Science

1995.

marine marine

fragile

1999a.

arctic

1999b.

bacteria: ‘actio1attis

1992. Biospektrum

of

sulphate-reducing

of

sp.

with

in

D.A.,

based

marine

temperature

psychrophilic

Trans-ungesättigte

of

the

nov.

sediment marine

258:

sp.

Bacterial

environments.

characterization

Psychrophilic

45:

Community

Biophys.

gas the

Mittelman,

sea

on

nov.,

Biosynthesis.

and

400-402.

1756-1757.

gen.

sediments:

minimum

vacuoles phospholipid

bed

sediments.

3.95:

Desuijotalea

Desulftjaba

(Limfjorden,

sulfate

nov., Acta

on -

and

the

bacteria

18-25.

size sulphate

M.W.

512:

sulfate isolated

amount

sp. AppI.

role reduction

psychrotrophic

description

and

Fettsäuren

Appi.

function,

and

fatty

nov.,

472-479.

of

and

from

gelida

arctica

denmark)

Environ.

reduction,

metabolic

emended

reducing

sulphate

of

Environ.

acid from

a

White,

above

Arctic

fluid

new

gen.

and

bei

sp.

of

a profiles and ribosomal RNA sequence similarities among sulfate-reducing bacteria. FEMS Microbiol. Lett. 119: 303-308. Kroppenstedt, R.M. und Kutzner, H.J. 1978. Biochemical of some problem

actinomycetes. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene (Abteilung I)

supplement 6: 125-133. Longworthy, T.A., Hoizer, G. and Zeikus, J.G. 1983. Iso-branched and anteiso-branched glycerol diethers of the thermophilic anaerobe Therinodesulfotobacterium commune. Syst.

Appi. Microbiol. 4: 1-17. Ludwig, W: und Kienk, H.-P. 2001. Overview: A phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Bergeys manual of systematic bacteriology. Boone, D.R. und Castenholz, R.W. (eds.)New York: Springer Verlag, Zweite Auflage,

Vol. 1, pp. 49-66. Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 144-167. Morita, R.Y. 2000. Low-temperature environments. In: Encyclopedia of microbiology

Lederberg, J. (ed.) San Diego: Academic press, Vol. 2, pp. 93-98. Motamedi, M. and Pedersen, K. 1998. Desiilfr’vibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Aspo hard rock laboratory, Sweden.

Int. J. Syst. Bacteriol. 48: 311-315. Nedwell, D.B. 1989. Benthic microbial activity in an Antarctic coastal sediment at Signy

Island, South Orkney Island. Estuar. Coast Shelf Sci. 28:507-5 16. Okuyama, H., Enari, D., Shibahara, A., Yamamoto, K. and Morita, N. 1996. Identification of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid in Pseudomonas sp. strain E-3. Arch. Microbiol. 165: 415- 417. Oremland, R.S., Marsh, L.M. und Polcin, S. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh, sediments. Nature. 296: 143-145. Rabus, R., Hansen, T. und Widdel, F. 2000. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: The Prokaryotes, An electronic resource for microbiological community, Dworkin, M. (ed.), New York: Springer Verlag. Ratkowsky, D.A, Lowry, R.K., McMeekin, T.A., Stokes, A.N. and Chandler, R.E. 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range.

J. Bacteriol. 154: 1222-1226.

33 Ravenschlag, Reichert, Revsbech, Rezenka, Russel, Sagemann, Sahm, Sahm, Sass, Schulz, Schweizer, Silvius, psychrophilic oxygen 411. Desulfotomaculuni, pp. Microbial sulfate Ocean). structure of Desulfovibrio Microbiol. Lebensgemeinschaften Microbiol. Psychrotolerant Microbiol. production Unviversität Ratledge. their Griffith, psychrophilic H., 279-365. K. K. N.J. J.R. modification S. Berchthold, reduction und W. , T., in N.P., Marine Knoblauch, J., of OH. E. und 1989. lipids. C. marine 65: 21: and Ecol. Solokov, 1982. benthic Berninger, Jørgensen, K. in 1989. Bremen. and bacteria. Sørensen, (eds.) 3976-3981. 212-219. cuneatus Conrad, Functions the Ecol. sulfate-reducing Morita, sulfate-reducing Ratledge, 2000. in 20: Wilkenson, sediments Thermotropic Biosynthesis cold a prokaryotes M., by permanently New sulfate-reducing 1-14. C. M.Y. Progr. J. membrane Branke, U.-G. B.B, sediment und Gen. in J., sp. R. Molekularbiologische R.Y. of York: C. and marinen, Ser. measured Blackburn, lipids: and Amann, S.G. and 1996. Microbiol. nov. 1998. from 1982. of Springer phase J., bacteria 165: Viden, isolates Wilkenson, Greef, of (eds.) cold fatty proteins. Structural and Konig, Abundance, Svalbard, Influence permanently bacterium. 7 Temperature R. arktischen with transition 1-80. profundal acids London: 0. Desuljovibrio 128: in I. 1999. from T.H. Verlag, 34 J., marine microelectrodes. 1990. 1998. In: S.G. roles 565-568. and Arctic Cypionka, an und Phylogenetic of Lipid-protein FEMS vertical Analyse Academic Vol. of oxic cold Temperature related Sedimenten (eds.) Unusual temperature sediment and Arctic characteristics Lomholt, pure ocean. 2. marine freshwater membrane Microbiol. litoralis London: distribution, pp. compounds. sediments. lipids H. und Press, Geomicrobiol. and 241-28 affiliation Limnol. and of sediments J.P. interactions. dependence (Svalbard). in on very-long Lake sp. Academic Struktur Babenzien, sediment, functions. Vol.2, Ecol. of model 1. 1980. pathways AppI. and nov.. psychrotrophic Oceanogr. In: and Constance. 73: (Svalbard. pp. community Microbial Distribution membranes J. Environ. quantification and fatty Jost, Sytem. Press, 23 description Dissertation. 3-50. In: mikrobieller 15: H.-D. 1-238. of rates 25: 85-100. acids P.C. Vol. methan Arctic FEMS lipids, Appi. 1998. 403- of and and and of 2, in of Singer, S.J. und Nicolson, G.L. 1972. the fluid mosaic model of the structure of cell

membranes. Science 175: 720-73 1. Smetacek, V. 1998. Diatoms and the silicate factor. Nature. 391: 224-225. Sørensen, J., Christensen, D. und Jørgensen, B.B. 1981. Volatile fatty acids and hydrogen as substrate for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5-11.

Sommer, U. 1998. Biologische Meereskunde. Springer-Verlag, Berlin, Heidelberg, New York.

Taylor, J. and Parkes, R.J. 1983. The cellular fatty acids of the sulphate-reducing bacteria,

Desuijobacter sp., Desu1Jbulbiis sp. and Desulfrvibrio desu1fii-icans. J. Gen. Microbiol. 129: 3303-3309 Taylor, J. and Parkes, R.J. 1985. Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J.Gen. Microbiol. 131: 631-642. Teske, A., Wawer, C., Muyzer, G. und Ramsing, N.B. 1996. Distribution of sulfate- reducing bacteria in a stratified fjord (Manager Fjord, Denmark) as evaluated by most probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appi. Environ. Microbiol. 62: 1405-1415. Teske, A. Ramsing, N.B., Habicht, K., Fukui, M., Kuever, J. und Jorgensen, B.B. 1998. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64: 2943-2951. Tsitko, I.V., Zaitsev, G.M., Lobanok, A.G. und Salkinoja-Salonen, M.S. 1999. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appi. Environ. Microbiol. 65: 853-855. Vainshtein, M., Hippe, H. and Kroppenstedt, R.M. 1992. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst.

Appl. Microbiol. 15: 554-566.

Widdel, F. 1987. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hvdrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov.. Arch. Microbiol. 148: 286-291. Wiegel, J. 1990. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol. Rev. 75: 155-170.

35 Wieringa,

Wilkenson,

Zhilina,

Zinder

approach. reducing

Wilkenson,

Doklady (ed.)

New

S.H.

T.N.

E.B.A.,

bacteria Akademii

SG.

Environ.

York,

1993.

und

S.G.

1988.

Zavazin,

Overmann,

(eds.) London:

Physiological

in

Microbiol.

Nauk

marine

London

Gram-negative

SSSR

Chapman

G.

oxic

J.

1991.

2:

Academic

ecology

und

(Moskva)

4 sediment

17-427.

Low

and

Cypionka,

bacteria.

Hall

of

temperature

Press,

5:

layers

methanogens.

36

1242-1245.

Inc..

H.

Vol.1,

by

In:

pp.

2000.

a

methan

Microbial

128-206. combined

pp.

Detection

In:

299-457

production

Methanogenesis,

cultivation

lipids,

of

abundant

Ratledge,

by

and

a

pure

Ferry.

molecular

sulphate-

culture.

C.

J.G.

and

Tell II: Publikationen

A Publikationsliste mit Erlauterungen

Die vorliegende Dissertation beruht zum groI3tenTeil auf den folgenden Publikationen. Die angefiigten Erläuterungen stellen den eigenen Beitrag an derjeweiligen Arbeit dar.

1. Effect of temperature on the composition of cellular fatty acids in sulphate-reducing bacteria.

Martin Könneke and Fnedrich Widdel

In preparation

Entwicklung des Konzepts und DurchfUhrung aller mikrobiologischen und analytischen

Arbeiten. Gemeinsame Erstellung des Manuskripts mit F. Widdel.

2. Reclassification of Desulfobacterium pheizolicuin as “Des ulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignurn balticuin gen.nov., sp. nov..

Jan Kuever, Martin Könneke. Alexander Galushko and Oliver Drzyzga (2001) hit. J. Syst. Evol, Microbiol. 51, 171-177

Durchfi.ihrungder mikrobiologischen und analytisehen Arbeiten zur Bestimmung der zellularen Fettsäuren. Redaktionelle Mitarbeit bei der Erstellung des Manuskripts.

3. Aerobic and sulfate-reducing bacterial communities of Arctic sediments characterized by phospholipid analysis and cultivation methods.

Martin Könneke, Jan Kuever and Bo Barker Jørgensen

Enpreparation lnitiierung des Projekts durch B.B. Jørgensen. Entwicklung des Konzepts und Durchfuhrung der mikrobiologischen und analytischen Arbeiten. Erstellung des Manuskripts unter redaktionellen Mitwirken von J. Kuever und B.B. Jørgensen.

38

Analyse.

Beteiligung

4.

Lininologv Community

Rudolf

Schrarnm. A

Enrique

intertidal

Redaktionelle

multi-methods

an

Amann

der

Liobet-Brossa,

Rikke

and

surface-sediment:

Entwicklung

structure

Oceanography,

Mitarbeit

L.

approach

Meyer,

and

Raif

des

bei

Niko

activity

Konzepts Rabus,

der

submitted

Finke,

Erstellung

Michael

of

39

und

sulfate-reducing

Stefan

Durchfuhrung

des

E.

Götzschel,

Böttcher,

Manuskripts.

bacteria

Martin

der

Ramon

Phospholipidfettsauren

Könneke,

Rosselló-Mora

in

an

Andreas and Fax

*For

Effect

(+49)

Max-Planck-Institiite

correspondence.

421

of

2028

temperature

acids

790.

E-mail

Martin

for

in

[email protected]:

Alarine

sulphate-reducing

Könneke

on

Microbiology,

En

the

Gertnanv.

preparation

and

1

40

composition

Friedrich

Celsiitsstrasse

Tel.

Widdel*

(+49)

bacteria

421

of

1,

D-28359

cellular

2028

702:

Bremen.

fatty

temperature,

acid,

niethylenehexadecanoic postsynthetic

anaerobic

with unsaturated

increases

but mesophile

composition

observed

was

decreased. four

(measured The

increases psychrophilic

in Abstract

twelve

also

effect

decreased.

Desulfobacter

psychrophiles.

presumably

during

in

species

(by

of

in

(growth

in

In

metabolism.

and

psychrophilic

but the

were

modification

late

the

<3%

contrast,

and

growth

The

saturated

growth

not

(of

from

growth

relative

mesophilic

species,

per

measured

range

Isotope

by

at

eight

in

cis-9-hexadecenoic

low

Desulfobacter

far

acid

10°C)

temperature

batch

phase)

0—35°C)

genera)

species

fatty

Furthermore,

the

temperature.

but

amount

highest

(‘ 3 C)

(a

species

of

SRB

with

cultures

to

cyclopropane

acids

significantly

cis-unsaturated

labelling

(>70%).

a

of

among

content

(including

D.

de

of

on

sulphate-reducing

species

in

mostly

at

hydrogenophilus,

the

cis-9-hexadecenoic

this

novo

41

acid,

constant

of

Time

the

D.

of

cellular

species

increased

of

D.

(by

synthesis,

fatty

cis-unsaturated

all

toward

examined

hydrogenophilus

marine

hydrogenophilus

courses

psychrophiles)

>14%

fatty

temperature;

fatty

acid)

varied

the

the

bacteria

acids

origin.

per

as

acid

of

and

species.

end

not

the

amount

generally

changes

acid

10°C)

composition

if

lO-methyihexadecanoic

fatty

only

of

most

With

the

this

(SRB);

exhibited

confirmed

growth

are

The

if

formed

with of

acids

temperature

was

of

psychrotolerant

the

the

observed

cis-unsaturated

not

ratio

the

they

temperature,

not

temperature

exception

at

was

was

only

due

fatty

moderate

that

observed

cis-9,10-

included

between

studied

always

minor

in

to

acid

that

was

an

of a Introduction reducing compounds By

progress based) 2000). reducing (www.tigr.org). and parameters. the

organisms

Effects reduction physiological

sediments

exhibits certain growth lsaksen and effects and cold-adapted Jørgensen,

as Bacillus The decrease

the

availability

well

An

Cellular

regulatory

growth Jørgensen.

cytoplasmic

systematics,

use

on

The

rates

suboptimal

of

important and

as

during typical

bacteria bacteria

subtilis

their

rate,

or the

is

temperature

of

1999). in in

yields e.g.

Jørgensen.

mechanisms

genome

cultures

in

the

SRB sulphate

efficiency

marine

microorganisms

fluidity

parameters. of

mechanisms

the

cultures However, 1999:

the

asymmetric

in

frequent (Grau

(for

electron (SRB)

membrane

do

oxygen environmental

has

growth

temperature growth

past

(Jørgensen

not

sediments

overview

Sass

sequence

(mobility

as

been et

1996;

on

(e.g.

of

play

few

reveal

of

an

only

donors

decrease

a!., et physiology,

energy

gradients

SRB

rate

The

cold-adaptation

recently

optimum abundant

in

a!., decades

lsaksen has

a

Sagemann

1994;

very

(Margesin

SRB

see

key

a

of (Jørgensen

range.

and

of

temperature

1977:

(Rabus

have

1998)

been

general

conservation

lipid

change

Widdel.

or Desul/vibrio

few

role

Graumann

(Johnson

the

revealed if

and

in

curves

electron increase

Abdollahi been

metabolism, given

but

In

these

molecules

studies et et our

in

growth

principle Jørgensen,

contrast,

and

al.,1993)

a!.,

rather which

the

1982;

have

1988;

examined

knowledge

42

much and

encounter

dependence

in eta!.,

acceptor

Schinner.

of and

1998;

have anaerobic

and

a

yield,

been and

indicates

Widdel

may temperature

Odom

within

study

(Lsaksen often

its vugaris

correlation protein

attention

Marahiel,

or

been

1996;

1997:

Knoblauch Nedwell,

regulation.

studied

electron

follow

so

viz,

(28

changes of

of

and

one

triggers

1999),

1988).

dealing mineralisation

far

complex Knoblauch

of

structures, the Cypionka.

and Arctic

mM

has

on

layer Singleton, in

in an

with

1996),

sulphate in

ecology, 1979; curves

acceptors.

Jørgensen,

the

such

There in

and

in various

been

The of

moderate

Arrhenius

with

sediment adaptative

or

particular

ocean

respect

level and

physical

JØrgensen,

Jørgensen

eventually

but

existence

studies.

and

and

2000).

between

adaptative

has

recently

diverse

1993:

reduction

molecular

animals

of

not

of

water),

genes

Jørgensen,

1996;

been

climate

natural

(Knoblauch

to

function

so

‘macroscopic”

or

and

in

responses Lipid

Rabus

the

of eta!.,

temperature

temperature

between

1999) changes far significant

elaborated of

E.

Knoblauch

and

responses

sulphate-

obligately

chemical

sulphate

rates (rRNA organic

regions. sulfate-

coli

in

bilayers

over et

plants,

1999)

1992:

or

SRB. a!.,

and

and

the

in

in

in

of

a two layers) with decreasing temperature, and undergo a transition from the liquid crystalline

state (the mobile in vivo state) to the gel (“solid) state at a certain temperature (phase transition temperature): membrane functioning is hampered below this temperature (Russel, 1989). Cold adaption in various organisms involves a decrease of the phase transition temperature: this can be achieved by an increased synthesis of cis-unsaturated, short-chain or alkyl-branched fatty acids (Gounot and Russel, 1999). To gain first insights into mechanistic principles of cold adaption in SRB, we examined how temperature influences the composition of lipid fatty acids in a number of psychrophilic and mesophilic species.

Results

Effect of growth temperature on cellular fatty acid composition of various SRB. Twelve species of SRB comprising strictly psychrophilic, moderately psychrophilic and mesophilic types (Table 1) were grown at different temperature and subsequently used for fatty acid analysis. Growth temperatures were never above the optimum to avoid damaging effects and responses to unusual stress. Hence, growth experiments with obligately psychrophilic species were only possible within a relatively narrow temperature range. Fatty acid analyses were carried out when cells were still in the course of growth and had reached 3/4 of the maximum (final) optical density. In this way, a certain standardisation was achieved that allowed comparison of analyses without too much possible influence of fresh inoculation or of ageing on fatty acids patterns (see next section). Measured fatty acids patterns were regarded to represent those of the cytoplasmic membrane, because storage fatty acids such as neutral fats have not been found in bacteria (Wilkinson, 1988). The outer membrane usually contributes around 20% to the fatty acids and exhibits nearly the same ratios between fatty acids as the cytoplasmic membrane (Wilkinson, 1988). The most frequent change observed in the examined species was an increase of cis unsaturated fatty acids with decreasing temperature. However, the change of the cellular fatty acid composition was relatively small in most SRB (Fig. I). Only four Desulfobacter species (D. curvatus, D. hydrogenophitus, D. 1as, and D. postgatei) exhibited significant variation of the cellular fatty acid composition over the examined temperature ranges (Fig. 1). In species analysed before (Taylor and Parkes, 1983; Vainshtein et at., 1992; Kohring et at., 1994; Knoblauch et al., 1999), the presently observed fatty acid patterns were in agreement with the previous results obtained at a single growth temperature. We confirmed high portions (around 70%) of fatty acids with less than 16 carbon atoms in gelida,

43

medium;

7, 3 brackish and 1.2 20, medium; 0.1 0.15 in and salt medium; in 26, 5 and and marine 1.4 in medium. For deails see and Widdel Bak (1992).

cultures All c.

in

chemically grown were defined

media.

The amounts NaCI, of 6 H,O MgCl, CaCI 2 arid 11,0 2 added litre per as . follows: were 0, 1 0.4 and 0.1 in freshwater

b. Pi-ecmse temperature (especially ranges lowest growth temperawres) or temperature optima have been not determined in cases. all

DSMZ, a. Deusche Sammnlung Mikroorganismen (German von Collection Microorganisms of and Cultures), Cell Braunschweig.

Desulfococcus

,n,,Itir’orcur.v (2059)

Sewage digestor

15 -40 28-35 Acetate, salt Widdel and Pfennig, 1984

Desi,lfosarci,ma r’ariahilis

(2060)

Mediterranean sediment

15 38

28-33 Acetate, salt - and Widdel Pfennig, 1984

Desulfor’ibrio des,m/furica,rs

(642)

Wet soil

25 40

nr Lactate, freshwater - and Widdel Pfennig, 1984

Desulfohacterpo.vrgi’nei (2034)

Brackish sediment

10 -37

32 Acetate, salt and Widdel Pfennig, 1981

I)e.vis/fohmw, (338

la,u.v I)

Temperate

marine

se(limcrit rw 29-32 Acetate, salt Widdel, 1987

Desulfohacter curr’atu,c

(3379)

Temperate

marine sediment nr 28-31 Acetate, salt Widdel, 1987

Mesophi tic

Desulfobacter Irvdrogei;uplrilus

(3380)

Tcrnperatc

marine

sedIment 35 0 29-32 Acetate, salt - Widdel, 1987

Mesophmlic, psychrotolerant

Destrlforhopalu.r

i’acuolatti,s (9700)

Temperate

r-narine

sediment

0 24 18-19 Lactate, marine - lsaksen and Teske, 1996

Desitifotalea arc(jca

(12342)

Arctic marine sediment

-1.8 26

18 Lactate, - marine Knoblauch 1999 et a!.,

Moderately psychrophilic

(

Desulfotulea

ps)’c/rroplriIa 12343)

Arctic

marine sediment

-1.8 19

10 Lactate, marine - Knoblauch al. (1999) et

Desidfofrigti.c oceu,re,rxe(12341)

Arctic marine

sediment

-1.8

16

10 Acetate, - marine Knoblauch a!., er 1999

Destilfofaixi (12344) gelidu

marine Arctic

sediment

-1.8

10

7 Piopionate, - marine Knoblauch a!., 1999 et

psychrophilic Strictly

. Range

Optimum and

mediurnc

( DSMZ collection number)

growth substrate.

Gemrs arid species

Origin

Temperature for (°C) growth” Organic Reference

Table of Species sulphate-reducing 1 bacteria included in the study of temperature effects on fatty cellular acids.

species

fatty Fig.

Desulfofaba

Desulfofrigus

I.

Desulfotalea

Desulfotalea

acids Desulforhophalus

Desulfobacter

Desulfobacter

Desulfobacter

Desulfobacter

Oesulfovibrio

Des

Desulfococcus

Relative

of

psychrophila

oceanense

arctica

hydrogenophilus

vacuolatus

curvatus

latus

postgatei

desulfuricans

variabi/is

multivorans

sulphate-reducins

ulfosarcina

which

portions

were

ge/ida

found

of

unsaturated

bacteria

in

10°C

10°C

20°C

16°C

20°C

28°C

20°C 12°C

comparable 28°C

20°C 12°C

28°C

12°C

20°C

28°C

12°C

28°C

28°C

12°C

4°C

16°C

28°C 4°C

4°C

16°C

4°C

4°C

4°C

at

fatty

different

—* —

-

analyses.

acids

growth

Total

among

20 45

I

+

temperatures.

amount

total

fatty

of

40

+ acids

I

unsaturated

÷

The

+

-1-

in

bars

psychrophilic

60 indicate

I

fatty

+

highest

acids

and

80 +

I

+

mesophilic

variations

(%) 100

I of and the

Desulfococcus 9,10-methylenehexadecanoic unbranched only in

composition

growth

analyses.

was course Desulfrbacter

(Fig.

An (16:0) content

detail. formation different

study (rather

period amount and

the the

level cells

same label

De.su/.fobacter

Detailed

other

high

initial

In

temperature

following:

formed

not

another

2).

synthesised

after

to was

another occurred

extent.

The

at temperature than

of

of

portions

The psychrophiles.

‘3C-enriched observed

prove

Such

temperatures.

28°C increase

of

cis9

incorporated

the

chains)

cessation

experiment

study

under

to

of

limiting,

inoculuin

cvc9

mu1ti’orans,

hvdrogenophiliis

a

In

(a) time

a

simultaneously 16:1

Desuifobacter

variation

was

after

species;

was

change

(>70%)

postsynthetic

the these

mesophilic

of

At

17:0

in

of

in

decreased

(Fig. course

used

shifted

fatty

of

inoculation.

mesophiles cis-9-hexadecenoic acetate.

psychrophilic 12°C,

but

second

was

and Special,

fatty was

In

into growth.

of

however,

of

non-labelled

for

of

1),

this

acid

the

Desulfosarcina

from

cis-monounsaturated lOMe the

experiment

back

performed

acid

all

acids

the conditions. isotope

but

After

growth

markedly

hvdivgenophilus

modification),

fatty

whether

way,

fatty

characteristic in

cellular

changes

Subsequent

a

were

(cvc9

to

also

When 16:0 fatty

a

significant

stationary

(Fig.

growth

acid

28°C

growth

species

acids

the

labelling

phase,

iso-

on amount in

in 17:0) an

fatty

3A) we

acids

while

experiment

growth

composition

in D.

acid

and

the cvc9

one

increase

variabilis

and

had

examined experiment

Desulfobacter

hvdrogenophilus

as increase

(other

phase

and

acids

portions

fatty

similar

the

46 acetate

time

(cis9

that

culture

at

acetate

anteiso-branched

of

in

17:0

ceased,

and

began

fatty

10-methyihexadecanoic

amount

the cellular constant

acids of

during

culture

of

point

strains

16:1)

and

could

D.

and

as

cvc9 was

of

experiment

with

acids

cis9 of

with

was

the

to

the posrgatei

at

in

the (besides

lOMe cvc9

DesulJ’ovibrio

at

and

added cease

fatty

the the

of

other obvious

17:0

that

the be

added.

hydrogeizophilus.

16:1

temperature

so

subsequent with

temperature

temperature

which

cis9

(see

combined decrease

first optimum

17:0

growth

far

16:0 had

and

acids

is

due

a

anaerobes.

unsaturated

16

fatty

before

depended

third

After

preceding

due not

growth

16:1

and

been cells

effect

to

remained

lOMe

to

by

acids

state

18 examined).

to

acetate

desu/fliricans,

time. of

lOMe incubation

temperature

was

increased

growth

(Fig.

also to providing with

were

carbon

a

acid

was

hexadecanoic

of

16:0

phase

de

28°C

of

An with

not

fatty

changed

section)

Results

temperature

grown

The

at 16:0

a 2).

(lOMe

novo

batch

harvested

depletion.

examined

increased.

initial

ceased

‘IC-labelling

constant,

only

atoms

at

showed

(b)

acids

fatty were

due

periods

The

a

nearly

synthesis

at cultures

of

The revealed

limiting in

to

on 16:0)

and

growth

28°C.

again,

in

in

28°C

to

more

time acid

12°C

acid

the

for

the

3C- low that

on

in

the the

at

when

cultures (Fig.

already unsaturated temperature

Simultaneously,

hydrogenophilus

acid

inoculation Fig.

analysis.

2.

3B)

the

Time

a of

LL temperature ‘

0 0 relatively C-) ci) C)

CO

cd indicating

0 U CD 0 in C

Co

D.

B,

fatty

downshift

the

course

hvdrogenophiltis

Growth

50

40

3Q

after

10

0.4

0.3

0.2

0.1

0

deceleration

the

acids

0

inoculation

of

high

‘ 3 C-content

a

recorded

A

B

was

de

temperature-independent

such

(and

cell

novo

decreased

phase

as

eventually

as

and

density

optical

cis9

synthesis

(Fig.

in

(the

incubation

this

16:0

phase

density

in

1).

and

5

fatty

the

partly

This

in

of

hence

following

at

this

present

at Time

cis9

28°C.

acid

difference

changes

660

47

due

experiment

a

16:1

(days)

nm.

decreased

The

relatively

to

the

experiment.

of

the

preculture

from

exponential

is

characteristic

change

10

explained

was

unlabelled

much

high

was

somewhat

growth

caused

pool

more

also

by

fatty

acetate.

of

grown

phase).

16:0

cyc

cis

the

lOMe

than

by

saturated

acids

lower

916:1

fact

917:0

acetate

at

in

15

16:0

A,

The

28°C

in

that

any

than

Results

Desulfobacrer

fatty

portion

and

addition).

other

there

in

used

of

acids

other

was

one

fatty

of for 50

40 0 30 a) C 0 u 20 -o C-)

,10(I U-

0

1.5

1.4

C 1.3 C 0 C.) E o 1.2

(-) 1.1

0.4

0.3 2 0C 0.2(0 0 0.1

0 5 10 15 20 25 30 Time (days)

Fig. 3. Time course of the changes of characteristic fatty acids in Desulfobacter hydrogenophilus upon temperature shifts. In addition, synthesis of fatty acids was followed by stable isotope labelling. Medium with

°C-enriched acetate was inoculated with a preculture grown at 28°C and first incubated at 28°C. Upon depletion of C-enriched acetate (not shown) after 7 days, the culture was shifted to 12°C and non-enriched acetate was added.‘3 When acetate was agin depleted after 18 days, the temperature was shifted back to 28°C and non- enriched acetate was added again. A. Results of fatty acid analysis. B, L3C-content of fatty acids. C, Growth recorded as optical density at 660 nm.

48

advantage

change

temperature

(growth

over

Further for components

membrane. and environment.

little temperature. the

is

and

adapted

(Knoblauch

bacteria

investigated acid

unsaturated knowledge,

species

1978; influence Cellular

and

Dowling

Discussion

possible

The

Several

regulation

psychrophiles

it

patterns for

growth

response

a

is

Gounot

given

and

research

to

(Taylor

the

still

phase

more

(for

fatty

eta!.,

of

in

permanently

with

In

species

fatty the

and

to

identification

changes

environments

SRB

the

This

a

or in

overview

temperature

rates

contrast,

acids

of

and

or

matter

of

dependent)

regulate

SRB.

1986;

first

insufficiently

the

Jørgensen,

growth

is

the and

acids

less

may

the

with

Russel,

represents

needed

in

in

same

revealed

one

fatty

but

Vainshtein

Parkes,

of

lipid

SRB

comparison pronounced

the

were

indicate

decreasing

see

cold

its

discussion

that substrate

also

acid

fatty

range

Desuijobacter

with

of

to

1999).

or

Gounot

membrane

1999).

have

fatty

measured

environments,

reveals

little

these

elucidate

1983;

caused

by

composition a

understood

acid

that

fluctuation

to

eta!.,

special,

been

other,

acid

On

on

One

temperature

or

allow

as

increase

and

bacteria

membrane to

composition.

effects

Dowling

cellular

the

even

by

to

in

examined

fatty

1992;

composition;

mesophilic

may,

whether

Russel,

presently

which

species

the

chemical

“optimised”

full

other

of

mechanisms

to

as

no

of

49

acid

in

therefore,

psychrophilic

of

Kohring

temperature

temperature

fatty

membrane

suggested

et

temperature

functioning

changes

extent matches,

hand,

natural

cis-unsaturated

the

1999).

apparently

mostly

There a!.,

composition

unknown

acids

changes

species

pronounced

this

eta!.,

there

1986).

membrane

adaptation

assume

habitats

The

are

of

for

by

as

has

in

functioning

and

system

(e.g.,

species.

the

over and

employ

biomarkers

examples

relatively

principle,

might

1994;

at

in

by

temperature

factors

been

The

other

offers

that

fatty

the

of

the

Bhakoo

far

a

fatty

(Taylor

ability

fatty

certain

Boschker

the

to

is

be

present

demonstrated

medium

the

conditions.

These

a

highest

same

that

acid

not

rather

the

presently

(Jackson

a

growth

high

of

acids

observations

acids

fatty

for

special

of

and

other

and

may

only

permanently

temperature

adaptation composition

bacteria

low

Desulfobacter sulfate

study

chemotaxonomy

sensitive

portions

et

acids

Herbert, in

during

have

phase

Parkes,

be

al.

bacteria

triggered

and

most

unidentified

competitive

temperature

with

endogenic

is,

to

1998).

pattern

reduction

are

Cronan,

in

on

growth.

change

system

of

to

of

of

1980),

range

1985;

some

well-

other

with

fatty

with

cold

cis

our

the

the

An

by

in to cyclopropane has

lipid and

role

understood

reduction

potential 17:0

reducing presently Dowling temperature of inhibition

temperature.

desaturate anaerobic with

introduction formation

process when hydroxyacyl-ACP

Experimental

temperatures Cultivation.

1989).

strictly

A

high

also

The

Cronan,

of

bilayer is

conversion

17:0

a

in

cyclopropane the

strictly

anoxic

been

‘C-labelling

levels

resulting

bacteria

et

agreement

biomarker

step

of

bacteria

observed

from

fatty

(Grogan

acyl

of

a!.,

by

questions

the 1997).

of

fatty

documented

For

(Table

(Grogan

unsaturated

media procedures methyl

of

anaerobic

cis-double

formation

acids

cis9 1986).

of

chain

(Vainshtein

acids

in

analysis cannot

cis9

cis9

The

followed

and

with

very

for

fatty

3,4-dehydration

experiment

(Widdel

the 16:1 1), after

transfer

However, and

has

16: Cronan,

is simultaneous

16:1

Desulfobacter

SRB

such

convert applicability

of

a

metabolism.

acids in

bonds

low

1

is

synthesis

of

Cronan.

fatty

the post-synthetic

to cvc9

which

other

by

et

the

and

the

a

were from

cyc9

content

a!.,

and appropriate mechanism

1997).

reduction

is

a

with acids

the

formation

17:0

cellular

Bak,

bacteria

saturated

assumed

1992;

is S-adenosylmethionine

cultivated

1997).

17:0 their

of

decrease

finding of

of

particularly

and D.

An

1992) In

the

always

of

3-hydroxyacyl-ACP this

species

in

Kohring

influence

hvdrogenophiliis

modification

contrast

fatty

assumed

lOMe

leads

(Grogan carbon

lOMe

the lOMel6:0

also

to

to

of

50

length. fatty

with

of

of

an in

occur

late

acid lOMe

needs

this

in

to

in

16:0

the

chemically

unsaturated

acid

16:0

et

appropriate

chain

suited

D.

to

growth

biochemical

on

saturated

sediments

and

al..

composition

The fatty cis9

during

at

several

hvdrogenophilus.

as

16:0

de has

membrane

in

of

low

1994. Cronan,

by

a

to

cis-unsaturated

common

16:1

Desulfobater

and

acid novo

phase

reliable been

(Fig.

which

oxygen-dependent

temperature

chain

decrease

defined,

hydrocarbon

(ACP

lipid

salinity

aerobic

proton

Kuever

(Taylor with

in

variant

previously

synthesis.

as

3B)

1997).

upon

fluidity

elongation other

biomarker.

involves

fatty

in

2,3-dehydration =

the

and is elimination

bicarbonate-buffered,

D. the

acyl et

bacteria,

of

and

growth

formation

The

fully

genera

is

The

al., acids

hvdrogenophilus fatty

organic

the

chain.

is

phase

to

species

carrier

suggested

The

Parkes,

an

2001) physiological

insufficiently

the

formation

by

in

formation

The

acids

desaturases,

(Schweizer.

of

at

additional

which

agreement

a advantage

Anaerobic

anaerobic

transition

substrates (Grogan

complex

of

different

obvious

sulfate-

protein)

and

at

in

1985;

cvc9

of

as

low

the

can

the

of

of

3-

a

C, 6 H 54 )

reduction

IRMS) of

above)

transfer trap

analysis

(2.8

300°C with

(BioTrends). chromatography

based

acetate,

method source

suiphide; cell

50

overpressure

(Figs. hvdrogenophilus,

volume during

grown with

sealed

(Table

70

The ml.

Growth

Fatty

To

density,

(Finnigan ml

an

230

eV.

on

the

and

with

at

on

2

in

with

(3°C

monitor

1).

For

Optima

>99%;

of

line

min’).

‘ 3 C-content

was

was

the

the ml

and

combination

temperature

retention

acid

a

Every

late

Sasser

electron

stable

was

black

Finnigan

known

temperature

the

medium

carried

latter 2000

min 1 ,

GC/FID

same

(10

3)

growth

Sigma-Aldrich).

MAT).

The

analysis.

5

the

sample

(GC)

recorded

strain

kPa)

(1997).

fused

were

rubber

isotope

the

was

ml

temperature.

isotope

time

donor

times

finally

oven

out

the

under

MAT

analysis

and

phase

strain

and

of

determined

of with

was

Mass

volume

silica

taken

using

FAME

of

course

N,

stoppers.

Extracted

Cellular

temperature

940

quantified

was

and

by labelling

the

ratio

cultivated

20

280°C,

DELTA

15

combustion

from

+ was

capillary

spectra

measuring

the

was

ml

inoculum

CO 2

and

amended

from

mass

mill

was

Cells

were

of

was

essentially

each

of

same

photometrically

fatty

carried Precultures

changes

a

600°C,

fatty

and

200

of

isotherm).

plus

anoxic

via

the

spectrometry

source

used

were

measured were at

was

column

bottle

the

conditions

the

ml;

a

acids

with

a

interfaced

size

acid

both

instrument closed,

given

flame

out

as

cellular

harvested

run

respectively.

collected

head

use

in

it

temperature

51

grown

and

standards.

0.5 was

methyl

could

in

with

the

(Machery

the

for

from

The

of

growth

ionisation

using

separately space

%

centrifuged

anoxic

200

optical

inoculation

as

an

fatty

for

(MS)

fatty

isotope

an

as

of

be

FID

(Finnigan

esters

60 CuS

by

in

inserted

decribed

gas

Autosystem

the

ml.

gradually

gas

(N,

temperature

acid

centrifugation

to

acids,

full

of

und

CO,

using

temperature

bottles

(Cord-Ruwisch,

density

chromatography,

pure

detector

Samples

+

ratio

chromatography

(FAMEs)

subjected

140°C

1

80°C,

composition

CO 2

scan

Nagel).

cells

outlet

and

(12

MAT)

the

‘ 3 C-compound

above,

authentic

mass

decreased

by

[90:10,

at

ml

(10°C

mode

a

(Perkin (FID).

and

acetate

were

in

at

tube.

660

long-chain

The

to

were

application

with for

spectrometry

parallel

was

different

(20

however,

an

fatty

methylated

(mlz

each

min 1 )

carrier

vIvj);

nm

Identification

of

FAME

At

ionisation

1985).

an

Elmer)

added mm,

during

separated

350°C.

and

acid

Desulfobacter

(conditions

the

and

oxidation

batches,

bottles)

(sodium

30-400)

bottles

a

and time

10,000

gas

alkane

the

initial

analysis.

as

GCIQ

standards

growth

produced

of

equipped

GC/MS

(GC-C

then

was

carbon culture

energy

by

by

points

slight

were

were

each

x

at

‘ 3 C-

was

low

and

gas

ion

(n

the

Fl 2

as

g)

to

to a Acknowledgements

Jens We with

Chemischen

References

Abdollahi,

Aeckersberg,

Bhakoo,

Boschker.

Canfield,

Cord-Ruwisch,

Cypionka,

Dowling,

Grau,

This

thank bacterial

alkanes

fatty

psychrotrophic

51-55

Cappenberg,

biogeochemical Thamdrup,

margin sulfides

827-848

biomarkers the

thermal Gen Harder

11:

R.,

isotope

933-941

work

acids

Microbiol

M. Christian

D.E.,

N.J.E.,

H.T.S.,

H. Gardiol, under sediments.

H.

Industrie, for

in sulfate

regulation

and

F..

(2000)

and culture

was

and

ratio

B.

help

R.

of

JØrgensen,

Rainey,

anoxic

Herbert,

Widdel,

T.E:

acetate-oxidizing (1985)

et Pseudoinonas

metabolic Knoblauch

reduction

132: Nold,

processes

Nedwell,

supported

determination.

D., with

al.

Oxygen

Germany.

of

Mar

of

conditions.

1815-1825 sulphate-reducing

(1998)

Glikin, (1993)

F.A.

A

gas

unsaturated

S.C.,

R.A.

Geol

F.

quick

B.B.,

in

adaptation

by

respiration chromatographic

D.B. and and

and

by

a

Welisbury, Pathways

113:

‘3C-labelling (1980)

G.C.

spp.

saltmarsh

Direct

method

Bo

White,

Widdel,

Fossing,

the

Arc/i

(1979)

sulphate-reducers

27-40

grown

Barker

fatty

and

Max-Planck-Gesellschaft,

Fatty

of

Microbiol

by linking

for

D.C.

bacteria.

of

sediment.

acid de

sulfate-reducing

F.

Seasonal

Desiilfrvibrio

P., H.,

at

Jørgensen

52

of the organic

(1998)

acid

Mendoza,

different

analysis,

(1986)

synthesis

biomarkers.

Bos,

Glud,

determination

of

J

170:

and

Microbial

Microbiological

Growth,

temperature

carbon

D., microbial

and

Phospholipid

R.,

for

temperatures.

phospholipid 36

and

D.

in

de

other

species.

providing 1-369

Gundersen,

Nature

bacteria

Bacillu.c

(1994)

oxidation

Marcus

Graaf,

natural

Ecol

of

sulphide-forming

populations

dissolved

as

and

Annii

392:

5:

that DNA

subtilis.

W., psychrophilic

ester-linked

Methods

Elvert

a

relationship, Arch

composition

73-79

in

by

J., factor

801-804.

Rev

utilize

Parkes,

three

supercoiling

the

Ramsing.

Microbiol and

for

Mol

Microbial

4:

influencing

to

Fonds

precipitated

assistance

continental long-chain

33-36

bacteria.

Microbial fatty

Ri.

specific

strains.

cellular

of

N.B..

126:

five

der

and

acid

54:

and

J Graumann. P. and Marahiel, M. A. (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbial 166: 293-300

Grogan, D.W. and Cronan Jr., J.E. (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mo! Biol Rev 61: 429-441

Gounot, A.M. and Russell, N.J. (1999) Physiology of cold-adapted microorganisms. In Cold- adapted organisms. Margesin, R. and Schinner, F. (eds). New York: Springer Verlag, pp. 33-51

Isaksen, M.F. and Jørgensen, B.B. (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. App! Environ

Microbial 62: 408-4 14

lsaksen. M.F. and Teske, A. (1996) Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbial 166: 160-168 Jackson. M. B. and Cronan, Jr., i.E. (1978) An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli. Biochi,n Biophvs Acta 512: 472-479 Johnson, M.S., Zhulin, LB., Gapuzan, M.-E. R. and Taylor, B.L. (1997) Oxygen-dependent growth of the obligate anaerobe Desulfivibrio vulgaris Hildenborough. J. Bacteriol 179: 5598-5601

Jørgensen, B.B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, denmark)

Limnol Oceanogr 22: 814-832

Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed — the role of sulphate reduction. Nature 296: 643-645 Jørgensen, B.B., lsaksen, M.F. and Jannasch; H.W. (1992) Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258: 1756-1757 Knoblauch, C. and Jørgensen, B.B. (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria. Environ Microbial 1: 457-467 Knoblauch, C., Sahm, K. and Jørgensen, B.B. (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanetly cold Arctic marine sediments: description of Desuljofrigus oceanense gen. nov., sp. nov., Desuifrfrigus fragile sp. nov., Desuifofaba gelida gen. nov., sp. nov., Desulfrtaiea psychrophila gen. nov., sp. nov.. and Desulfotalea arctica sp. nov.. mtJ Syst Bacteriol 49: 1631-1643

53 Odom, Kohring, Margesin,

Rabus,

Rabus,

Russet,

Sagemann,

Sass,

Sasser,

Schweizer, Taylor,

Taylor,

and FEMS D.C.

perspectives.

Microbiol

under

prokaryotes.

Dworkin,

lipids, 366.

sulfate

of Microbiol Psychrotolerant

MIDI

Ratledge,

Desulfrbacter

631-642 129: bacteria

H..

Desulfovibrio

R.,

ribosomal

J.M.

N.J.

R.,

M.

J. (1994)

J.

L.L.,

3303-3309

Berchthold,

Microbiol

R.

Sherlock

stricty Ratledge,

Nordhaus, and reduction

and J.,

Hansen, (1997)

E.

(1989)

within

and

and

M.

59:

C.

21:

(1989) Jørgensen,

Ringelberg,

Parkes,

Comparision

Parkes, In New

(ed.),

and

Schinner,

1444-1451 RNA

anoxic Singleton, 212-219

sp.,

The

Identification Function

Microbial

marine

sulfate-reducing

Lett

C.

in

T.

Wilkenson,

cuneatus York: R.,

Biosynthesis

M.,

New

Desuifobtilbus

cold R.J.

and

sequence Prokaryotes,

and

119:

R.J.

Ludwig.

conditions

B.B.

Branke,

F.

sediment

D.B.,

Wilkenson,

(1983) York:

sediments Springer

of

Widdel,

of

(1999).

Jr.,

(1985) Identification 303-308

lipids:

and

phylogenetic

sp.

S.G.

similarities Devereux, of

R.

Springer

W.

J.,

The

of

Greef,

nov.

system, bacteria

An

bacteria Cold-adapted Verlag

Identifying (1993)

Konig,

(eds.)

F. fatty by and

Structural

sp.

of

cellular

S.G.

electronic

(2000)

Svalbard,

and a

and

Widdel,

0.

Verlag. acids

System,

London:

new

using

R.,

(eds.) relationship

among

by

H.,

The

54 from

(1998)

Desulfovibria

Desulfovibrio

fatty

roles

Stahl, gas

DissimiLatory

and Cypionka,

sulfate-reducing

different

fatty sulfate-reducing

organisms.

resource

Arctic F.

London

an

Newark,

dissimilatory

chromatography

Academic

acids related

(1993)

Temperature and

oxic

D.A:,

acid

on

ocean.

membrane

of

populations

Academic

freshwater

H. for

biomarker.

phospholipid

compounds.

desutfuricans.

USA,

Complete

Mittelman,

the

litoralis

New

and

sulfate-

Press,

microbiological

Geoniicrobio!

sulphate-reducing

sulfate-reducing

Technical

dependence York: Babenzien,

bacteria.

bacteria:

functions.

Vol.2,

of

Press,

sediment,

J sp. oxidation

and

of

cellular

Gen

En MW.

Springer

fatty

sulphate-reducing

nov.

1

Microbial

sulfur-reducing

pp.

Vol.2,

note

Appi

contemporary

Gen

Microbiol

1

acid

H.-D.

In

and community.

and

3-50

Svtem

15:

description fatty

of

Microbial

101

Microbiol

Verlag

bacteria.

Environ

pp.

profiles

bacteria,

toluene

White, rates 85-100

(1998)

lipids,

acids.

App!

279-

131:

of

Widdel,

Wilkenson,

Widdel,

Widdel,

Widdel,

Vainshtein,

Wilkenson, Arch

Williams

Schleifer,

Prokaryotes. Bergeys

Identification,

decompose

hvdrogenophilus

from

Microbiol

148:

Desulfovibno

F.

F.

286-291

F.

Microbial F.

saline

(1987)

and

and

and

M..

S.G.

manual

and

K.H.

15:

S.G.

fatty

Bak,

environments.

Hippe,

Pfennig,

Pfennig,

Wilkens.

A.

(1988)

554-566

species

New

Application.

(eds).

129:

(eds.)

acids

of

F.

sp.

Handbook

types H.

systematic

(1992)

395-400

New

nov.,

N.

Gram-negative

N.

and

London

1.

Vol.1, and

Isolation

(1981)

(1984)

of

York:

its

D.

Kroppenstedt,

Description

Gram-negative

Ballows, acetate-oxidizing,

pp.

use

on

laws

Academic

bacteriology,

Studies

Springer

Dissimilatory

663-679

the

in

of

sp. classification

new

Biology

A:,

bacteria.

of

nov.,

55

on

Press,

sulfate-reducing

R.M.

Verlag,

Trtiper,

Desulfobacter

mesophilic

dissimilatory

Krieg.

and

sulfate-reducing

(1992)

of sulfate-

Vol.1,

In

pp.

of

D.

H.G.,

Bacteria:

N.R.

Microbial

sulfate-reducing

3352-3378

curvatus

pp.

Cellular

sulfate-reducing

and

and

Dworkin,

postgatei

299-457

sulfate-reducing

bacteria

sulfur-reducing

Holt,

Ecophysiology

lipids,

Desulfobacter

sp.

fatty

nov..

J.G.

enriched

M.,

gen.

acid

bacteria.

Ratledge,

(eds).

Harder,

bacteria.

Arch

composition

nov.,

bacteria

with

bacteria.

species,

Baltimore:

Microbiol

Isolation,

Syst

sp.

W.

C.

acetate

In

nov..

Appi

The

that

and

and

D.

In of 2

Department 1.

Corresponding

Mailing Fax: Phone:

Electronic Max-Planck-Institute

“Desulfobacula

Fakultät

University

D-28359

strain

+49-421-2028-580.

Jan

Reclassification

+49-421-2028-734.

address:

für

Kuever

mail

Bremen,

of

of

Sax

Biologic,

Marine

Bremen.

author.

address:

Celsiusstr.

*,

as

mt.

Germany.

Martin

for

Microbiology.

Universität

Desulfotignum

Center

J.

jkuever@

phenolica”,

Marine

Syst.

1,

Könnek&,

D-28359

for of

Evolution

Microbiology,

mpi-bremen.de Environmental Konstanz,

Desulfobacterium

Leobener

Bremen,

Alexander

Microbiol.

comb.

2

Postfach

56

balticum

Strasse.

Department

Germany

Research

Galuschko2,

(2001).

5560,

nov.

D-28359

and

of

D-78457

51,

gen.

and

Microbiology,

phenolicurn

Technology

Bremen.

171-177 and

nov.,

description

Oliver

Konstanz,

Germany.

(UFT),

Drzyzga3

sp.

Celsiusstra3e

Germany.

as

nov.

of Abstract

A mesophilic, sulfate-reducing bacterium (strain SaxT)was isolated from marine coastal sediment in the Baltic Sea and originally described as a “Desulfoarculus” sp. It used a large variety of substrates ranging from simple organic compounds and fatty acids to aromatic compounds as electron donors. Autotrophic growth was possible with H, and CO, and formate in the presence of sulfate. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur and nitrate were not reduced. Fermentative growth was obtained with pyruvate, but not with fumarate or malate. Substrate oxidation was usually complete leading to CO,, but at high substrate concentrations acetate accumulated. Carbon monoxide dehydrogenase activity was observed indicating the operation of the carbon monoxide dehydrogenase pathway (reverse Wood-pathway) for CO, fixation and complete oxidation of acetyl-CoA. The rod-shaped cells were 0.8-1.0 p.m in width and 1.5-2.5 p.m in length. Spores were not produced and cells stained Gram negative. The temperature limits for growth were between 10 °C and 42 °C (optimum

growth at 28-32 °C). Growth was observed at salinities ranging from 5 to 110 g of NaC1 per liter, with an optimum at 10 to 25 g NaCI per liter. The G + C content of the DNA is 62.4 mol%. Vitamins were required for growth. Based on the 16S rRNA gene sequence strain SaxT represents a new genus within the delta subdivision of the . The name Desulfotignurn balticum is proposed. After the 16S rDNA sequences of all members of the genus Desulfobacterium were published (Stackebrandt, 1999), the need to reclassify most members of the genus Des ulfobacterinin became obvious due to their strong phylogenetic affiliation to other genera. Here, we propose to reclassify Desulfobacterium phenolicum as “Desulfobacula phenolica”. Desulfotign urn balticum, Des ulfobacteriurn ph enolicurn, and “Desulfobacula toluolica” contain fatty acids which were so far only found in members of the genus Desulfobacter.

57 Introduction

Among the sulfate-reducing bacteria of the &subdivision of the Proteobactena several marine

isolates are known to grow on a large variety of aromatic compounds including phenolic compounds and toluene. They were originally classified as members of the genera Desulfrbacteriurn and “Desiilfrbacula” (Bak & Widdel, 1986; l986a; Brysch et a!., 1987. Rabus et a!., 1993). Beside the use of various aromatic compounds, members of the genus “Desulfobacula” are characteristically restricted to the utilization of short chain fatty acids and simple organic compounds as electron donors: whereas members of the genus Desulfobacterium can also grow chemoautotrophically on H, and CO, (Bak & Widdel. 1986:

Bak & Widdel. 1986; 1986a: Brysch et a!., 1987: Rabus et a!., 1993; Schnell et a!., 1989). In contrast, members of the genera Desuijococcus, Desulfi)nema, and Desulfr’sarcina only use a limited number of aromatic compounds, mainly benzoic acid derivatives, but also long chain fatty acids as their sole electron donor and carbon source (Fukui et a!., 1999; Widdel, 1980: Widdel, 1988; Widdel & Bak, 1992. Widdel & Hansen. 1992, Widdel et a!., 1983). Recently obtained isolates with interesting degradation capacities might indicate that in general marine sulfate-reducing bacteria are more versatile than isolates obtained from freshwater habitats (Galushko et a!., 1999: Harms et at., 1999: Rueter eta!., 1994). However, there are many other sulfate-reducing bacteria (including spore-forming ones) isolated from freshwater habitats which use a large variety of organic compounds as electron donor and are able to grow in marine media (Kuever et a!., 1999). Another marine isolate which was isolated with benzoate and tentatively classified as a “Desu!fr)arcu!us” (the correct spelling would “Desulfarculus”) sp. could grow slowly on fatty acids with a chain length higher than butyrate (Drzyzga et a!., 1993). Therefore, it would resemble the physiological properties of Desu!fi.bacteriuni and “Desulfi)bacula” spp. In the present paper we describe this species as a new genus within the &-subdivision of the Proteobacteria. The genus Desulfr)bacteriurn was established by using mainly physiological properties (Brysch et a!., 1987). After the 16S rDNA sequences of all members of this genus were published (Stackebrandt, 1999), the need to reclassify most members of the genus Desu!fobacterium became obvious due to their strong phylogenetic affiliation to other genera. A comparative analysis using the sequences published by Stackebrandt (1999) indicates that the genus comprises only the type species of the genus Desulfobacterium autotrophicuni and

58 two other species; the not validly published “Desulfobacteriwn vacuolatuni” (so far not described, only listed in Widdel (1988)) and the originally as Desulfococcus niacini (Imhoff and Pfennig, 1983) described “Desu!fobacteriutn niacini”. That both species are members of the genus Desu!fobacteriurn was already demonstrated by several phylogenetic analyses (Rabus et al., 1993) and by use of the genus-specific oligonucleotide probe 221 (Devereux et al., 1992; Manz et al., 1998). All other members of the genus have to be reclassified, because they belong to other genera or represent new genera. Here we suggest that the former “Desulfobacteritim phenolicum” be incorporated within the genus “Desu!frbacula” (Rabus eta!., 1993).

Methods

Source of organism. Strain Sax was isolated from a benzoate enrichment culture inoculated with anoxic marine mud from Saxild, Denmark (Drzyzga, et al., 1993). Strain Sax was deposited in the DSMZ under the accession number DSM 7044. “Desu!fobacula to!uolica” (DSM 7467), Desuljobacteritim phenolicum (DSM 3384), Desulfobacteriiirn autotrophicum (DSM 3382), and Desulfr.thacterpostgatei (DSM 2034) were obtained from the DSMZ. Media and culture conditions. For enrichment and cultivation the medium was prepared as described previously using benzoate (2.5 mM) as electron donor (Drzyzga, et al., 1993). Pure cultures were obtained by repeated use of deep agar dilution series (Widdel and Bak, 1992). Substrate utilization was determined by adding the carbon and energy sources from sterile stock solutions; the cultures were incubated for about 3 weeks. In order to avoid possible toxic effects of the substances, toluene and xylene isomers were supplied to cultures following adsorption in the deaerated organic solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN; 2 %, v/v) (Rabus, et al., 1993). A check was made to ensure that HMN did not inhibit growth of strain Sax on benzoate. To test the capability of autotrophic growth, cultures were grown under an headspace of

80% H,-20% CO, at an overpressure of 101.3 kPa. The temperature range for growth was determined by incubation in a temperature gradient block from 35 to 80 °C in increments of

2-4 °C. The pH range of growth was determined in mineral medium with pH from 5 to 9. The dependence of growth on the concentration of NaC1was determined in mineral medium with

NaCl concentrations from 0 to 130 g NaCI per liter. Strain Sax was routinely cultivated in a carbonate-buffered, sulfide-reduced medium for marine sulfate-reducing bacteria supplied

59 with incubation

denaturation. as

measurement

Desulfr)bacterium

mM) Desu/fi)bacteriunl centrifuged composition mM)

preparation previously

mineral Cells once

buffer MgCI. cells were was enzyme

potassium

several with

1

.5

described

Chemical

For

Preparation

ml

Enzyme

2.5

placed

in and as

were

microliter passed

from

(50 *

anoxic

fatty

medium glass

j.tl only

activities

6H,O,

mM

acetate

conditions

(Sasser,

removed mM;

of

phosphate the

of

in

and 2-3

of

by was acid

electron

assays.

0.05

cuvettes

and

of

Analysis

saline

late

a

the

sulfide

syringes.

11.2

pH

(Postgate,

supplied times

(20

of

small

benzoate

aiitotrophicurn

were used phenolictini methyl

determined

biochemical %

1997).

fatty

exponential

7.3)

cell

from

were

g*1’).

buffer mM), All

dithionite

donor

buffer

through

production

done

sealed

glass

for

extract.

supplied

of

One

enzyme

acid ester

the

with

as

respectively. Collected

as 1959).

(potassium

a

aromatic at

described

and

homogenate

(50

vial unit

by

with

methyl 2.5

comparative (FAME)

a the an

were

solution.

characterization.

growth

Strain

and

growth

carbon assays

with

means mM;

was anoxic

of

mM

under

day

The

butyl

enzyme

grown

Desuitobacter

cells

described

ester

2.5 before of

benzoate

compounds, Sax

phosphate

pH

mol%

phase analysis

were

Cells All source,

N.,

French of

preparation.

substrate.

by

rubber

mM

were

was

7.3)

in

capillary

gas was

additions

centrifugation FAME activity

done (Widdel

60

were

G

from

marine

MgCI,

grown

previously

under

which

Strain press resuspended

phase

and

carried +

stoppers.

50

The

under

postgatei

C

harvested

Salt the

was

mM; identification

analysis. sulfate

and GC *

cell

were

content

a

in

presence

mineral

Sax.

and

was

6H20 late

gas

strictly

composition 1200 out

li.tmoImin1

Bak,

pH at

and

(Drzyzga,

(30

Assays

done stored

phase

exponential

“Destilfobactila

slightly

(28

137

in

using

were 7.3;

by and

ml

was

mass 000

medium

1992).

The

of

anoxic

anoxic

mM)

from MPa.

centrifugation

bottles

of

2.5

containing desulfoviridin

on

were

grown

x

determined

a

of

whole-cell reduced

N2/C0 spectral

et

g.

and

ice. mM

method

as

anoxic

of

Cell

potassium

conditions

al.,

20 cytochromes,

with

growth

containing

performed

electron

the

mg

with

Measurements

dithiothreitol

mm).

1993).

debris

toluolica

(80/20

NaCI,

benzoate

protein1.

by

stock

analysis.

medium

as

butyrate

by

and

phase

was

The

addition fatty

phosphate described

at

acceptor.

and

thermal

solutions

26

1000 vol.

washed

30

in

tested

extract

were intact

g*li;

acid and

(2.5 and

‘C

The and

I

(10

%).

and

ml

ml

of

of

in The presence of 2-oxoglutarate: electron acceptor oxidoreductase was checked by following the reduction of benzyl viologen (2 mM) at 578 nm in the presence of 2- oxoglutarate (3 mM and CoA (0.2 mM). Activity of CO dehydrogenase was determined by following the reduction of benzyl viologen (5 mM) in the presence of CO. To perform the assay, cuvettes were flushed with CO until the assay buffer was saturated with CO.

Protein content in cell free extract was determined with bichinchoninic acid as a reagent by following standard protocol assay (BCA protein assay kit; Pierce, Germany) and with bovine serum albumin fraction V (Pierce, Germany) as a standard for calibration. Gases were purchased from Messer-Griesheim (‘Darmstadt, Germany) and Sauerstoffwerke Friedrichshafen (Friedrichshafen, Germany). PCR amplification and sequencing of the 16S rRNA gene. To amplify the almost complete 16S rRNA encoding gene (1,500 bp) of strain Sax, primers GM3F and GM4R were used in a 35-cycle PCR with an annealing temperature of 40 °C (Muyzer et al., 1995). PCR products were purified by using the QlAquick Spin PCR purification kit (Qiagen, Inc., Chatsworth, Calif.) as described by the manufacturer. The Taq Dyedeoxy Terminator Cycle Sequencing kit (Applied Biosystems, Foster Cit, Calif.) was used to directly sequence the PCR products according to the protocol provided by the manufacturer. The sequencing primers have been described previously (Buchholz-Cleven et al., 1997). The sequence reaction mixtures were electrophoresed on an Applied Biosystems 373S DNA sequencer. Phylogenetic analyses of 16S rRNA gene sequence data. The sequences were loaded into the l6S rRNA sequence data base of the Technical University of Munich using the program package ARB (Strunk et al. 1999). The tool ARBALIGN was used for sequence alignment. The alignment was visually inspected and corrected manually. Tree topologies were evaluated by performing maximum parsimony, neighbor joining, and maximum likelihood analysis with different sets of filters. Only sequences with at least 1200 nucleotides were used for the calculation of different trees. The partial sequence of strain Sax (1462 nucleotides) was added to the reconstructed tree by applying parsimony criteria without allowing changes in the overall tree topology. The strain designations and nucleotide sequence accession numbers which were not included in the ARB database are as follows: “Desuijobacitla ”Ttoluolica DSM 7467, X70593; Desulfobacterium Tphenolicum DSM 3384,

61 AJ237606 (submitted by E. Stackebrandt); Desulfispira joergensenhl’, DSM 10085 X99637; Desulfrtignuin balticiitn (strain Sax), DSM 7044, AF 233370; Clone SB-9, AF029042; Clone Sva0605, AF230098.

Nucleotide sequence accession number. The nearly complete 16S rRNA sequences of strain Sax (DSM 7044) is AF233370.

Results

FAME analysis. The fatty acid composition of strain Sax and its phylogenetically closest relatives are listed in Table 1. Significant amounts of unidentified fatty acids (ECL16.07, ECL 18.09) were found in “Desulfobac u/a to/au/wa” (7.5 %) and “Desu1fr.bacu1a phenolica (16.6 %) and also in traces in strain Sax. The FAME analysis for “Desu/Jobucula toliiolica” grown on ethanol was very similar to our results (van der Maarel et al., 1996).

Enzyme activities. In cell free extracts of strain Sax active CO dehydrogenase was found (2.6 U * mg protein’). whereas 2-oxoglutarate dehydrogenase (a key enzyme of the citric acid cycle) was not detected. This finding indicated the presence of the CO dehydrogenase pathway for the oxidation of acetyl-CoA (Thauer, 1988).

Table 1 Major cellular fatty acids in % of strain Sax and some phylogenetically related species.

Fatty acid strain Sax “Desulfobucirla “Desulfrthacula Desulfospira Desulfohacteriuni Desulfohacter phenolica toluolica joergensenii antotrophicum postgatei 14:1 - 1.4 - - - - 14:0 3.7 8.7 8.3 13.9 2.8 15.4 i15:0 - - - 1.8 - 0.7 15:1 c9 0.8 - - - 6.5 - 15:0 0.2 2.0 1.6 1.3 5.1 3.1

3OHl4:0 - 1.3 - 1.6 - - 16:1 c9 8.5 16.5h 19.7 38.9 30.7 10.0 16:0 24.2 20.4 31.2 28.4 13.2 20.9 lOMel6:0 14.0 17.2 17.6 - 7.4 11.2 17:1 cli - - - - 10.5 - 17:0 cyc 19.5 3.9 2.6 2.4 - 31.5 17:0 0.4 0.7 0.7 0.6 2.9 2.3 301-116:0 - - - 2.3 0.5 - 18:1c9 3.7 - - - - - 18:1 cli 7.4 3.9 6.0 5.3 2.7 1.2 18:0 9.8 2.1 3.1 0.7 1.1 0.5 i19:0 1.7 - 2.5 - - - 19:Ocyc 1.1 - - - - -

Percentage of total fatty acids are shown. Fatty acids present in all strains at less than 1 % are not listed. c, cis; i, iso; cyc, cyclopropane: OH, hydroxy; Me, methyl.

62 Physiological and morphological properties. All physiological and morphological properties of strain Sax, Desulfobacterium phenolicurn and “Desulfrthacula toluolica” are listed in Table 2 and compared to the closely related species Desulfospira joergensenii. For a more detailed description the original publications should be used (Bak & Widdel, 1986; Drzyzga, et al., 1993; Finster et al.. 1997; Rabus, et al., 1993).

Strain Sax did not grow on toluene, or o-, m-, p- xylenes supplied adsorbed in HMN, nor did this organic solvent inhibit growth of the bacterium on benzoate,

Phylogenetic analyses. The I6S rRNA gene sequence of strain Sax shares less than 94.1 % identity with the 16S rRNA gene sequences of other sulfate reducers of the delta subdivision of the Proteobacteria (data not shown). The phylogenetic position of strain Sax and its closest relatives is shown in Figure 1. The closest affiliation was found with a similarity value of 96.6 % to clone SB-9 (Phelps et a!., 1998), followed by Desulfospira joergensenhi (94. 1 %) (Finster, et al., 1997) and Desuijobacterium phenolicum (93.9). As can be seen in Figure 1 the sequence of clone Sva 0605 obtained from permanently cold sediments at Svalbard falls in close proximity to these organisms (Ravenschlag et al., 1999). Clearly, they are all members of the delta subdivision of the Proteobacteria. Furthermore, the comparative phylogenetic analyses indicated Desulfobacterium phenolicuni to be a member of the genus “Desulfobacitla”. It was closely related to “Desulfobacula toluolica” (98.8 % similarity of their 16S rRNA sequence), which is the only species of this genus so far (Figure 1). Based on the sequence of the 16S rRNA, strain Sax could not be affiliated with any of the other genera and was therefore proposed as a new genus in its own right.

63 Table 2 Comparison of selected characteristics of ‘Desitifobucula toluolica , ‘Desulfohacula phenulica’ (formerly Desulfohacterium phenolicunt). DesiilJspira joergensenhi, and strain Sax.

Characteiistic “Desulfohaculu “Desulfihacu/a Desuifospira Strain Sax toluolicu phenolica joergen.’.en Morphology Oval Oval to curved rod Vibrio Rod Width x length (urn) l.2-l.4x 1.2-2.0 l-l.5x2-3 0.7-0.8 x 1-2 0.5-0.7 x 1.5-3.0

Motility +(sp) +(sp) G ÷ C content (molf) 42 41 50 62 Desulfoviridin Major menaquinone NR MK-7(H) MK7 and MK-7(H) NR Salinity optimum (gil) 20 20 12-20 20 Optimal temperature (°C) 28 28 26-30 28-32 Oxidation C C C C Electron donors: H + (+) Formate (÷) + (+j Acetate (+) (÷)

Fatty acid : C atoms 4 (4) 4,8. 12, 14 4-(l0. 12, 16. 18) Isobutyrate 2-Methylbutyrate 3-Methylbutyrate Ethanol + (+) Lactate + + Pyruvate + + + + Fumarate + (+) + + Succinate + (+) + (+) Malate + (+) + Benzoate + + + 4-Hydroxybenzoate + + + Phenol + (+) Phenylacetate + (+) toluene + (+) Others Propanol, butanol, Propanol, butanol, Crotonate. glutarate. Crotonate, p-cresol, glutarate 2-hydroxybenzoate, maleinate, maleinate p-cresol, glutarate glycolate, glycerol, betaine, proline, yeast extract Fermentative growth on: NR NR - Pyruvate Electron acceptors: Sulfate + + + + Sulfite NR - + + Sulfur NR - + NR Thiosulfate NR + + + Nitrate NR - - - Growth factor requirement Vitamins - Biotin Vitamins *Cells are motile during exponential growth phase. but motility can rapidly decline during growth. NR, Not reported; +. good growth; H-). poor growth; -, no growth; , autotrophic growth: sp. single polar flagellum. Data obtained from Bak and Widdel (1996a), Drzyzga et al. (1993), Finster et a!. (1997) and Rabus et al (1993). All strains were negative for desulfoviridin and for growth on isobutyrate, 2-methylbutyrate and 3-methylbutyrate and could use sulfate as electron acceptor. Substrate oxidation was complete for all strains.

64 Bdeijov,br,o stOIpu Desu!foborulus sapovoafls OesulfonemalOesulfococcus

Oesulfure.IIa acetivo cans

Desuifomon,Ie riedje

Clone 5va0605 DesulFobacca ace toxidans’ Desulfobacuia roluolica Oesulfarculus bears,’ Oesul(obacteriurn phenolcum

Desu!forhabduslDesuifacinum I Desulfobu!buc

Figure 1 Phylogerietic tree showing the affiliations of 16S rDNA sequences from Desulfobacula phenolica and De.culforignunsba1tjciu to selected reference sequences of the delta subdivision of the Proreobacteria. The tree was calculated by neiahbor-joining analysis and corrected with filters which considered only 50% conserved regions of the 16S rRNA of _-Proteobacteria. The sequence of Desulfurella acetivorans was used as out group. The bar represents 10% estimated sequence divergence.

Discussion

The physiological and morphological properties (Table 2) in combination with the comparative 16S rDNA and FAME analysis (Figure 1 and Table 1) clearly demonstrate that

Desulfobacterjtinz phenolicitni is a member of the genus “Desulfobactila”. It can be clearly distinguished from “Desulfobacula toluolica” by its motility, morphology, missing vitamin requirement and use of different electron donors for sulfate-reduction. Therefore, we propose to rename it as Desulfobacula phenolica.

In view of the 16S rRNA gene sequence analyses presented in this study strain Sax should be regarded as belonging to a new genus, since it was not closely related to other genera (a maximum of 94.1% 16S rRNA sequence identity). The distinct morphological and physiological properties (Table 2) in accordance with the FAME analysis (Table 1) argue in the same direction. Both “Desulfobacula” species and strain Sax contain relative high amounts of the fatty acid IOMel6:O, whereas this fatty acid is completely absent in Desulfospira joergensenii (Finster, et al., 1997). The finding of this fatty acid in

65 “Desuijobacula toluolica” is consistent to the results obtained by van der Maarel and coworkers (1996). Strain Sax can be distinguished from both “Desulfobacula” species by the high amount of the cyclopropane fatty 17:0, which is also a dominant fatty acid in Desuijobacter spp. Therefore, the designation Desulfotignuin balticum is proposed for strain SaxT. Ecological relevance of members of the genera “Desulfobacula” and Desulfotignurn. The cellular fatty acid composition of strain Sax shows the highest similarity to that of

Desulfobacter postgarei. It is distinguished from the composition of “Desulfobacula tolitolica” and “Desulfobacuta phenolica” by the presence of cycl7:0. Nevertheless strain Sax, “Desitifrihacula phenolica” and “Desuijobacula toluolica contain significant amounts of lOMel6:0 which was previously described as a biomarker for Desu/ftbacter spp. (Dowling et al., 1986) and was also found in lower amounts (< 10 %) in Desulfobacterium autotrophicum (Vainshtein et at., 1992). Therefore, the use of this fatty acid as a specific biomarker for microorganisms belonging to the genus Desuifobacter should no longer be considered reliable. The presence of this fatty acid in marine sediment could also account for sulfate-reducing bacteria belonging to the aforementioned genera.

Emended description of the genus Desulfobacula (Rabus, et al., 1993). The sentence about the motility should be changed into: Oval cells which may be motile or nonmotile.

Description of Desulfotignum gen. nov.

Desulfotignuin (De.sul.fo.tig’num. L pref. de from, L. n. sulfur sulfur; M.L. n. tignum stick;

M.L. neut. n. Desulfotignum sulfate-reducing stick). Cells are straight sometimes slightly curved rods that are motile. They are strict anaerobes, using sulfate as the terminal electron

acceptor that is reduced to sulfide. Aromatic compounds, fatty acids and a number of low- molecular-weight aliphatic acids may be utilized as electron donor. Autotrophic growth on 2H plus CO, and formate. Electron donors are completely oxidized to CO, via the carbon monoxide dehydrogenase pathway, Desutfotigizumbelongs to the delta subdivision of the Proteobacteria; the closest relative are Desulfobacula and Desulfospira spp. The type strain of

the genus is Desulfotignuni balticurn (=DSM 7044).

66 Description of Desulfotignum balticurn sp. nov.

Desulfrtignuni balticuni (bal.ticum, M.L. neut. adj balticurn from the Baltic Sea, pertaining to location of the sampling site). Cells are short rods, 0.5-0.7 by 1.5-3.0 p.m.Spore formation is absent. Cells are motile. Gram stain reaction of cells is negative. Strict anaerobe. Growth on 2H/CO,. formate, acetate, butyrate, crotonate, straight long chain fatty acids up to ,C18 lactate, pyruvate, fumarate, succinate, maleinate, malate, benzoate, 4-hydroxybenzoate, phenol, phenylalanine. and phenylacetate. Substrate oxidation is usually complete leading to .2CO but at high substrate concentrations acetate can accumulate. Electron acceptors used are sulfate, sulfite and thiosulfate. Not used: nitrate and nitrite. Slow fermentative growth on pyruvate.

Addition of at least 10 g/l of NaCI is necessary. Optimum NaCl concentration for growth is 20 gil. NaCI is tolerated up to 110 g/l. Vitamins are required for growth. Temperature requirements: 10 °C; 0(.T 28-32 °C; Tm, 42 °C. The pH range for growth is 6.5 to 8.2; pH optimum at 7.3. The G + C content of the DNA is 62.4 mol% (Tm). The GenBank accession number for the 16S rRNA gene sequence is AF233370. The type strain is SaxT (=DSM 7044).

Acknowledgement

We thank Ingrid Kunze for technical assistance, Hans-Georg Truper, Karl-Heinz Blotevogel for advice and help, and Geoff Mattison for linguistic improvements to the manuscript. This work was in part funded by the Max-Planck Society, Munich (Germany).

References

Bak, F. & Widdel, F. (1986). Anaerobic degradation of indolic compounds by sulfate- reducing enrichment cultures, and description of Destilfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146, 170-176. Bak, F. & Widdel, F. (1986a). Anaerobic degradation of phenol and phenol derivatives by

Desulfobacterium phenolicuin. Arch Microbiol 146, 177-180. Brysch, K., Schneider, C., Fuchs, G. & Widdel, F. (1987). Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desuijobacterium autotrophicurn gen. nov., sp. nov. Arch Microbiol 148, 264-274.

67 Buchholz-Cleven, B., Ratunde, B. & Straub, K. (1997). Screening for genetic diversity of isolates of anaerobic Fe(El)-oxidizing bacteria using DGGE and whole-cell hybridization. Svst Appi Microbiol 20, 301-309. Devereux, R., Kane, M.D., Winfrey, J. & Stahl, D.A. (1992). Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Svst App! Microbiol 15: 601-609. Dowling, N. J. E., Widdel, F. & White, D. C. (1986). Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other suiphide-forming bacteria. J Geti Microbiol 132, 1815-1825. Drzyzga, 0., Kuever, J. & Blotevogel, K.-H. (1993). Complete oxidation of benzoate and 4- hydroxybenzoate by a new sulfate-reducing bacterium resembling Desu1frarcu1u.s.Arch Microbiol 159, 109-113. Finster, K., Liesack, W. & Tindall, B. J. (1997). Desulfospira joergensenii, gen. nov., sp. nov.. a new sulfate-reducing bacterium isolated from marine surface sediment. SystApp? Micmbio! 20. 20 1-208. Fukui, M., Teske, A., Assmus, B., Muyzer, G. & Widdel, F. (1999). Isolation, physiological characteristics, natural relationships. and 16S rRNA-targeted in situ detection of filamentous, gliding sulfate-reducing bacteria, genus Desulfonema. Arch Microbiol 172, 193-203. Galushko, A., Minz, D., Schink, B. & Widdel, F. (1999). Anaerobic degradation of naphtalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1,415-420. Harms, G., Zengler, K., Rabus, R., F, A., Minz, D., Rossello-Mora, R. & Widdel, F. (1999). Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. App?Environ Microbiol 65, 999-1004. Imhoff, D. & Pfennig, N. (1983). Isolation and characterization of a nicotinic acid-degrading sulfate reducing bacterium, Desulftcoccus niacini sp. nov. Arch Microbiol 136:194-198. Kuever, J., Rainey, F. & Hippe, H. (1999). Description of DesulJbtomaculutn sp. Groll as

De,wtfotomaculunzgibsoniae, sp. nov. Jut J Svst Bacteriol 49. 1801 - 1808. Manz, W., Eisenbrecher, M., Neu, T.R., and U. Szewzyk. (1998). Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated

68 by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25: 43-61.

Muyzer, G., Teske, A., Wirsen, C. & Jannasch, H. (1995). Phylogenetic relationships of Thioniicrospira species and their identification in deep-sea hydrothermal vent samples by

denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164, 165-172.

Phelps, C. D., Kerkhoff, L. J. & Young, L. Y. (1998). Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27, 269- 279. Postgate, J. R. (1959). A diagnostic reaction of Desulphovibrio desulJiricans. Nature 183, 48 1-482.

Rabus, R., Nordhaus, R., Ludwig, W. & Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appi Environ

Microbiol 59, 1444-1451. Ravenschlag, K., Sahm, K., Pernthaler, J. & Amann, R. (1999). High bacterial diversity in permanently cold marine sediments. Appi Environ Microbiol 65, 3982-3989. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. W. & Widdel, F. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455-457. Sasser, M. (1997). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note] OJMIDI Sherlock. Schnell, S., Bak, F. & Pfennig, N. (1989). Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacteriunz anilini. Arch Microbiol 152, 556-563.

Stackebrandt, E. (1999) Partial I6S rRNA gene sequence of Desulfrbacteriunz phenolicurn (DSM 3384) submitted to Genbank under AJ237606. Strunk, 0., Gross, 0., Reichel, B., May, M., Hermann, S., Stuckmann, N, Nonhoff, B., Lenke, M., Ginhart, T., Vilbig, A., Ludwig, T., Bode, A., Schleifer, K.-H. & Ludwig, W. (1999). ARB: a software environment for sequence data. http://www.mikro.biologie.tu.muenchen.de. Department of Microbiology. Technische Universität MUnchen, Munich, Germany.

69 Thauer, R. K. (1988). Citric-acid cycle, 50 years on. Eur. J. Biochem. 176. 497 - 508. Vainshtein, M., Hippe, H. & Kroppenstedt, R. M. (1992). Cellular fatty acid composition of Desulfi)vibrio species and its use in classification of sulfate-reducing bacteria. Svsteni Appi Microbiol 15, 554-566. Van der Maarel, M. J. E. C., Jansen, M, Haanstra, R., Meijer, W. G. & Hansen, T. A. (1996). Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria. Appi Em’iron Microbiol 62, 3978-3984. Widdel, F. (1980). Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien Ph.D. thesis: University of Gottingen. Germany.

Widdel, F. (1988). Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In

Biology of anaerobic microorgani.ctnc. pp. 469-585. Edited by A. J. B. Zehnder. New York: J. Wiley.

Widdel, F. & Bak, F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In The

proka,yotes, pp. 3352 - 3378. Edited by A. Balows, H. G. Trüper, M. Dworkin. W. Harder & K. H. Schleifer. Berlin, Heidelberg, New York: Springer Verlag. Widdel, F. & Hansen, T. A. (1992). The dissimilatory sulfate- and sulfur-reducing bacteria.

In The Prokarvotes. pp. 583-624. Edited by A. Balows, H. G. Truper, M. Dworkin. W. Harder & K.-H. Schleifer. Berlin, Heidelberg, New York: Springer Verlag.

Widdel, F., Kohring, G.-W. & Mayer, F. (1983). Studies on dissimilatory sulfate-reducing

bacteria that decompose fatty acids LII. Characterization of the filamentous gliding

De,ciilftnierna liniicola gen. nov. sp. nov., and Desuitonenia magnum sp. nov. A rch Microbiol 134, 286-294.

70 IL Max-Planck-

Arctic

Phone: Fax: E-mail:

*For

Aerobic

correspondence

[email protected]

sediments

Institute

+49(0)421-2028-746 +49(0)421-2028-580

Martin

and

for

sulfate-reducing

Könneke*,

Marine

and

characterized

Microbiology.

cultivation

Jan

In

Kuever

preparation

3

Celsiusstr.1,

72

and

bacterial

by

methods

Bo

phospholipid

D-28359

Barker

communities

Bremen,

Jørgensen

Germany

analysis

of Abstract

Phospholipid fatty acid (PLFA) analysis in permanently cold sediments from fjords of Svalbard (Arctic Ozean) showed that the total microbial biomass determined as lipid-bound phosphate decreased with depth. Polyunsaturated PLFAs of eukaryotes and PLFAs generally characteristic of aerobes had highest concentrations in the top 5 cm of the sediments. Branched-chain PLFAs indicative of facultatively and obligately anaerobic bacteria were most abundant below that depth. Two specific biomarkers for sulfate-reducing bacteria (i17:1 and lOMel6:O) were present at low concentration with an absolute maximum in the top 0-1 cm but with the highest relative amounts in a depth of 10 cm. High amounts of unsaturated PLFA (>60%) typical for cold-adapted organisms were found in the surface sediment and decreased with depth in the anoxic sediment. A reduced diversity of PLFAs with depth reflects a decrease of the microbial diversity in the deeper sediment, probably associated with the limited quality and quantity of electron donors and electron acceptors. The abundance of bacteria as estimated by most probable number (MPN) counts over different horizons correlated well with the PLFA profiles. The cell numbers of aerobic heterotrophic bacteria and of sulfate-reducing bacteria (SRB) were highest in the top layer. Isolates obtained from the highest dilutions representing the most abundant culturable organisms among these physiological types were identified as members of the genera Moritella, Pseudomoitas, Psychroinonas and Desulfotalea. Pure cultures isolated with hydrogen as electron donor represented new taxa of the families and Des ulfobulbaceae within the 8-subclass of Proteobacteria. All isolates showed fastest growth below 20 °C which indicated the dominance of cold-adapted bacteria in this permanently cold environment.

73 Introduction

been

acetate, psychrophilic common

have organic

isolated psychrophiles

marine to depend

compound

reported different 2-methyl-hexadecenoic

(10 20]. but cultures temperature

physiological membrane the prokaryotes

membrane sediments total

sediment

bacteria,

hydrogen

Measurements

molecular Phospholipid

In

In

The

the

amount me

found

These

shown

viable

the

sediments

addition

16:0) lactate

matter on

before

practical

can substrates

for

PLFA

habitats

present

two

layers.

to

the

specific

of

composition

to

and

[25,

a biomass of

a

is

[Könneke

be

for be

methods

sulfate-reducing

[2].

north-western

high and

number in

be

cultivation

the features

[5-7].

of

unsaturated

influenced

comparable analysis

26]. profiles

application formate of

to

members

the

were

study,

[10-16].

Members

analysed the

regulation

propionate

for abundance

fatty the

molecular

cold

was

These

most

for

of only

and

SRB sulfate

acid

of

we

acids

to

of

were

eukaryotic

of

sea were

estimated

the

Genus-specific

of

by microbial Widdel,

environmental

fatty investigated changing

of detected

abundant

[9].

(i17:I)

is with

findings

organisms

[4].

of

Svalbard

the

floor, [2,

reduction

were bacteria

the

the quantification

of

limited

the

compared

community

used

acids

Specific

Further

genera

those

SRB:

3]

genera

type

fluidity

for

often

unpublished

and

from

at

which

and

temperature.

indicate

communities

bacterial

because

or

as by (SRB)

low Desulfrn’ibrio

of

of

and

the most rate

Desulft)bacrer, that

prokaryotic Des11)ovibrio described

an

studies

signature

the

fatty samples

electron the

carbon temperate

with

of

numbers

are

microbial

that in

of

structure

the

incorporation

of

their

the total

use were

permanently

the

groups.

typical

acid

the

data].

them

is

MPN-counts

74

in

SRB

importance

source

cellular

membrane

of

A

has

free as

amount

in

the

donors.

microbial

selectively

patterns

[8]

phopholipid

sediments

organisms

species

communities

well

cultivation-independent

are SRB

products situ,

community

and often

cold

analyses,

and

For of

Destilfobacterium

unknown [17,

fatty

described

potential

of cold

Desulfrbac

biomarkers

of

were

the

sediments,

of such

been

and Both

to

of

community

short-chain

of

lipid

24],

isolated

[1].

acid

SRB

low

and

sediments

of

cultivation

SRB

not

the

fatty

SRB

used

of

as PLFA

of

the

are

species, From

by

bound

temperatures

selections compositions can

among

adaptation

have

four

lO-methyl-hexadecanoic

the

the

ter

for

in

anaerobic

the acids

as at

using

common

and

be

permanently .

the marine fatty

Arctic structure

and

low

been

adaptation an the

profiles

of

that

phosphate

growth

and

used

the

which

aerobic

PLFA the

same

alternative

(PLFA)

molecular

remineralization

Desulft.bacula

of

temperatures

are

acids

isolates

found,

of

isolation

is

as

Arctic habitats

by

food

the

end-products of

often

eukaryotes

have

phase, dominated location,

that

biomarkers

can

an analyses.

SRB

into

heterotrophic

biochemical of

for

cold

have

chain

obtained.

containing

increase

Sea

approach

does

not

found methods

the

elucidate

[21-23],

of

the

different

in

and

marine

have

with been

new

been

SRB,

and

pure

[17-

lipid acid

lipid

not

by The and

of

in by

in

in

of fermentativebacteria aiid can be utilized by methanogens, homoacetogens, or especially in marine environments due to the high sulfate concentration, by SRB [27]. Hydrogen together with a low concentration (1-2 mM) of acetate as carbon source should be selective for the isolation of Desiilfrvibrio species [28]. Aliquots of the highest positive dilution of the MPN series were used for the isolation of the most abundant bacteria at low temperatures. The physiological properties and phylogenetic position were determined.

Material and Methods

Sampling site. Four permanently cold sediments located at the north-western coast of Svalbard, were sampled during a cruise in July of 1998: [sfjorden (78°10907N, 14°34124E), Kongsfjorden (78°55259N, 12°17222E), Krossfjorden (79°16535N, 1l°58065E), and Smeerenburgfjorden (79°42’815N, I l05 189E). Water depths of the sampling sites were between 100 and 246 m, with bottom water temperatures around 0 °C. The sediment was collected with a Haps corer, subsampled with acrylic cores and plugged with rubber stoppers. The subcores were transported at 1-4°C over 1-3 days, until further processing. PLFA analysis. The analytical procedure involved one-phase extraction, fractionation on silicic acid, derivatization to methyl-esters, and analysis by capillary gas chromatography. Total lipids from the sediment were extracted as described by Bligh and Dyer [29] with some modifications. The total lipids were seperated on a silicic acid column (Isolute SPE column, 1ST Mid Glamorgan, UK). The eluents, having different polarity, were dichiormethane, acetone, and methanol. The methanol fraction contained the polar phospholipids, which were used for further analysis. A mild alkaline methanolysis was used to transmethylate the ester linked fatty acids of phospholipids to methyl esters [30]. Nonadecanoic acid methyl ester was used as an internal standard. A 2.0 p1 sample volume was injected splittless onto a fused silica capillary column (Optima-5- MS, Macherey und Nagel, Dtiren, Germany). The fatty acid methyl esters were identified by a mass spectrometer (GC-Q, Finnigan. Bremen, Germany) and quantified by a flame-ionisation detector (GC-Autosystem, Perkin Elmer, Oberlingen, Germany). The GC-temperature-program was described previously [30]. The mass spectra and retention times of 68 fatty acid methyl esters were determined by injection of authentic standards (Supelco, Deisenhofen, Germany and BioTrend, Köln, Germany). We used a fatty acid nomenclature in following form: x A:B, where A designates the total number of carbon atoms, B the number of double bonds, and x the distance of the closest double bond to the carboxyl group. The suffixes c for cis and t for trans refer to the geometric isomers of the double bond, whereas i (iso) and a (anteiso) indicate the position of a methyl group in branched fatty acids.

75 of

dilution artificial sampling ratio bacteria. physiology with carbon (20

formation from Broth determined

organisms,

streaked Association cultures rRNA

the and

into

package parsimony, inspected sequences nucleotide

follows: balticumT,

all

Determination

Cultivation

The

A

The Isolation

Phylogenetic PCR

use mM)

GM4R

of

hydrogen

the

complex samples the

2216,

gene SRB

1:9

source

of MPN

seawater

series

after

products out.

highest ARB 1

Desulfobacula

All

site,

as

6S

measured

an

and (inoculum:media).

of

with sequence

AF

(5-TACCTTGTTACGACTT-3)

by an

neighbor

electron was

[33].

were

Colonies

cultures

rRNA automatic

were Difco).

centrifugation

the

calculations organic

mixed

(0,75

[35]. of

to

for aliquot

233370:

measuring

manually

dilution

and

at

amplified

medium

organisms.

were

cultured inoculate

nucleic analysis

used

growth.

least of

by sequence

bar The

donor.

for

joining, accession

During

isolation medium

were

were

of

biomass

the

sequenced phenolicaT, sequencer

for

overpressure

that

several

Desulforhopalus

tool

1300

the

with

corrected.

were

in

method calorimetric

turbidity

by

transferred

triplicate

(5mm, incubated

Acetate

Growth acid

showed

of

a ARB_ALIGN

For

growth data

highest

and

was

nucleotides

PCR

no

defined

numbers

based

minutes

16S

by

of

most (Li-Chor

maximum

by organic

and base

used

described

AJ237606;

10000

at

using

growth bacteria.

phosphate

and

of of

Tree

MPN-series

rRNA

AMODIA

diluted

the

a at

at on

saltwater

phosphate

probable

of

a

for sequencing.

final

SRB

and

least

4

which mixture

vacuolatumT,

by

cultures

the

x

substrates

the

were primers topologies

4200,

MPN

°C

was

using

g)

likelihood

transferred

by

concentration

positive as

gene

microscopy.

three

method Technical

Desulfrspira

was

as

over

76

described Bioservice

For

Cord-Ruwisch

number

were

used medium

used

MWG-Biotech analysis

counts

of

analysis

described the

of

were

GM3F

times

sequence

determined

90%

liquid

was

different

aerobic

deep

tube

for

published

were not for

analysis

Nucleic

L42613;

into

University

of

(MPN) shaken

before as

(v/v)

inoculated

sequence

previously

to

the

agar

(5 included

of

was master

GmbH of joergenseniiT;

For

aerobic

by described

the determine

evaluated

‘-AGAGTTTGATC(AJC)TGGC_3’)

heterotrophic

1

PLFA. calculation

H,

time

data.

Isaksen dilution

[32]. with

by

transferred acids mM

considered

isolation

next

AG,

estimates,

by two

Desulfobacterium

and

dilution

(Braunschweig,

heterotrophic

of

alignment.

microscopy

with

the

in

periods,

was

[34]. different

Ebersberg).

dilution

Pure

times

The

were Munich

10%

by

the

by

the

and technique After

American

3

added

X99637;

of

Widdel

of

viable

sequences

cultures

series,

performing we

pure. (v/v)

onto ARB

ml

and

Teske

a

isolated

extraction,

the

different

flask

sets depending

day.

The

using

used

sediment

as

CO,) and

sulfate-reducing

bacteria

biomass

agar

database

most

[28].

and

27

of

[34].

Desulfotignurn

alignment

Public

catecholicurnT,

an

were by

Germany)

Growth

these

the

were from

filters.

via

ml

or

plates

Bak alternative

a

trees.

maximum

abundant

The

aliquots

of

program formate

(Marine volume

isolated

on [31].

anoxic

master sulfide

Health

loaded

are

liquid

[281,

each

Only

was

and

was 16S the

The

by

as AJ237602; Desii1fi.rhopa1us singaporensis, xxxx; DesulJxe1la halophila AF022936; Desulfofaba Tgelida AF099063; Desii1frjitstis glvco/icus’, X99707; Desulfocapsa1 sitlfiexigens Y13672; Desu1fin’a1ea T ; arLa’, AF099061; Strain LSv53, AJ241014; ,Strain LSv23, AF099059; Strain LSv24, AF099060; Strain DI-IAI, xxxxx; Strain GIHA, xxxxx; Strain JHA1,, xxxxxx; Clone SVA0632, AJ241014; Clone SvaOl 13, AJ240982; Clone Sva0999, AJ241013; DGGE band h, L40787.

Results and Discussion

Estimation of the viable biomass. For all four fjords the highest content of lipid-bound phosphate, as a measure of the total microbial biomass, was found in the top layer of the sediments (Figure 1). The phospholipid phosphate decreased with depth and changed from 70 to 10 nmollg sediment dry weight, which is in the range observed also from other sedimentary environments

[36]. Based on the assumption that I nmol phosphate is equivalent to 3.4 x io cells [31], a total cell number for eukaryotic and prokaryotic microorganisms of 1.5 x i0 cells per gram dry weight sediment in the top layer can be calculated, which is in the range of cell numbers determined by molecular methods [8]. The total biomass for different depth intervals varied between the four sampling sites. A very pronounced decrease with depth was found for samples from Isfjorden and Krossfjorden, which are both located near the open sea, whereas sediment samples from Kongfjorden and Smeerenburgfjorden showed less decrease with depth and are more strongly influenced by terrestrial input of organic and inorganic matter from the neighboring glaciers. Vertical distribution of signature PLFA for functional microbial groups. The more detailed PLFA profiles of the sediment from Krossfjorden is shown in Figures 2-4, however, similar tendencies were found at all other sampling sites. Specific signature PLFA, previously described for aerobic organisms and for anaerobic bacteria were grouped together into different plots (Figure 2). Polyunsaturated fatty acids, c5 20:4 and c5 20:5 which have often been found in significant amounts in diatoms and other eukaryotes [37], were abundant in the upper sediment layers. The c4 22:6, a typical fatty acid of eukaryotes [9] decreased with depth. The same fatty acid has been detected in psychrophiliclbarophilic bacteria that have been isolated from different cold marine environments [38]. The polyunsaturated PLFAs were extremely low in the deepest horizon. In contrast to the polyunsaturated PLFAs, the relative amounts of iso and anteiso branched PLFAs, specific for facultative or strict anaerobic bacteria, increased with depth and reached a maximum at 10-11 cm. The bacterial specific fatty acid a15:0 [39], was the most abundant branched PLFA with a relative amount of up to 10%. All together, the data imply that a large fraction of the biomass of the upper sediment layer originated from eukaryotes and aerobic bacteria, either actively growing in the sediment or deposited from the overlaying water column, and

77 Figure

(+),

aerobic

dominated

specific

comparison low environments.

lower

horizon.

A studies

temperatures

with

same

SRB

quantification

Krossfjorden

amounts

depth

concentrations 1

amount

bacteria

Depth-profiles

signature

have

These

specific

by

to

in

facultative

[Könneke

shown

c) E at

PLFA

(I)

association The of

data

feeding

a

of

PLFAs and

depth

both

highest biomarker.

SRB

agree

profiles

at

of Smeerenburgijorden

that

10

15 20

5

depths

on lipid-bound

and

biomarkers or

of

0

by

for

with

the

with

obligate

20

them.

absolute

Widdel,

Lipid

of

specific

Desulfobacter

synthesis cm,

from

previous

temperate

the

Below

The

phosphate

whereas

bound

anaerobic

2

total

abundance

unpublished

show

20

to biomarkers

absolute

(A),

molecular

of

10

a

biomass

phosphat

estuarine

depth permanently

the

cm, as

that

lOMel6:O

and

bacteria.

indication

maximum

yet

and

was

78

these

of

40

data].

Desuifovibrio

is,

studies and

with

sediments

(nmol

6

relative

detected

however,

cold

cm

for

in

MPN-counts,

SRB

The

a

relative

relative Arctic

the viable

g from Desulfrbacter

absolute

abundances

dry

play 60

microbial in

from

the t]ords

biomass

spp.,

the

not weight)

abundance

maximum

a same

different

of

amount top

as

minor

whereas

are

north-western

in

community

reliable

environment

species

sediment

of

80

lsfjorden

shown

at was

IOMeI6:0

locations

of role

10

i17:1

lOMel6:0

since

found

inhibited

cm.

(0).

in

in

Svalbard.

and

seemed

was

Figure

cold

[8].

pure Kongsfjorden

[9,

and

in a

five

the

found 40],

declined

by

marine

culture

i17:l,

to

3.

deep

fold

low

the

be

In

in ______I ______

PLEA (molqc) PLFA (mol%) 0 2 4 6 8 10 0 2 4 6 8 10

I I 1 N ‘S -, ;‘i.

2-3 N N N NN NJ -= I 2”t_”

5-6 •22:6 S N N N 51 •cycl7:0 c-i D20:5 Dal7:0 in D 20:4 N a15:0 lJ 18:2 l)i15:0 10-Il ‘S 5 N N N S N N N S N ‘S N ‘S S ‘I. I

-ci

19-20 A B

Figure 2 PLFA profile of selected biomarLers for (A) aerobic eukaryotes and prokaryotes. and (B) facultative and obligate anaerobic bacteria. The relative amounts of PLEA are shown in different horizons of sediment sampled from Krosst]orden.

Absolute PLFA abundance (nmol g-1 dryweight) Relative PLEA abundance (mol%)

0 0.1 0,2 0,3 0,4 0,5 0,6 0 0,4 0,8 1,2 0-I

2-3

5-6 C-) • i17:1 0 N D lOMeI6:0

10-11 V

-ci ‘I-)

19-20 A B

Figure 3 PLEA profiles of I0-methyl-pentadecanoate (lOMe 16:0) and 2-methyl -hexadecenoate (117:1) as specific

biomarkers of SRB of the Genera De.vulfohucter/Destilfobactei-iunz/De.vulfohciculoand Deculfovibi-jo, respectively. The

signature PLEA are shown in (A) absolute abundance and (B) relative abundance in different horizons of sediment sampled from Krossfjorden.

79 The largest amount of total unsaturated PLFAs (mono-unsaturated 50%, poly-unsaturated 12%) was detected in the top layer of the sediment (Fig 4A). The relative amounts of total unsaturated PLFA decrease with depth to 55 qc between 2 to 6 cm. and to about 40% below a depth of 10 cm. The total amount of branched PLFAs, originate from bacteria, increase with depth from 7% in the top to 16% in the depth of 20cm (Fig. 4A). The most of the PLFA consist of even-numbered acyl chains (>80%). A slight increase of acyl chains with [4 carbon atoms were found with increasing depth. The fatty acid composition is an important factor that determine the membrane fluidity. Eukaryotic and prokaryotic microorganismsgenerally respond to a decrease in growth temperature by increasing acyl chain unsaturation or branching, or by decreasing the acyl chain length. These changes decrease the liquid-cristalline to gel phase transition temperature of the phospholipids. Therefore the organisms regulate their membrane fluidityto changing temperatures. The portions of unsaturated, branched and short chain PLFAs from Svalbard sediments match with those reported previously for shelf sediments of temperate regions.

PLFA (mol%) PLFA (mol%)

0 10 20 30 40 50 60 0 20 40 60

I I I I

. , ... .,“

2-3

- 5-6 z C IS C 10-Il 6 B branched Cl) B ci8 D polyunsaturated Dcl6 mono-unsaturated c14 saturated 19-20 A B

Figure 4 PLEA proliles of sediment from Krossfjordenof (A) total relative amounts saturated, mono-and poly

unsaturated PLFA. Additionally the total relative amount s of branched-chain PLFA are presented. The vertical

distribution of PLFA with even-numbered acyl-chains (14 to 18carbon atoms) is shown in (B).

80 * Sulfate-reducing Aerobic Table

MPN

important methods. These

high

Psychrornonas

tubes cell

availability heterotrophic

lower.

with

cells

modifications

the

PLFA lts

bacteria

unsaturated unsaturated

95%

MPN-counts

One

In

same

numbers also

series

adundance

depth. in After After 1 After6

confidence

were

bacteria

contrast, heterotrophic compositions

Vertical

The

can

the

originate

possible

fatty role

were All 18

18

of identified

weeks

upper

In

speculate

and

abundance (70-90%) months

months

in bacteria bacteria

MPN

of

of

oxygen

identified belong

cultivated

acid bacteria

limits.

or

the

psychrophilic

in

short-chain

cold-adapted

the

from that

bacteria

of layer

Pseudomas, Svalbard

counts

depth composition with with

(cells

lipids and

by

aerobic

to

that

were

only

as the

at

other

or of hydrogen

formate

the

of

strains therefore

of

(cells 16S

4 of electron

cm’)

membrane

the (Gounot

°C.

changes short

aerobic

found

a

aerobes

‘y-

2-3

fatty

sediments

permanently

minor

rRNA aerobic

cm 3 )

SRB

sediment

subclass

bacteria.

which

cm

or

were

chain

acids

in acceptor.

heterotrophic

are

about

are

and

were

isolated

part

the

in

genesequenze-analyses

functioning

bacteria

active

previously

have

with

usually

have

fatty

oxic

of

the

Russel,

might of 4.6 4.6 2.1 0-1

Sediment

other

two

cold

The

Proteobactena,

the Pure (0.71-24) cm

(0.35-4.7) (0.7124)*107

deeper

often

a

surface from

under

also acids

and

in

and

maximum

also

habitats

highest

achieved recent

cold

81

1999).

this cultures

sulfate-reducing is

horizons

been

been Svalbard

in

described

these

be

(Knoblauch

possible

sediment

of

adaptations

permanently a

iO microbial

l0

the

(Gounot

sediment

depth

found

MPN-counts

isolated

by

in

cold

obtained

which reason 4.6 4.6 4.6

2-3

the

de

sediments

as over

of

as in

(0.71-24) (0.71-24) conditions. (0.71-24)

cm

layers

bacteria novo

upper

and

members

community

to

5-6

from

psychrophilic

from

et

psychrophiles,

have

cold

a

for

from

regulate

certain

Russel, al,

cm

(4.6

synthesis

is

Krossfjorden

first

the sediment.

from cold

•iO

been exhibited jO 5

10’

1999).

three

the

probably

x

of

changes

A cm

Krossfjorden.

temperature

the

exhibited

1999).

marine

iO

previously

highest high 7.5

2.4

2.4(0.36-13) 5-6

the

orders

by

and

or membrane (1.4-23)

(0.36-13)

cm per

High

genera

that

high

density

by

using

of

limited

psychrotolerant

(Table

environments.

ml)

positive

of

postsynthetic

cold

indicate

unsaturation amounts

The

portions

.1t3 range

detected

magnitude

of

Moritella, molecular iO

iO

of

fluidity.

triplicate adapted

1).

aerobic

by

active

MPN

with

The

the

the

in

of of MPN-counts of SRB. In agreement with the absolute abundance of the SRB specific biomarkers the highest cell numbers of SRB grown with hydrogen or formate were found in the top layer of the sediment (Table 1). The estimates for SRB were in the range of those reported previously for permanently cold marine sediments at low temperatures with other substrates like acetate, propionate or lactate [2]. Ten fold lower numbers were found at a depth of 2-3 cm and 5-6 cm depth. In contrast to Lsfjorden(Table 2). no substrate-depending differences in the cell numbers were found in Krossfjorden and Smerenburgfjorden. but we observed faster growth of SRB with formate than with hydrogen. In Smeerenburgfjorden, the estimated numbers of SRB were significant lower than those detected by molecular approches (> 5 lO SRB per 3).cm Differences between cultivation and molecular methods have often been described. In the present study the selective media and the low growth temperature, combined with the microscopic observation that all obtained pure cultures form aggregates might enhance the differences between both approches. The formation of cell aggregates could be a strategy of the SRI3 to escape oxygen stress in the oxic-anoxic sediment surface where the highest MPN numbers of SRB were found.

Table 2 MPN counts of sulfate-reducing bacteria from different fjords of Svalbard. The triplicate MPN series were incubated at 4 C.

lstjorden Kongst)orden Smeerenburgijorden (5-6 cm) (8-9 cm) (5-6 cm)

Sulfate-reducing bacteria (cells cm)

After 18 months with hydrogen 2.4 (0.3613)*.103 2.4 (0.36-13) 1O 2.4 (0.36-13) •lO After 18 month with formate 2.4 (0.36-13) i3 2.4 (0.36-13) i0 2.4 (0.36-13)

* 95% confidence limits.

SRB isolates and phylogenetic characterization. From the MPN series with formate as electron donor, seven isolates were obtained that could be identified by I6S rRNA gene sequence analysis as Desulfotalea psychrophila or D. arctica. These are psychrophilic SRB from permanently cold Arctic sediment which are able to grow on a variety of organic substrates [3]. The repeated isolation of these strains indicates the abundance of Desulfhtaiea species in the sediment around Svalbard. Until now, three SRB were isolated in pure culture with hydrogen as electron donor from Isfjorden (strain DHAI), Krossfjorden (strain G1HAI) and Smeerenburgfjorden (strain JHAI).

According to its I6S rRNA gene sequence strain DHA I forms a cluster together with clones and isolates from Svalbard and the previously described Desulfrrhopalus singaporensis [53] within the

82

“Desulfobulbaceae”

genus LSv53,

identity).

members

bases

using

Desitlfobacterjuin using

strain {2j.

presents Fig.

species Svalbard

16S

I

The

It

rRNA

parsimony JHAI

of

neighbor-joining

5.

Desuljbrhopalu,c

shares

the

closest

an

that

Phylogenetic

another

This

of

(97.3%

to

16S

isolate

gene),

selected

shows

this

rRNA

criteria.

might

-

between

relative

new

cluster,

obtained

catecholjciun

an

identity);

reference

gene

analysis

tree

complete

(Fig.

indicate

The

genus.

organism

of represented

95.9

showing

sequences. bar

-

5).

whereas

strain

with

corrected

sequences

f represents

-

that

According

and

all substrate

--

r - —

-

the

lactate

is

that

-— G1HA

- The

10%

other

the 99.9 ______

unique

affiliations

by

with

L

_j- Desulforhopalus

of

10%

shorter

aforementioned

has its

—-—

the

as

%

a

sequences L..

n-—

oxidation. to

-

is

estimated

position

type

to

delta electron Strain

---—------—

identity

within 16S

Desulfofustis

Desulfobacterium sequence Desulfobacterium

-

be of De.sulfota!ea

Clone

strain. subdivision

—-

rRNA 16S

G1HA

reclassified,

83

variability sequence

Desulfocapsa the

Sva0999

donor

--—--—-—-

with The

Oesulforhopalus

showed

for

rDNA

[—

vacuolatus cluster Clone Strain

glycolicus

sequences. “Desulfobulbaceae”,

Strain the arcilca Clone

Strain

cluster the

Strain

of

and

divergence.

DGGE sequences catecholicum and Sva0632 DHA1

LSv53 the

Desulforhopa/us

forms

16S lower

sulfoexigens and SvaOll3

LSv23

a

carbon catecholicuni

LSv24

Proteobacteria.

termini containing

Desulfobacterium band

sin

is strain

Desulfotignum

rRNA a

Desulfofaba from

Desulfobacula gaporensis

a

clone

only

identities

h

source

new

filter was

Desulfospira

strain DHA1

vacuolatus

gene

distantly

sequence

genus

d

which strain

gelida

because

(97.2%

The

— from

Strain DHAI, balticum autotrophicum Desulfobacler

phenolica

sequences is

(< to

DGGE

tree

considered separate

joergensenil identical

JHA1

the

G1HA

the

95%).

related

strain

was

Sva0999

identity it

band existing

halo

same

is calculated

phila Gil-IA, postgatei

h

from

only

probably of

the

to

(93.6%

So

habitat

of

tree

strain

other

from

only

1255

far,

the

the

ari

by by its Strain JHA 1 is a member of the Desulföbacteraceae with Desuifi)bacula phenolica being closest described relative (94.8% identity). As can be seen in Figure 5, the 16S rRNA gene sequence of DGGE band h obtained from a stratified marine water column of Manager Fjord, Denmark [49] falls in close proximity to this organisms (98.6% identity). Based only on the sequence of the 16S rRNA gene, strain JHAI probably represents also a new genus within the family De.culfibacteraceae. A detailed characterization has to reveal whether these strains indeed represent new genera. The utilization of hydrogen as electron donor combined with acetate as carbon source were often described as selective substrate for the isolation of members of the genus DesuUovibrio from marine habitats. The absence of Desulfrvibrio species in high dilutet MPN tubes and the low concentration of the Desu/Jovibriospecific biomarker i17:1 confirm the low abundance of the genus in Svalbard sediment which have been previously reported [8]. In conclusion, the microbial population of the permanently cold marine environment along the coast of Svalbard might be dominated by psychrophilic bacteria as indicated by newly isolated bacteria of different physiological groups, which grow optimally below 20 °C. Most of them are highly related to known psychrophiles from other cold marine habitats. A significant indication for a cold adaptation of the PLFA profiles was not observed.

Acknowledgement We thank Ruth Meincke for help in the isolation of the aerobes. This work was supported by the Max-Planck-Society, Germany.

References [1] Sagemann, J., Jørgensen, B.B. and Greef, 0. (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard. Geomicrobiol. J. 15, 85-100. [2] Knoblauch, C., Jørgensen, B.B. and Harder, J. (1999) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol. 65, 4230-4233. [3] Knoblauch, C., Sahm. K. and Jørgensen, B.B. (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of De.vulftjrigus oceanense gen. nov., sp. nov., De.vulfrJrigusfragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfrtalea psychrophila gen. nov., sp. nov. and Desulfrnalea arctica sp. nov.. mt.J. System. Bacteriol. 49. 1631-1643 [4] Sørensen, J., Christensen, D. and Jørgensen, B.B. (1981) Volatile fatty acids and hydrogen as substrate for sulfate-reducing bacteria in anaerobic marine sediment. Appi. Environ. Microbiol. 42, 5-11.

84

[16]

[15]

[14]

[13]

[12] [11]

[10] [9]

[8]

[7]

[6]

[5]

White,

microbial 26,

botanical

Borga,

Environ. temperature

62,

535-541. alkane-utilizing

196. Petersen, iS.,

Vestal,

T.T. community bacterial

Ringe!berg. GilIan,

using Community

Perry,

Findlay,

Publishers marine

Ravenschlag.

387-395.

microbial

of

1725 Ravenschlag,

in

Ravenschlag,

Microbiol.

Sahm,

permanently

psychrophilic

841-848.

39-50.

Henson,

and

lipid

D.C.,

K.,

P., G.J.,

J.R.

F.T.

Arctic

origin

Microbiol.

R.H.

composition

biodiversity

community

White,

S.

Knoblauch,

Nilsson,

65:

structure

on

and

D.B.,

analysis

and structure,

Stair,

0.

Volkman,

K.,

sediments.

J.M., K.,

K.,

and

3976-398

in

bacteria

cold

the

Hogg,

White,

D.C.

contemporary

and

Sahm, sulfate-reducing

Sahm,

Sahm,

Davis,

Dobbs,

phospholipid

JO.

60,

marine

Wilson,

M.

in

in

as

In:

by

C.

cellular

Kiug,

mangrove-associated

R.W.

(1989)

marine

in

2421-2430.

and

revealed

D.C.

1.

J.K.,

and

App!.

K.,

signature

K.

and

Handbook

K.,

soils

J.D.,

F.C.

sediments.

Tunlid,

Pernthaler,

and

J.T.,

(1984)

Ringelberg,

Amann,

(1989)

M.J.

Knoblauch,

rRNA

Arctic

Validation

Environ.

Johns,

and

marine

(1993)

Smith,

by

Amann.

fatty

biomarker

Yates.

isolates

subsurface

phospholipid

A.

A

(1994)

sediments

Lipid

of

content

R.

acid

Appi.

R.B.

sediments.

method

85

(1994)

Quantitative

J.

Microbiol.

GA.,

methods

(1999)

D.B.

M.,

of

R.

and

C.,

analysis

profile

in

sediments.

Envrion.

Effect

signature

(2001)

and

analysis.

and

Kampbell,

marine

aquifer

Bacterial

Amann,

for Jørgensen,

(1996)

(Svalbard).

Pfiffner,

Phylogenetic

fatty

Bavor

Geochim.

activity

in

of

the

66,

in

of

description

Quantitative

Microbiol.

a

aquatic

acid

estimation

microbial

Quantitative

polarlipid

Arctic

materials.

3592-3602.

J.

J.

R.

sieving,

soil

community

Jr.,

D.H.,

S.M.,

Microbiol.

Industrial.

of

analysis.

(1999)

B.B.

App!.

microbial

Cosmochim.

Affiation

sediments.

H.J.(1973) sulfate-reducing

microbial

of

Read,

ecology.

Nichols,

65,

molecular

fatty

of

and

FEMS

storage

Environ.

High

comparisons

microbial

bacterial

3982-3989.

in

Soil.

Meth.

Microbiol.

Amann,

acid

H.W.,

community.

peat

and

bacterial

Microbiol.

ecology,

Appl.

and

Biol.

BioScience

Acta

P.D.,

Fatty

2,

analysis

Microbiol.

biomarker

Quantification

in

biomass

communities

275-293.

Stocksda!e,

bacteria

R.

relation incubation

43,

Biochem.

of

17,

acids

Environ.

diversity

Nickels,

(2000)

in

Lewis

Appl.

of

17

Eco!.

185-

situ

and

39,

15-

67:

for

the

of

to in [171

[18]

[19]

[20]

[211

[22]

[23]

[241

[25]

[26]

[27]

[28]

Taylor, De.vulfobacrer

of Vainshtein, Appi.

White, acid Kohring. bacteria. 129, Desit/Jbacterjiini

Taylor, strain Kuever. 51,

bacteria 631-642. Edlund,

lipopolysaccharide Res. Dowling, fatty bacteria. chain Aeckersberg, cellular

Gounot, Russel, Cold-adapted lipids

Verlag, Widdel, Fenchel,

University

Prokaryotes.

Identification, Schleifer,

DesulJovibrio

171-177.

profiles

3303-3309.

26,

acid

Microbiol.

Sax

alkanes

in

D.C.

J.

J.

within fatty

New

N.J.

FEMS

psychrophilic

J.,

F. 982-988

J.

and

A.M.

A.,

L.L.,

T.

N.J.,

as

and

biomarkers

K.H.

Gen. M., and

Press

and

(1994)

Könneke,

Desulfotignum

and

sp., Parkes, acids

York.

and

under

F.,

Nichols,

organisms.

A.

Parkes,

marine

Application.

Widdel,

and Hippe, Microbiol.

Bak,

ribosomal

Eds) Ringelberg.

species

Microbiol.

15,

phenolicuin

Inc.,

Findlay.

Fukunaga,

Desuijobtilbus

Rainey,

fatty

Handbook

and

Comparison

Russell,

anoxic

554-566.

F.

R.J.

pp.

sediment

New

and

of H.

R.J.

(1992)

M..

acid F.

metabolic

and

P.D.,

3352-3378.

(1983)

and

acetate-oxidising

RNA

and Letters

(Margesin.

thermophilic F.

B.J.

conditions,

York

(Ballows, (1985)

balticu,n

and 132,

its

N.J. Galushko,

D.B.,

N.

as

A.

Kroppenstedt,

Gram-negative

White,

on

Roffey,

use

systems,

sequence

(1995)

of

hydroxy

The

(1990)

Desulfrbacula sp.

18

and (1999)

119,

adaptation

the

phylogenetic

in

Identifying

15-1825.

Devereux,

and

cellular

Springer

gen.

D.C.

classification

R.

Widdel. Arch.

A:, 303-308.

Biology

bacteria.

Ecology

A

A.

86

using

R.

acid

Desulftwibrio

Physiology similarities

and

nov..

comparison

Trüper,

(1986)

sulphate-reducers

and

and

Microbiol.

of

R.M. fatty

profiles

mesophilic

Verlag

fatty

Schinner,

R.,

different

phenolica

F.

sp.

sulfate-reducing

relationships

FEMS

and

Dryzga,

of

White,

acids

Comparison

(1998) (1992)

H.G., nov..

acid

Stahl.

of

among

of

Bacteria: Evolution

from

New

of

sulfate-reducing

desulfuric’ans.

Microbiol.

of

170,

biomarker.

cold-adapted

populations

mt.

sulfate-reducing

F., thermal

comb.

D.C.

0.

Cellular Dworkin, the

Desiilthvibrio Growth, D.A.,

York.

dissimilatory

36

J.

based

and

Eds).

(2001)

sulphate-reducing

of

1-369.

Ecophysiology,

in

System.

bacteria

(1985)

nov.

adaptation

the Mittelman,

other

anoxic Rev.

fatty

J.Gen.

on

natural pp.

of

M.,

microorganisms.

J. phospholipid-linked

Reclassification

and

phospholipid

bacteria.

75,

sulphate-reducing

acid

Gen. suiphide-forming Evol.

species.

that

sulfate-reducing Extractable 33-51.

bacteria.

Harder,

worlds.

Microbiol.13l.

description

17

relationships,

of

composition

utilize

M.W.

1-182.

Microbiol.

Microbiol.

membrane

bacteria.

System.

Isolation,

Springer

J.

W.

In: Oxford

Lipid

long-

fatty

and

and

The

and

of

of

In: [29] Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. [30] Palojarvi, A. and Albers, B.P. (1998) Extraktion und Bestirnmung membrangebundener Phospholipidfettsauren. In: Mikrobiologische Charakterisierung aquatischer Sedimente (Remdem A. and Tippmann, Eds.) pp. 187-195, R. Oldenbourg Verlag, München. [31] Findlay, R.H., King, G.M. and Wailing, L. (1989) Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl. Environ. Microbiol. 55, 2888-2893. [32] Cord-Ruwisch, R. (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Meth. 4, 33-36. [33] American Puplic Health Association (1969) Estimation of coliform group density In: Standard methods for the examination of water and wastewater, including bottom sediments and sludge, Washington D.C., pp. 604-609.

[341 Esaksen, M. and Teske (1996) Desulforhopalus vacuolatus gen. nov. , sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160-168. [35] Strunk, 0., Gross, 0., Reichel, B., May, M., Hermann, S., Stuckmann, N, Nonhoff, B., Lenke, M., Ginhart, T., Vilbig, A., Ludwig. T., Bode, A., Schleifer, K.-H. and Ludwig, W. (1999). ARB: a software environment for sequence data. http://www.mikro.biologie .tu.muenchen.de. Department of Microbiology. Technische Universitat München, Munich, Germany. [36] Dobbs, F.C. and Findlay, R. H. (1993) Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance. In: Handbook of methods in aquatic microbial ecology, Lewis Publishers [37] Volkman, J.K., Johnst, R,B, Gillan, F.T., Perry, G.J. and Bavor Jr., H.J. (1980) Microbial lipids of an intertidal sediment-I. Fatty acids and hydrocarbons. Geochim. Cosmochirn. Acta 44, 1133-1143. [38] Hamamoto, T., Takata, N., Kudo, T. and Horikoshi. K. (1995) Characteristic presence of polyunsaturated fatty acids in marine psychrophilic vibrios. FEMS Microbiol. Letters 129, 51-56. [39] Kaneda, T. (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288-302. [40] Baird, B.H. and White, D.C. (1985) Biomass and community structure of the abyssal microbiota determined from ester-linked phospholipids recorvered from Venezuela Basin and Puerto Rico Trench sediments. Marine Geology 68, 217-231. [41] Erwin, J. and Bloch, K. (1964) Biosynthesis of unsaturated fatty acids in microorganisms. Science 143, 1006-1012.

87 [42] [43] [44]

[45]

[46]

[471

[48] [49]

[50]

[51]

[52]

[53]

two Fukunaga.

bacterium Nogi,

bacterial Nogi, from Characterization Benedictsdottir, Gounot,A.-M. locations: biotechnological

mt. Mountfort, Pcvchron,onas

psychrophile

Microbiol. Teske, Morita, reducing

ribosomal Teske, probable-number Cohen,

organic Solar by Dannenberg,

Sahm, reduction blot Lie,

reducing 65, from

sulfate-reducing

psychrotolerant

J.

3328-3334.

the

hybridization

T.

Y,

Y.

Lake

2-aminoethanesulfonate

Syst.

A.,

A,,

R.

K.

J., Mariana compounds

Y.

isolate.

Kato,

and

bacteria

a

isolated

bacterium,

and

N. DNA

Y.

169:

proposal D.

Wawer,

(Sinai.

Ramsing, Evol. Clawson,

(1998) Mac,

isolated

Kato.

and

S., (1975)

0.,

C. vertical

antarcticus

(1991)

23 of Extremephiles

E..

fragments.

implications.

Trench

and

Microbiol.

in counts

Kroder, Russel, Gregor,

from

Rainey,

in

Egypt)

1-238.

Vibrio

Sulfate-reducing bacteria

C.

bacteria.

C.,

for

and

a

a

Psychrophilic Veronck,

DesulJbrhopalus

Horikoshi,

from N.

M.

coastal

distribution

stratified

(1999)

ajapan

reclassification

Bacterial Muyzer,

and

inorganic

B.,

and

L.,

Appi.

N.J.

iiscosu.c

gen.

F.

M.,

B.

Appi.

pond

from

description

Arch.

50,

A..

Habicht,

Godchaux,

J.

marine (Taurine)

denaturing

Taxonomic

3,

J., (1990)

trench.

L..

Dilling.

nov.,

Environ. Appi.

fjord

479-488.

K.

7

Burghardt. Antarctica. G.

Environ. sediment

life

1-77.

sulfur

Jørgensen, of

Microbiol.

bacteria.

and

(1998)

Spöer,

bacteria

and

sediment.

sulphate-reducing

(Manager

Bacteriol.

sp. singaporensis

Membrane J.

K., of

at

fermentation

of W.

Vibrio

Gen.

88

compounds Microbiol.

W.

Ramsing,

Vibrio

gradient

studies

nov.,

Microbiol.

low Moritella Moritellajaponica

Fukui,

of

C.,

Bacteriol.

and

J., J.

and

and

AppI.

158, the

B.

Gen.

Envrion.

wodanis

Kaspar,

71: viscosus

temperature:

Fjord.

a Helgason.

Cypionka,

lipid their

Leadbetter,

of

McMurdo

B.

M.,

new

93-99.

gel

N. 3

Microbiol. Microbiol.

64:

vavanosu

extremely

by

sp.

coupled 86-397.

62:

and

composition

Rev.

activities

Kuever,

electrophoresis

B.

2943-2951. Denmark) H.F.

a bacteria aerotolerant

Microbiol.

isolated

nov.. as

1405-1415.

morphologically

Stahl,

(1996)

Moritella

39,

S.

H.

Ice

and

E.

to

physiological

sp.

sp.

barophilic

44.

AppI.

136.

144-167.

J.,

and

in

reduction

quantified

(1992) R.

at

Shelf.

Stackebrandt,

nov.,

D.

nov.,

as

Distribution 289-295.

cyanobactenal

and

1:

Jørgensen, different

(1999)

1669-1673.

anaerobic,

Swings,

vi.ccosa

65-74.

A.

evaluated

Environ.

a

of glucose

Antarctica.

Oxidation

a

novel

bacteria

(1999)

of

new

unusual

by PCR-amplified

Sulfidogenesis

geographical

aspects

comb.

0,,

rRNA

J.

barophilic of

B.

barophilic

E.

uptake

Microbiol.

halophilic

by

or

Sulphate isolated

mats

sulfate-

(2000)

(1998)

B.

sulfate-

of

nov.. Arch.

most-

nitrite

slot-

and

and

H.,,

in

of 68 SAarhus Hans-Frisch-Str. Present Denmark (CSIC-UIB). * ‘Corresponding Enrique Schramm, Present Max-Planck-Enstitute

Community University, address: address: Liobet-Brossa,

bacteria Crtra. Rikke author: 1-3, Lehrstuhl Area Valldemossa Institute L. D-95440

structure [email protected] for Meyers, de

A Limnology

in Microbiologia, RaIf Marine für

multi-methods for

an okologische Bayreuth, Rabus’, Biological Niko Km Microbiology,

intertidal and and 7.5, Finke,

and Rudolf Michael Germany Oceanography, E-07071 Departament Sciences. Mikrobiologie,

4 Stefan 90

activity Amann Celsiusstr. E. Palma

surface-sediment:

approach Grötzschel, Böttcher, Dept. de submitted de Recursos

of BITOK. for Mallorca, I,

sulfate-reducing Microbial D-28359 Martin Ramon Universität Naturals, Spain Könneke, Bremen, Ecology, RossellóMora*, EMEDEA Bayreuth, Germany Andreas Aarhus, Dr. Abstract

The community structure of sulfate-reducing bacteria (SRB) in an intertidal mud flat of the German Wadden Sea (Site Dangast) was studied and related to sedimentary biogeochemical gradients and processes. Below the penetration depths of oxygen (-3 mm) and nitrate (—4 mm), the presence of dissolved Fe and Mn and the absence of dissolved sulfide indicate suboxic conditions within the top 10 cm of the sediment. Moderate to high bacterial sulfate reduction rates were measured with radiotracers throughout the sediment and dissimilatory sulfate reduction was also demonstrated by the presence of acid-volatile sulfides (AVS, essentially iron monosulfide). Stable sulfur isotope S/S)3432 discrimination between dissolved sulfate and AVS was dominated by sulfate reduction,( but a contribution from anaerobic metabolism of sulfur intermediates is likely. The diversity of SRB was studied using denaturant gradient gel electrophoresis (DGGE) of 16S rDNA and counting viable cells with the most probable number (MPN) technique. Phylogenetic groups of SRB identified with these two techniques were evenly distributed throughout the vertical profile (0-20 cm) of the studied sediment. However, application of fluorescence in situ hybridization (FISH) demonstrated a maximum of the Desulfovibrio and Desulfosarciiza-Desulfococcus-Desulfofrigus groups between 2 and 3 cm depth. These two groups encompass acetate and lactate utilizing SRB. The coincidence of this SRB maximum with a local maximum of sulfate reduction rates and the depletion of acetate and lactate reflects the biogeochemical processes related to sulfate reduction.

91 Introduction

coastal

sinks

continental the receiving Up

they

different performed oxidants

and that

sulfate electron

mM,

intertidal of (Trudinger

sediments sulfate-reducing

organic completely (SRB)

to in was

Wieringa Ravenschlag

1990) different

Continental

The identify reactive to the

oceans

finally

up

A encompass

it

to

30%

applied

ranges. and

anoxic

reduction may

to

key isolated

importance

the

substrates

acceptor

is

yield

up

about

et sediments

activity

(Gibbs of

is

by

the

S042 usually

margin and

1992).

organic oxidize

question

sediment

still

to

al.

reflected

the

et

microorganisms

zones

These

to

introduction

90% of margin

quantify

2000).

50%

from be

bacteria

a!.

oceanic

(Froelich

only

(Jørgensen

marine (Fenchel

free

SRR

1981).

sediments

such

observed

and abundant

of

acetate

of

compounds 1999:

of

sediments

in may

of

(Wollast

this

sulfate

also

energy.

the

10% sediments

are

marine

microbial nutritional

as the

SRBs

(Sahm

primary

Since

sediments

global

Sahm

et

vary

environment.

generally

by short

et

to

of

organic

of

in

in

l982b). al.

play

reduction

al. CO-

the

16S

in

that

En

1991). sediments. the most are

deeper

the

et

considerably

(Schubert

1979).

chain

et

their flux production 1998).

accordance

variety

include a!.

a ecology

(Widdel

rRNA

generally

vertical

employ al.

total properties

prominent

matter

controlled

of

Since

1999:

of

(Devereux

In natural

layers

fatty

1999;

Using the

for

The

particles

Pure addition,

of ocean

based

shelf

Phylogenetic

et

in is

deposited sediment

Böttcher the

sulfate

1988;

an

acids,

metabolic

takes

characterized

area!

of

Bowman

92

the

al.

habitat. marine

the

with between

cultures

role by array

on remineralization

the

molecular

area.

sediments

2000),

and

influence

Rabus

et

temperature

place

5S042 rates

alcohols the

the

concentration

the

sediment,

in

et

profiles:

of

al.

sediments

matter

organic

Only

the

The

deltaic capacities

al.

biogeochemical

et

decreasing

about of

electron

in of

analysis

and

et

radiotracer

1996:

2000). al.

marine

by the

tools

SRB

dissimilatory

al.

oxidation recently

and

of and

is

correlated

2000:

and a

matter

0-,.

areas shelf

0.2

2000):

(Vosjan

sulfate-reducing

remineralized

high

Llobet-Brossa (Amann aromatic is

of intertidal

have

acceptors.

of

of

in

carbon

consequently

NO3,

and mineralized

yields,

organic

areas.

Ravenschlag

sulfate-reducing

ocean

of

this

isolates

input

technique

transported

all

been

of

the

1974).

104

to

Fe(EIl)

gradients type

important

sulfate et

cycle,

organic

compounds,

From

of

a

mud

water

the shelf

at. carbon

each

shown

mmol

zonation (Devereux

organic

(Berner

of

the

1995) abundance

via it

the

and

even

bacteria this

et flats

investigation

reduction

by

regions

is

was

et

allowing

availability

carbon

microbial

in in substrates dominant

al.

to

about

rivers

Mn(IV),

a!. 25-50%

m2

bacteria

matter.

allowed though

of

shown marine

1982),

of

marine

utilize

and

2000; 1998;

et

the

with

are

the

28

to

d’

is in a!. of

to

a sediments. The present study focuses on the diversity, abundance and activity of SRB and their relation to the biogeochemical processes in a tidal sediment of the southern North Sea, (Wadden Sea, Site Dangast). To advance our understanding on the relationship between the community of sulfate-reducers and biogeochemical gradients, we combined cultivation dependent and independent microbiological approaches with biogeochemical and stable isotope analyses.

Materials and Methods

Study site. The river Weser is one of four major rivers draining into the German Bight of the southern North Sea. The Jade Bay, a meso- to macrotidal embayment, is situated in the coastal area to the west of the Weser estuary in the northern part of Lower Saxony (Germany). The Jade Bay is under influence of the fluvial input of the river Weser, and the mean tidal range in the southern part reaches 3.75 m (lrion 1994). The sampling station, ‘Site Dangast”, is located 2 km west to the small village Dangast, about 25 m west of a tidal creek (“Dangast

Tief’), connected to a freshwater outlet (“Dangast Siel”) and about 15 m north from the shore line (Fig. 1). Thus the site represents a highly dynamic system.

The sediment experienced tides which exposed it to the air for about 5 h and left it inundated for about 7 h, with some variability due to the wind velocity and direction (Liobet Brossa et al. 1998). Processing of sediment samples. Sediment cores were obtained on June 28, 1999 at low tide between 7 and 9 am with polycarbonate tubes (diameter 8-10 cm; length 50 cm). The sediment cores were closed with air-tight rubber stoppers on both ends and transported cool

(approx. 4°C) and dark to the laboratory for further processing within about 3 hours. Sediment cores were sliced by extruding them from the polycarbonate tube and cutting with a thin aluminum plate into the following layers: 0-0.5, 0.5-1, 1-2, 2-3, 3-4, 4-5, 5-10, 10

15 and 15-20 cm (top-down). Sediment samples for enumeration of viable cells (MPN) and molecular analysis (DGGE and FISH) were taken from the same sediment layers of a single core. For geochemical measurements of pore water and sediments, parallel cores were used and sliced in 1 cm layers under inert gas (N,) in a temperature controlled room (4 °C). All cores were taken from an area of I by 2 m. In September 1999 additional samples of Wadden Sea surface sediments (2-5 cm depth) were taken from the same site in Dangast and from Horumersiel, located approx. 20 kin north of Dangast.

93 dot

is Figure

properties

investigation.

constance. sediments carbon

carbon carbon.

were derivatization Dyer

Glamorgan,

phospholipids methanolysis

was silica

Germany) methyl

Elmer,

indicated

Sediment

(•)

(I)

utilized

1: Characterization

(1959). marks

capillary

fractionated

(TOC)

on

Phospholipid Map esters

Oberlingen,

by

and

were

a

Total

and

the

the

of

CM

as

characterization.

UK)

The

to

biological location the

arrow. were contents

to

column

procedure

quantified an

determined

methyl-ester,

carbon

5012

sampling

methyl

internal

with procedure

by

The identified

of fatty

Germany).

coulomat

(Optima-5-MS, of

the

were

the

river

chloroform,

was

activities

ester

site.

organic

by

standard. acids city

was

gravimetrically

use

Weser

obtained

measured

Site

the

involves

and Bremen.

by

(Palojärvi

A

of

(PLFA)

used

Dangast. with

use

the is

variety

material

analysis

related

The

indicated

silicic

2.0

of

acetone

use

(B)

from

a

to

Macherey a

using

il

a

CM GC-temperature-program

were

(A)

one-phase

Position

and of

of

transmethylate

to

flame-ionization-detector

sample

acid

by

by by

and

the

methods

Position

a

sulfate-reducing

5130

94

Albers a (2).

extracted

capillary

and

mass drying

difference

Leco

sulfur

of

columns

und

volume the

acidification

methanol

of

extraction,

spectrometer

were

1998). sampling

Nagel, sediment

the

specialion_Pore

induction

gas

essentially

German

(Isolute of

was

applied

the

chromatography.

Nonadecanoic

Düren,

total

site,

bacteria as

injected

ester sections

fractionation

Bight

modul

eluents.

furnace

Site

(GC-Q,

carbon

to

as

SPE

Germany).

(GC-Autosystem,

is

in

Dangast

study

described

linked

of

the water

described (UIC).

splittless

at

columns,

the

and

and

The

Finnigan,

North

70°C

physicochemical acid

in

sediment

The

on

contents

fatty total

total

the

Total

mild

The

by

Sea.

until methyl

onto silicic

polar Jade

elsewhere

Bligh

inorganic

inorganic

1ST

The

fatty

acids

Bremen,

alkaline

organic

weight

Bay

a

under

in

Perkin

lipids

black

fused

acid.

ester

Mid

acid

and

the

(I)

of (Palojärvi and Albers 1998). The mass spectra and retention times of 68 fatty acid methyl esters were determined by injection of authentic standards (Supelco, Deisenhofen, Germany and BioTrend, Köln, Germany). Unsaturated trans -isomers were not determined. Biomass was determined by phosphate analysis of PLFA. After the Bligh and Dyer (1959) extraction, aliquots of all samples were used for calorimetric phosphate analysis to determine the viable biomass (Findlay et al. 1985; Findlay Ct al. 1989). The fraction of acid volatile sulfide (AVS) was separated from the wet, Zn-acetate preserved sediment by the reaction with cold 6N HC1containing 2SnCl (Duan et al. 1997) in a stream of nitrogen. The addition of SnCl, increased the recovery of the AVS fraction within the first 5 cm, but no further influence was observed at greater depths (Böttcher, unpublished data). Sulfur isotope ratios (see below) of the AVS fraction recovered by both methods agreed within 1%c (Böttcher, unpublished data). The sum of (essentially) pyrite and (minor) elemental sulfur (fraction ‘Cr-lI’) was obtained by the distillation with hot acidic Cr(ll)chloride solution (Fossing and Jørgensen 1989). 2SH was trapped as Ag,S in a 3AgNO solution and quantified gravimetrically. For stable sulfur isotope analysis S/3432S), pore water sulfate was precipitated from filtered Zn-acetate preserved samples as 4BaSO( carefully washed and dried. Sulfur isotope ratios of the AVS, Cr-lI, and pore water sulfate, fractions were measured by C-irmMS (Pichlmayer and Blochberger 1988). Samples were converted to SO, using a Eurovector elemental analyser which was connected to a Finnigan MAT Delta gas mass spectrometer via a Finnigan Conflo

[I split interface. Isotope ratios are given in the -notaEion versus the SO,-based Vienna- Canyon Diablo Troilite (V-CDT) standard. International standards EAEA-S-l, IAEA-S-2, IAEA-S-3, and NBS 127 were used to calibrate the mass spectrometer. (ii) Pore i’aters_Air and pore water temperatures were measured with a digital sensor (GTH 1150 digital thermometer) at the beginning and the end of the sampling session. After transport to the laboratory. subcores (3.6 cm diameter) for pore water analyses were taken in a temperature-controlled room. Pore waters were separated from the sediment by centrifugation in closed centrifugation vessels under inert gas. Prior to analyses, pore waters were filtered through membrane filters (0.45 aim; Sartorius) and acidified with nitric acid (reagent grade quality) into pre-cleaned PE bottles. Concentrations of dissolved iron, manganese and sulfate were analyzed after appropriate dilution by means of ICP-OES (Perkin Elmer Optima 3000 XL). It is assumed that dissolved iron essentially consisted of Fe(II), although a contribution from complexed Fe([lI) can not be completely ruled out (Luther III et al. 1996). Dissolved sulfate was additionally quantified gravimetrically as 4BaSO from the pore water of a parallel

95 sediment core which was immediately cut into sections and preserved in 20% zinc acetate solutions. The results of the two methods agreed very well. H,S was measured in selected samples preserved with 2% ZnCI, solution according to Cline (Cline 1969). Salinity of filtered samples was measured with a hand refractometer. Pore waters for the analysis of volatile fatty acids (VFA) analysis was extracted by centrifugation of the sediment in precombusted glas centrifuge tubes. 2 ml of the supernatant were sampled with a glas syringe into precombusted borosilicate vials (4 ml ) with teflone lined caps and frozen (-20°C) until analysis. The VFA were measured by HPLC as 2- nitrophenyl hydrazin derivats as described by Albert and Martens (1997). A Sykam Sl2ll HPLC pump combined with a linear UV/VLSdetector and a Gilson 232XL autosampler were used for separation and measurement of the acids. The detected signal was recorded and

integrated by a Knauer Eurochrom 2000 integration software. For the separation of the acids a 25 cm LiChrosphere RP8 column with a 1.5 cm LiChrosphere RP8 guard column from Knauer was used. 2.5cm polymeric reversed phase (PRP-l) cartridge (Hamilton) installed in the sample loop was used as a sample concentrator. Differing from the original method. the

flow rate was reduced to I mi/mm, the concentration of tetrabutylammonium hydroxide of

solvent A was reduced to 1 mM and the concentration of tetradecyltrimethylammonium

bromids in solvent B to 25 mM. Additionally, the pH of the solvent was adjusted with HCI instead of phosphoric acid. The detection limit for glycolate and lactate was 0.2 IIM, for acetate and propionate 0.3 jiM and formate 0.6 jiM. (iii) Microsensor measurements- Profiles of oxygen, hydrogen sulfide, and nitrate concentrations at the sediment-water interface were measured in the laboratory with microelectrodes. The determination of oxygen profiles was done with Clark-type 0 sensors with guard cathodes (Revsbech 1989). The 02 sensors had tip diameters between 10 jim and

20 jim. a stirring sensitivity <2 %, and a 90 % response time t)< I s. To calibrate the sensors. readings in the overlying air saturated water and in the anoxic zone of the sediment were taken. A two point calibration curve was calculated with oxygen solubility values for different temperatures and salinities based on equations from Garcia and Gordon (1992). Amperometric H,S microsensors were constructed, calibrated and applied as described by KUhlet al (1998). Nitrate was measured with a microbiosensor in which nitrate and nitrite are reduced to N,0 by bacteria and N,0 is detected electrochemically (Larsen et a!. 1997). The nitrate sensor showed no detectable stirring sensitivity and a 90 % response time t)< 45 s with a tip diameter of 70 jim. Calibration was done by measuring sensor readings in nitrate solutions with salinity and temperature identically to the sample.

96 From steady-state oxygen profiles area! fluxes of oxygen were calculated based on Fick’s first law of one dimensional diffusion J = D dC(z)/dz (Ktihl et al. 1996) with Deas effective diffusion coefficient and dC/dz as concentration gradient for oxygen. Volumetric production and consumption rates were calculated based on Ficks second law of diffusion using the second derivative of the measured concentration profile. Nitrate values were calculated correspondingly. Furthermore, it was also determined if consumed nitrate originated from the water phase (Dw) or was produced by nitrification (Dn) by calculating back a concentration profile from an activity profile with no nitrate production (Meyer et al. 2000). Sulfate reduction rates (SRR). Bacterial sulfate reduction rates (SRR) were measured using the whole-core incubation technique with the injection of a carrier-free 4235S0 tracer (Jørgensen 1978; Fossing and Jørgensen 1989). Although the sediment temperature during sampling varied only slightly and was close to 17°C, much higher changes in pore water temperatures were found on a daily base between 26th and 30th of June, 1999 (Böttcher, unpublished data). Therefore, sediment cores were equilibrated after sampling in the laboratory at 10 and 20°C for several hours and subsequently incubated with the radiotracer

(—200 kBq per injection along 1 cm intervals) for 4.5 h in the dark. Activities counted with a Packard liquid scintillation counter were corrected for blank contributions derived from the counting and the distillation procedures. The apparent activation energy calculated from an Arrhenius equation using the depth-integrated SRR for the 10 and 20°C incubations gives a value of 66 kJ 1mo! which is similar to observations on a seasonal base in tidal mudflats (Kristensen et a!. 2000) and general findings on microbial sulfate reduction (Westrich and Berner 1988). Nucleic acid extraction and DGGE amplification. In addition to the sediment core used for MPN counts and VFA analysis, a second core was processed for molecular analysis. Replicate sediment cores were analysed to avoid changes in the community composition caused by handling and containment as described before (Rochelle et al. 1994). DNA and

RNA of each sediment horizon were extracted from 1.5 ml wet sediment by bead-beating, phenol extraction and isopropanol precipitation as described previously (Sahm and Berninger 1998). PCR amplification specific for SRB of the ö-subclass of Proteobacteria was carried out with the forward primer SRB385 carrying a GC-clamp and the reverse primer 907 (Sass et al. 1998). DGGE, excision of bands, reamplification, and sequencing were performed as previously described (Muyzer et al. 1996). DGGE partial sequences were added to an alignment of about 15,000 homologous bacterial 16S rRNA genes (Maidak et al. 2000) by

97 Table 1iUB338 SR11385 l)NMA657 DSV698 DSVl292 I)SV2 I)SV107 l)S1)13 1)S139X5 I)SS65% 66(1 221 I)S130224 l)SMA$%% l)TM229 I)SR65 N0N338 SVAI.428

using sequences

counting

(Snaidr stained oligonucleotide with 1998). situ processed

Percentage

Escherichia

Probe

In 14

1.

hybridization I I

Cy3

situ

the

Oligonucleotide

Accession

et cells 1)acteria Desulfocibrio Desulfoneina of Desu/frv’ihuio

Desulftu’ibrio/D’nzkrobiu,n Desu/fothrio De.wi!tovthrio

De.vuifrthorrer/D’hacufo De.suIfr.so,cinoID’coccu.v/D’fr,u., De.vuljobcicterium 16S

De,vulfohu1bu’ 16S 16S 16S 16S Desulfobonilus

De.oitforiIirio/D’tnonile 16S Desulforhopalu.s

Desultoro,naciilwn 16S 16S

DesuIfiito1eii/D’ti.vris 16S 16S (necative 16S none 16S 16S

fluorochrome 16S

aligning 16S 16S

al.

were 6S

hybridization as

of

hybridized rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA. rRNA, rRNA. rRNA. rRNA, rRNA,

were rRNA.

1997;

coli

described

formamide

inserted

probes control)

numbers positions position position position position position position posItion position position position position position position position position position

numbering.

analyzed (FISH)

tool vp.

Llobet-Brossa

probes (16 (3 (13 (1 of

Target species) species Proteohacteria species) species)

used

cells

of 385-402 657-676 698-7

at 407-424 within 658-675

before 2)4-230 985- 660-679 221-238 1292-1311) 488-507 224-242 13 65) 33S355 428-446 229-246

used

(FA)

and

of 1-148

of the

the -668 1003

and 17

in the

and

in

sediment

5’

cell a

ARB

in

this this

(Liobet-Brossa

partial

counted;

stable

end.

total

hybridization

et

study.

counts.

study

al.

program GCT CGG TTC GTT CA,\ (Ki CCU CCC CAT TCC CAC T(iC

Probes (IAA (ICC (lUG GG CCC CC\ .\AT ACT

cell

sequences tree

samples

1998), CGY CCT GCC

were GAT CCI CUT

duplicates ACT TCC AAG GCG AUG CCT GUT CCT GUG TTC TCT ACG

counts

by

Hybridizations,

98

Sequence

used CCA TTC TCC CGG TCC CUC UGA CUT CCA

For CAC UCC GAC GAC

package ACG GCT .TG

using CGG ACG

buffer.

et

purchased of

two

are CCT GAT CGT CTC probe TGC

a!. CTG ACG

each CTG TTT GT1\ Tft’ TCC T(’A GG.\ TCA AUG

are were C(iG ACT

(5-3’) the

were

replicate

XXX CTC

1998). TCC AUG ATC (‘CC GGC GTc’ 1TC (IGA AA iTt CTC

listed TTC AAC GGC

ATTTrA CAT AXC

sample (Strunk

ARB

performed TGC CCA (‘AT TAC CTC CCT GUC AGT

from AUG AUG carried AAA ,\AG CGC CC,\

and CCT AGC CAT

in

microscopic From TA

parsimony TU

sediment C (‘ (1

between

YYY,

Table

et Interactiva in

out 0-35

al.

MPN-tubes ((-35 35 35

35 I 35 5(1

as 20 60 2(1 35 60

situ 60 6)) 35 25 15

IA 0

and

1.

for

1998-2000).

previously

700

cores For

tool

Rclcrence

deposited

each

examination

(Ulm, 27 27 27 29 29 29

and 29 29 29 29 29 29 29 29 29 29 36

fluorescence 27

(Ludwig

were

sample.

that

1000

Germany)

described

Aligned

at

cut showed

ZZZ. DAPI

et

The

and

and

al.

in growth, aliquots of 1-2 ml were withdrawn with N-flushed syringes. Cells were sedimentated by centnfugation and washed once with lx PBS. Subsequent fixation and hybridization were performed as previously described (Snaidr et al. 1997). Media and enumeration of viable cells. A defined, bicarbonate-buffered, sulfide-reduced

(1 mM) mineral medium, essentially having the same salt composition as natural seawater was used for cultivation experiments (Widdel and Bak 1992). Na-dithionate at a final concentration of 10 ig/ml was applied as an additional reductant. Organic substrates were added from concentrated stock solutions. Gaseous substrates 2(H/CO were supplied by applying an overpressure of I atm to the headspace of the culture )tubes. Viable sulfate-reducing bacteria were enumerated using an MPN technique with liquid media and with agar shakes. Samples from each layer of the sediment core were transferred via a funnel to glas bottles (250 ml volume) and mixed 1:1 with substrate-free, anoxic media under a steady stream of NiCO, (90:10 {v/v]),yielding approximately 100 ml of homogenate. The bottles were then anoxically sealed with butyl-rubber stoppers and screw caps. These sediment slurries were diluted in steps of 1:10 by transferring aliquots to substrate-free, anoxic media under N/CO, (90:10 [v/v]) in butyl-rubber sealed glass-bottles (250 ml volume of bottle, 100 ml total volume of dilution). The transfer of sediment suspensions between the glass-bottles was carried out with 2N-flushed syringes. Prior to transfer, the sediment suspensions were shaken vigorously to achieve optimal mixing. These “master”-dilutions were used to inoculate culture tubes for MPN-counts in liquid media. Similarily, “master”- dilutions were prepared for the inoculation of MPN-counts in agar-shakes. However, in this case not every single sediment layer was diluted but rather a homogenous mix of the top 5cm of the sediment core. (i) MPN-counts with liquid media_These MPN-counts were carried out in glass tubes (160 x 16 mm) sealed with butyl-rubber stoppers and screw caps that contained anoxic media with or without substrate under an N,/CO-atmosphere (90:10 [v/vl). Substrates used were as follows: 2H,/C0 (90:10, [vIvj, applied2 with 1 atm to the gas head space); H,/CO, + 2 mM acetate; 15 mM formate; 7.5 mM acetate; 5 mM propionate; 5 mM lactate. Each tube contained 9 ml medium and was inoculated with 1 ml from the corresponding “master” dilution. Three replicates were prepared for each substrate condition. To sustain reduced conditions, 0.5 mM Na,S were added after about four weeks of incubation. The tubes were incubated at 23 °C for 10 months. Growth of sulfate-reducing bacteria was determined by measurement of the optical density (660 nm) and sulfide using the semiquantitative method described by Cord-Ruwisch (1985) and by macroscopic and microscopic examination.

99 conducted

approximately

prepared

observing media. Bak Replicates Such and

Results °C

20.2

accumulation part greyish

investigated geochemical indicated polychaetes

surface Hespenheide. of 2000).

sampling 2000). The surface

showed processes AVS

(ii)

Sediment.

mud

during

Acid

transferred

was

1992).

TOC °C

colonies

should

il’IPN-counts

Agar

An Correspondingly,

diffuse (without

(0.5

(clay

sediments

a brown

volatile as

by in

(Fig.

sampling formation

in

maximum to

and

increase

The

described

were

June

cm

sediment

the

shakes

a

obtain

Downcore of were

and

9 unpublished essentially parameters.

to

diffuse

streaks. incubation 2E) which

ml

depth)

tubes

iron sulfur

wind).

sulfides

liquid

found

1999.

silt

of

picked

decreased

of

was with

were

of in

single

at monosulfide

anoxic

previously

turned grain

section.

the were

blackening

which cycle

medium

At The

for

brownish

around down

agar-shakes

temperatures

carried

corresponding

the

(AVS:

mirror

sand

by incubated

data)

about

conditions

instance, The

size

colonies. sediment

inoculated

(Böttcher

within

pore media

decreased means

with

to

These

grain

8

containing

and

sediment

essentially

about fraction

9-12

that

for out

cm

colonies

water

(acid-volatile

of

depth

with

the

of maximum

showed

at the

fraction

vertical depth the cores

on

and

of

Butyl-rubber cmbsf

in were

et

finely 16

first with

23

to

air

contents

molten

in

isolation

the

a!. <

HS

sediment,

sediments

cmbsf.

52%

was

the

°C.

displayed isolations_MPN-counts parallel which 63im;

temperatures

iron (Fig.

as

1-2

1998b).

that

sediments 100

(cm I

changes drawn

was

which

corresponding

water

ml

Growth

described

and

cm

characterized agar

sulfide,

monosulfide)

the

2C).

An

decreased

below

are of observed

essentially from

with

into

remaining

29%

stopper

Pasteur The

and first analysis

recovered contents

sulfate-reducing

is 2

were typical

The

distinct

was varied

a

derived

the

the

AVS)

surface),

AVS between at

substrates

darker

10

above

stable

10

also

water

continuously below

pipettes

corresponding

determined

cm

sealed

substrate.

of

of

phyllosilicates

for

were

and fraction

between

black

with

by color

the in almost

olive 67% reflected

from

for

sulfur

content. sulfate-reducing the

16.0

29

that

bioturbation,

as

May

grain found

decreasing

glass

(Widdel

changes:

MPN-counts until

in

coupling

cm were

described green

bacteria

the

(4S

°C

depth

completely

about

isotopic

by

agar

depth.

with 1998

size

tubes

the in

(in

overall by

observed

master

microscopically

color

values

all and (Böttcher

(Böttcher

the

biological

the

distribution

bottom shakes

16.0

depth.

(Widdel

of

porosity

(Böttcher

respectively.

above

sections

containing signature

and

Bak

oxic

with wind)

increasing

in metabolic

dilution. between bacteria.

and consisted

near

During

liquid

of

living 1992)

upper were

were

some

et

et

17.5 and

was

and

and

and the

the

al. al.

of

&

of - 21.1 and -26.2%) was significantly enriched in the lighter sulfur isotope compared to coexisting pore water sulfate S(ö34 values between +20.4 and 4+25%c: Fig. 2D). Apparent sulfur isotope enrichment factors between -41 and 2%-S are calculated. from the data given in Fig. 2D which are at the upper end or even exceed the results obtained in experiments with pure cultures of sulfate-reducing bacteria (Kaplan and Rittenberg 1964; Chambers et a!. 1975). The isotopic composition of the Cr-Il fraction which consists essentially of pyrite was more or less constant in the top 11 cm S(634 of —16±1%o) but decreased at greater depths (Fig.2D). Pore waters. The salinities of the pore waters during sampling in June 1999 were rather constant with 28%. This corresponds well to earlier data obtained during sampling on a seasonal base over a two year period, where it has been found that salinities in the pore waters of the mud flat at Site Dangast varied between 22 and 30%, averaging about 26% (Böttcher, unpublished data). During sampling in June 1999 the microsensor measurements were impeded by high bioturbation activity in the upper 1.5 mm of the sediment and, therefore, no steady state 02 profiles could be gained. During this measurement only the oxygen penetration depths (3.1 mm ± 0.17 mm) could be determined. Under similar environmental conditions but slightly less bioturbation a sediment core from the same site was investigated in June 1998 and the results are presented in Fig. 3. In the upper 0.7 mm the sediment was significantly supersaturated with respect to oxygen as it has been found previously for a situation in April 1998 (Böttcher et al. 2000). The maximum concentration occurred at 0.3 mm depth with 0.43 mM. Below 0.7 mm the oxygen concentration declined constantly and the oxygen penetration depth was 2.7 mm. The volumetric rate calculations also showed a distinct area of oxygen production in the upper 1.5 mm of the sediment sample (Fig. 3), with a maximum in the upper

0.5 mm. Below 1.5 mm oxygen was consumed. Nitrate concentrations from measurements in June 1999 are plotted in Fig. 4, as a mean of two profiles. During the measurements the sediment was heavily bioturbated. Down from the water/sediment interface the nitrate concentration increased to a maximum value of more than

10 IIM at 1 mm depth. At 2 mm the concentration was still higher than in the water phase but declined in deeper layers. Nitrate could be measured down to 3.6 mm. The calculated activity rates showed a clear separation between nitrate production in the upper 2.3 mm of the sediment and nitrate consumption below that layer (Fig. 4). Highest production rates occurred concomitant with the maximum nitrate concentration.

101

Isotopic

fractionation

ofsttlfur

species; E,

total

organic

carbon (TOC);

F,

acetate; G, and lactate propionate; I-I. Mn(1I) Fe(ll). and

Fig.

2.

lliogcoclieinical

aiialysis

of

vertical the

sediiiierit

profile.

SO. 2 ;

A,

13,

sulfate reduction

Jate (SRR);

C,

Cr(Il)—IedLicihle

siiltiir

(Cr—Il)

and ;icide volatile siillidcs (AVS), I),

Mn; Fe

(pM) Acetate (pM) Lactate, propionate

(pM) TOC (dwt.%)

0 40

0

60 20

120 40

60 0 80

20 0 1 2 40 3

4

20

20 I

201 I 20 I I I I I I

Ho’

H.

F. G.

• Fe

. .1.

Mn

16

16 16 /

0

0 0 •, .—,

0

0

0

12 12

12

a)

a) a,

a)

0.

ci. 0.

• 0

I’.

-C -C

U U

U

U

E

E

E

E S., 8- 8

8

-

a’ II

It.

4

.“ 0•

.

El

0 • Proplonae

0

De

0 0

0 —

o 34 s SRR (mM) SO 4 (%.) cm 3 d) (nmol dwt.% S

0 5 0.0 0

10

0.2 15 20 -30 25 500 -20 30 -10 0.4 0.6 0 0.8 10 1000 30 20

20

H

I I

. I . .

. .

. B. LI -

A. 0.

Cr-li so.

.

• -

. •

El

cr-il

16 16 16 16 —

.

It] •D •

.

AVS

•o

•o

+0

.

.

•0

0

0 0

0

12

12 12 —

12

— a)

a)

a)

a)

o.

. •0 0.

0 0. • 0 0

.

•o

-c

-C

0 . 0 + 0

.

C)

U

C)

U

.

. 0 E 0

0 - .-. E E

E . a

8

• 8+0

0 .

•0

.

El • +0 D

.

. •

0 +0 0

.

. . 0

0

0 - -.

.

4+

0 . • 0 0

.

r

. 0 • 0

.

• El I+0 0

.

I

0 •

0 0

0

______No hydrogen sulfide could be detected in the sediment cores within the first 20 mm, the maximum depth reached by our microsensor measurements. Sub-oxic, non-sulfidic conditions were indicated by the presence of dissolved Fe(I1) and Mn(I1) (Fig. 2H) and absence of sulfide at concentrations exceeding 5 jiM between about 5 mm down to at least 12 cm depth (data not shown). Sulfate remained essentially constant within the first 4-5 cm and decreased further downcore (Fig. 2A), associated with an enrichment in S.34 Despite of minor changes in dissolved sulfate, moderate to high microbial sulfate reduction rates were measured with radiotracers through the whole sediment core and showed a maximum with up to 485 nmol •3cm d’ in the sub-oxic zone at around 7 cmbsf (Fig. 2B). The apparent activation energy of 66 kJ mol’ was used to relate the measured SRRs at 10 and 20°C to the mean temperature of 17°C measured during field sampling. The concentrations of volatile fatty acids (VFA; acetate, propionate, and lactate; Fig. 2F and 2G) were determined in the pore waters of two sediment cores. In both cases concentrations of VFA except for acetate were below 5 p.M in the top 5 cm of the sediment. Acetate concentration increased with depth to concentrations of about 50-60 p.M. Concentrations of glycolate and formate on the other hand did not exceed 5 p.M throughout the entire core. Elevated concentrations of lactate and propionate ranging between 10 and 30 p.M were detected in the deepest horizon of 15-20 cm. This accumulation of organic acids occurred only below the maximum of the sulfate reduction rates (Fig. 2B, F and G). PLFA analysis. Three different depth-depending PLFA patterns were observed in the studied sediment cores (Table 2). The first 0.5 cm are dominated by high amounts of polyunsaturated PLFA. In the depth between 0.5 and 10 cm, the PLFA patterns did not show any pronounced variations. The PLFA patterns included many branched fatty acids, cyclopropane fatty acids and a high amount of cli 18:1. The deepest layer is distinguished from the upper layers by the low amount of c9 16:1 and a higher amount of 18:0. The content of phospholipid phosphate decreased with depth (967 nmol g’ dry sediment at 1 cm depth to 228 nmol g’ dry sediment at 15-20 cm depth). DGGE profiles of sediment samples. Changes in the diversity of the SRB population with depth were analyzed by DGGE of PCR-amplified 16S rDNA fragments and of the reversely transcribed 16S rRNA fragments. In the same sediment sample, the electrophoretic profiles of the 16S rDNA fragments were more complex than the ones observed after reverse transcription of the 16S rRNA (Fig. 5).

103 -0.002 -0,001 0.000 0.001 0.002

0

—1

E E

a0 -2

-3

-4 Activity —.— Concentration

00 0.1 02 03 0.4 05

Fig. 3. Vertical sediment profile of oxygen concentrations determined with an °: microsensor and calculated oxygen production/consumption rates in a sediment core from Dangast (6/98). Profile and rates represent the mean of two data Sets

6-lOxlO 8-5x10 0 5x10 6lOxlO Activity L Concentration 0

—1

E E

0a -

-3

-4

0 32x10 34x10 36x10 38x10 10x10 12x10

Fig. 4. Vertical sediment profile of nitrate concentrations determined with a 1NO microsensor and calculated nitrate production/consumption rates in a sediment core from Dangast (7/99). Profile and rates represent the mean of two data sets.

104 Table 2. PLFA profile of site Dangast. PLFA were analysed as fatty acid methyl esters and are shown in relative amounts (mol). PLFA methyl esters present in all horizonts less than 0,5 % are not listed. Not detectable PLFA are abbreviated with nb. Sediment horizons (cm)

PLFA 0.0.0.5 0.5.1.0 1.0-2.0 2.0-3.() 3.0.4.0 4.0-5.0 5-10 10-15 15-20 methyl esier

i 14:0 1.4 0.9 1.0 1.1 1.0 0.8 1.1) 0.4 0.3 c7 14:1 0.7 nd 0.1 0.3 nd nd 0.3 0.2 0.6 14:0 6.3 3.6 3.5 0.4 3.1 0.9 3.3 1.6 1.6 i15:0 2.() 3.2 3.8 4.1 3.8 3.9 3.8 3.1 3.2 a15:0 2.8 5.5 6.6 7.3 6.9 7.3 7.6 7.3 8.0 15:0 3.6 2.8 2.1 2.2 2.0 2.0 2.1 1.8 1.4 16:3b 8.4 nd nd nd nd nd nd nd nd 116:0 id 1.6 1.7 1.8 1.7 1.8 1.6 1.7 1.6 c7 16:1 1.2 1.8 1.6 1.8 1.7 1.8 1.5 1.5 1.3 c9 16:1 16.5 17.2 17.8 19.2 18.3 19.5 17.9 14.0 9.4

ci I 16:1 4.1 1.6 2.1 2.4 2.3 2.7 2.6 2.2 1.4 cl3 16:1 1.3 2.4 2.2 2.5 2.4 2.9 2.5 2.8 2.7 16:0 10.5 19.2 17.6 18.2 17.! 17.4 16.7 15.7 17.4 i17:l 0.3 1.2 1.2 .1 1.4 1.1 0.8 1.2 2.9

lOmcl6:() 0.4 I .3 1.7 1.9 1.9 2.3 2.4 2.3 2.1

a17: 1 ((.5 (1.2 0.7 0.7 0.7 0.5 0.5 0.6 nd

i [7:0 0.5 ((.8 0.9 1.0 1(1 1.0 0.9 1.1 1.2 a17:() 0.4 1.1 1.2 1.3 1.3 1.4 1.4 1.8 2.0 c9 17:1 3.2 1.5 1.3 1.4 1.5 1.4 1.4 1.2 0.5 cyc 17:0 0.7 1.3 1.5 1.6 1.6 1.6 1.6 0.3 0.2 17:0 1.0 1.6 1.6 1.6 1.6 1.5 1.5 1.5 1.2 c6 18:2 1.9 ((.8 0.7 0.6 (1.5 0.5 0.5 0.4 0.1 c6 18:3 nd ((.6 0.6 0.5 0.5 0.5 0.6 0.5 nd c9 18:2 1.4 ((.4 (1.7 0.7 0.8 0.7 0.4 0.6 0.7 c9 18:1 3.4 4.4 3.6 4.1 3.8 3.5 4.0 4.3 4.1 cli 18:1 3.9 10.7 11.6 [3.3 13.3 13.3 12.7 15.6 14.6 c13 IX:! 0.5 4.2 3.0 (1.7 2.2 2.4 3.3 4.1 8.0 18:0 2.4 3.2 2.8 3.3 2.6 2.4 2.7 3.8 8.2 cyci9:0 nd 0.4 (1.6 0.3 0.5 (1.1 nd 0.5 0.7 c5 20:4 1.6 0.9 ((.8 1.0 0.9 ((.8 0.7 1.4 0.5 c5 20:5 13.7 2.1 1.4 1.2 1.0 0.8 0.8 2.3 0.4 c9 20:2 nd 0.8 0.2 nd ((.8 0.2 0.2 1.6 nd c4 22:6 5.7 ((.7 ((.7 0.5 0.2 0.2 ((.2 0.2 nd 24:0 nd 0.2 0.2 nd 0.! 1.6 0.3 0.2 0.1

hranched 8.8 16.7 20.2 22.1 20.6 20.7 21.2 20.3 22.9 saturatedd 32.5 47.1 47.7 46.6 47.0 46.6 47.8 43.9 49.9 unsaturate& 67.5 53.0 52.3 53.4 53.0 53.5 52.2 56.1 50.1 used short-hand nomenclature: i=iso-branched; a=anteiso-branched; c—cis;cyc=cyclopropane; me=methylgroup; x:y x= number of carbon atoms; ynumber of double bonds hposition of double bond not determined include all iso, anteiso and lOMe branched PLFA-methyl esters dalI PLFA methyl esters without a double bond in the carbon chain call PUFA methyl esters with one or more double bonds in the carbon chain

105 DGGE of 16S rDNA showed between 6 and 9 bands of different intensities. There were no major changes between different sediment layers, except for the deepest layer at 15-20 cm depth. DGGE of 16S rRNA showed only two to four bands in all the samples. In contrast to the 16S rDNA-based DGGE, these were not evenly distributed but appeared as distinct patterns. It was not possible to get any PCR product from the deepest layer. As rRNA-based

DGGE is influenced by the “activity-regulated” ribosome contents, this pattern might better indicate the identity and distribution of the active SRBs in the sample.

A B $C çj c ‘ ‘.

1’...-‘ — - — 3,....

5.’...- -

. ,‘.

Fig. 5. DGGE profiles of 16S rDNA (A) and reversely transcribed 16S RNA (B) by using the SRB specific forward primer SRB385 which carries a GC-clamp and the reverse primer 907 (Sass et al. 1998). DGGE bands 6

and 7 affiliate with the Desulfonenia group. It has to be noted, that probe DSS658 does not target this group.

Identification of the most prominent DGGE bands by sequencing. All the bands analyzed by sequencing were shown to originate from members of the _-subcLass of Proteobacterici. the taxonomic group that encompasses most gram-negative SRB (Fig. 6).

Bands 1 and 2 were affiliated with a sequence similarity of 99% to Desulftbulbus sp. (accession numbers L40786 and L40785, respectively). DGGE bands 3 and 4 were found to

be closely related to Desiilfovibrio species. Band 3 was related to Desulfovibrio caledoniensis (accession number U53465) sharing similarities of 97%, and band 4 was related to De.cutfovibrio sp. Ac5 (accession number AF2281 17) with 99% similarity. Band number 5 was identified as Desiilfrbacter sp. with 96% similarity (accession number L40787). Bands 6

and 7 were related with 99% similarity to Desulfonema liniicolci(accession number U45990),

106 and to Destilfonenia ishimotoei (accession number U45991), respectively. The band number 8 had 98% sequence similarity with Desulfumnionaspalmitatis (accession number U28172). MPN counts of SRB. A variety of defined substrates was used to meet specifc substrate preferences of different SRBs possibly occurring in the studied sediment. For example, chemolithoautotrophic SRBs, such as Desulfobacteriuni autotrophiciin, can grow with H, and CO, as the sole sources of energy and carbon, respectively. The bacterial numbers from MPN

counts with liquid media are shown in Table 3.

Table 3. Total cell counts of SRB from different sediment horizons from Site Dangast after 1.5 and 10 months of incubation at 23 °C’.

Horizon (cm)

0-0.5 0.5-I 1-2 2-3 3-4 4-5 5-10 10-15 15-20 1-lydrogen2)*(C0 1.5 months 1.1 x 10’ 4.6x 10’ 4.6x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x LO’ nd 1.1 x iO’ nd l0months 4.6x 106 1.1 x 10’ 1.1 6x10 4.6x 106 1.1 x 106 4.6x 106 4.6x 106 4.6x 106 1.1 x 106 Hydrogen (CO,+Acetate)* 1.Smonths 4.6x IO 1.1 x 10’ 1.1 x IO’ 1.1 x 10’ 1.1 x 10’ 4.6x 10’ 4.6x 10’ 1.1 x 10’ 1.1 x 10’ 10 months 1.1 x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x 106 1.1 x 106 1.1 x 106 4.6x 106 4.6x 106 4.6x 10’ Formate 1.5 months nd nd 1.1 x io 1.1 x 10 4.6x iO 4.6x iO’ 1.1 x IO 1.1 x iO 4.6x 10’ 10 months 1.1 x 10 nd 4.6x 10’ 1.1 x 106 4.6x 106 4.6x 106 1.1 x 10’ 1.1 x 106 4.6x 10’ Acetate 1.5 months 4.ôx 10’ 1.1 x iO 1.1 x l0 1.1 x iO 1.1 x iO 1.1 x 4i0 4.6x l0 1.1 x 10’ 1.1 x 1O I0months 1.1 x 10’ 4.6x 10’ 1.1 x iO’ 1.1 x 106 1.1 x iO’ 4.6x iO’ 1.1 x 10’ 3.9x 106 4.6x 10’ Lactate 1.5 months 1.1 x 10’ 1.1 x 10’ 4.6 x 10’ 4.6 x iO’ 4.6 x 10’ 4.6 x 10’ 1.1 x iO’ 4.6 x iO’ 4.6 x iO’ 10 months 1.1 x 10’ 3.9 x 10’ 4.6 x iO’ 4.6 x 106 4.6 x 106 4.6 x 106 1.1 x iO’ 4.6 x 106 4.6 x iO Propionate 1.5 months 1.1 x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x 10’ 1.1 x iO 1.1 x 10’ 4.6x 10’ 10 months 1.1 x iO I.! x 10’ 4.6x 10’ 1.1 x 106 1.1 x 106 4.6x 106 4.6x iO’ 1.1 x 106 4.6x 3i0 nd = not detected; * carbon source

a To confirm the low numbers of bacterial cells observed after the short incubation period a control experiment was performed. A comparative MPN study was carried out with sediment (2-5 cm depth) from the same location at Dangast and from sediment at Horumersiel, north of Jadebusen in September 1999. The latter site is characterized by a locally high organic input and a high sulfidogenic activity. The MPN tubes were incubated for 2.5 months at 23 °C. MPN counts with all substrates tested (H + ,2C0 H, + CO, + 2mM acetate, 7.5 mM acetate, 5 mM lactate and 5 mM propionate) were between 1.1 x 10’ an 1.1 x 10’ per ml for the Dangast sediment. In contrast. MPN counts for the Horumersiel site were between 1.1 x 106 and 1.1 x I0 cells per ml.

During incubation of MPN tubes first a fast growing population and then after prolonged incubation a slow growing population developed. After about six weeks of incubation only

107 only 4.6 low

substrates this

to profile slowly contrast

medium, packages indicated

Table numbers

Hydrogen

Hydrogen Formate

Acetate

Lactate

Propionate b nd

Probes Lower

Positive

20 =

10 1.5

10 1.5

10 1.5

10 1.5

1.5 1.5 10 10

cell x

first

exception

not

4.

months months

months cm. months

months

months months

months

months

months

months

months

10’

of

growing

Identification

brightness

are

detected;

numbers

to

(C02)*

(CO+Acetate

hybridization

only

but population

0

that

known

tested,

Prolonged

described the cells

to

rather

in

cells

15 faster

0-0.5

DSB985 221 DSB985/h

DSV698C DSV698

nd nd were DSB985 DSB985/ DSV698 DSS658

DSV698 660

nd

*carbon

but

of

the per

ranging

cm.

rather

from

the

of

in

formed

were

last with

more

MPN )*

growing

of

ml.

SRB

Table

incubation Cell

signal

source

0.5-1

DSB985 nd

DSV698C DSV698

nd

nd fast DSB985/ DSB985 DSS658 Desulfisarcina DSVÔ98

DSV698 660

nd

similar horizon.

more

between

In by evenly

abundant

cultures

numbers I.

after

flocs

FISH

growing

general,

than

SRBs.

8.5

cell

221 1-2 221 DSV698 DSV698C

nd (Fig. DSVÔ98 DSB985 DSB985

DSV698

DSV698 660 nd

distributed (10

one

after

months

1.

with

decreased

SRBs.

1

numbers here

probe.

months)

SRBs

cells

1.5

x 7

c

spp.

IO H,/C02/acetate

and

incubation.

2-3

221 221

DSV698 DSV698 nd DSV698 DSB985 cells DSB985

DSV698

DSV698 and 660 660

Counts

grew

and

Horizon

appears

ID

throughout

As

d)

were

108

by

of

did

months

4.6

and

with

the

about

homogeneously 3-4

22!

221

DSV698 DSV698

DSV2I4 DSV698/ DSV698 DSB985 nd

DSV698

DSV698 nd nd

not

increased

(cm)

obtained x

aggregates, to

of MPN

1

grow

the

o

incubation.

one

be

as

the

cells

4-5

substrates

221

DSV698 nd fast

DSV698C

DSV698/ evenly DSV2I4 DSV698 DSB985 DSB985

DSV698

DSV698 nd nd

cultures

order

homogeneously

horizons,

for

up

per

growing

sometimes

to

all

of

ml

distributed

in

5-10

nd 221

nd

DSV698

DSV698 1.1 DSB985 DSV698 DSB985

DSV698 DSV698

660 660

horizons allowed

magnitude

yielding

could

the

with

x

SRBs.

io

medium.

a

be similar

221

221 10-15 distributed

DSV698 nd

nd DSV698 DSB985 DSB985

DSV698 DSV698

660 660

the

decrease

cells analyzed.

counts

across

observed.

in

MPN

detection

horizon

per

of

With

of nd

DSV698 221 15-20

nd

DSV698/ DSB985 DSB985 nd DSV2I4

DSV698

660 a nd 660

the

counts

in

ml.

depth

in

up

Thus

The

cell cell

the

all

15 to

of

In From the highest dilution steps that still showed growth, samples were recovered for FISH analysis, the results of which are summarized in Table 4.

MPN in agar shakes yielded numbers of colony forming units somewhat higher than those observed with MPNs in liquid media. Colonies from the highest dilution were transferred to fresh liquid media containing the same substrates as used in the corresponding agar shakes. Subsequent analysis of growth cultures by FISH revealed no other phylogenetic groups as already identified in MPNs with liquid media. FISH of sediment samples. Total cell counts of the upper 20 cm of the sediment were determined microscopically (Table 5). From top to bottom DAPI counts strongly decreased from 53.9 x l0 in the first cm to 1.0 x 10 cells per 3cm of sediment in the zone below 15 cm. The microbial community dwelling in Dangast sediments was dominated by Bacteria. In the top 0.5 cm of the sediment, up to 82.3% of the total microorganisms hybridized with the probe EUB338 (Table 5). Archaeal and eucaryal counts remained below the detection limit of 0.1% of the DAPI stained cells. Recently, the bacterial probe EUB338 was shown not to detect all members of the domain Bacteria (Daims et a!. 1999). Some bacterial phyla, most notably the Planctomycetales and Verrucornicrobia, are missed by this probe. Consequently, total bacterial numbers monitored in this study were most probably underestimated. Initial experiments with the newly designed additional probes EUB338-1I and -III (Daims et a!. 1999) indicated that this underestimation may amount to 4-10% of the total microbial community. Detection rates with the probe EUB338 decreased exponentially over the vertical profile. Thus, not only the absolute cell numbers decreased with depth, but also the percentage of detectable cells with our FISH protocol.

Group specific probing. A set of 15 different probes specific for SRB of the y-subclass of

Proteobacteria were tested (Table 1) with sediment samples from Dangast. Only five of these probes (i.e. 221, DSB985, DSR6512, DSS658, and DSV698) gave counts above the detection limit set at 0.1% of total DAPI counts (Table 5). The target groups of the other probes were either not present in high abundance (>0.1 % of the total cell counts) or not detectable by FISH, e.g. due to a low ribosomal content per cell. The most abundant SRB present in the sediments were members of the Desulfosarcina

Desulfococcus-Desulfofrigus group (probe DSS658, Fig. 7 a and b) and Desulfovibrio spp. (probe DSV698) with maximum values of 2.9 x 108 and 2.8 x 108 cells per 3cm of sediment, respectively. The counts of these two groups decreased strongly with depth to values of 1.0 x 106and 0.6 x 106 cells per 3cm of sediment at 20 cm, respectively.

109 decreasing 0.5 between

relatively per the between

The with

number cells Table

DAPI ‘7

Percent hNumber CNot standard

SRB

Desulfr.bacter of

Probe EUB338 221 Probe Probe DSB985 D5R651 Probe DSS658 Probe cm3

Probe DSV698 Sum detection cm SRB

total

hybridized

numbers

detected. per

5.

absolute

Quantification

detected to

of detection

probes of

deviations

throughout

0.5

15 of

cm3

SRB

low

2.7

SRB

cells numbers

and

x

cell

(or

ceIls

limit

up

abundance.

community

IO

x

82.3±14 53.9±2.2 0.21±0.070.18±0.1

2.5±1 per

2.5±) 4.3±0.9

8.6

20

compared

cells

no.

with

nd to

were as 0-0.5

iO

and

cni3.

(mean±SD) cm

spp.

(x1O

of

in 6.6

low

the

from

detected

cells

the

calculated SRB

the depth

1.0

x

69.7±13 0.22±0.04 53.7±0.9

sediment.

as

(probe

12.3

to

4.7±1.3

5.3±1.1

1.9±0.7

probe

0.5-1 i0

top

The x in

sediment

was

DAPI.

per

1.7%

Dangast

i07

were

cells

to

by

from

cell

found

cm3

DSR65I

cells

DSB985)

bottom

Numbers

56.5±1.3 69.8±5

of

FISH

11.3

2.1±0.7

5.3±0.9 below

3.9±0.8

Desulfobacteriuni

per

1-2

numbers

the

sediments

total

n& nd

except

sediment

per

to

counts

cmi,

was

be

from

have cells)

the

cm3

specific

53.1±3 53.5±2.3

10.0

0.15±0.03

4.4±0.4 3.8±0.8 were

1.7±0.6 maximum

2-3

accounting nd decreasing

of

for

by

were Horizon

detection

been

were

two I

110 FISH at

between .

the

1

found 20

corrected for

parallel

decreasing x

45.6±4

33.1±1.5

0.1±0.08

found.

2.4±0.9

4.2±0.7 2.4±0.7

9.1 (cm) layers

3-4 cm

I

Desulforhopalus

0

detected

within

nd

limit.

over

for

depth. cells

over

cores.

10

by

8.6 between

25.5±2.3

37.4±6

and 11.5

subtracting

3.5±0.9 the

0.1±0.09

6.2±1.2

the 1.7±0.8

4-5

per from

nd

the

with

to

vertical

upper

15

cm3

12.3%

whole

1.1

the

cm

25.0±3

17.0±2.1

1

5-10

0.7±0.3

2.2±0.4

3.3±0.3 6.3

N0N338

nd

nd of were

and

x

3

probe

profile

depth. of

cm

108

sediment

sediment

total

2

also

of

to

cm

17.0±2

10-15

counts. 221

9.0±3.3

0.3±0.4

3.0 1.7±0.5

1.0±0.7

the

nd

nd

0.1

to

Cell

cells.

counted

depth

were

1.7

sediment

in x

profile

Means

numbers

x 106

the

The

13.6±6

15-20

0.1±0.04

1.0±4.6

0.6±0.4

1.0±0.6

1.7

where below

106

nd

nd

with

cells

first

and

in Z— (Maidak parsimony tree Fig. without 6. Phylogenetic et analysis al. modifying 2000). including The 10% affiliation its bu1brhabdoformis topology topology only of complete during of ___LesugoEEE ,—. the ______the sequenced tree sequence Desu!forhopaiu.s ______or Desulfoniicrobium resulted Desulfurella almost DGGE1 Des DesulfoWbrio DGGEZ De.sulfobulbus ulfoco positioning Desulfowibrio DGGE DesulfobuThus DGGE3 - Desutfofuslis DesulfoWbrio DesulfoWbrio DGGE6 Des Des Des DGGU 111 Des Desuifovibrio from Dexulfovibrio complete ccus acelivorans ulfobulbus ulfuromonas Desulfonema ulfonemo DGGE1 vacuo(alus ulfovibrio Desulfonema Desulfosarcina . gracilis the fragments. propionicus DGGE4 AF desulfurican glycolicus (Strunk sp. !edonieig profundus magnum insertion elongatus 141454, africanus halophilus 16S longus palniliatia Geabacter ishimaioei limicola BdeI!oWbrio Desulfobulbus rRNA uncultured et — The Nitrospina Myxobacleria of al. Ct Peiobacser-Deruifuromonas the sequences at. 1998-2000). tree bacieroivorus eubacterium partial et Ct Ct at. is a!. a!. based DGGE of representative on sequences the result bacteria into of the the Fig. MPN

for Discussion

sediment sediment

sand especially

Mayer described

Böttcher

is measurements organic

sediment

under states

with

indication

preferential

visualization

Biogeochernistry

of

7.

The

enrichment

grain Microscopic

depth

marine

anaerobic

(essentially

1994).

matter

sulfur

depth

caused

et

layers

srnectite, earlier

fraction

variations

that

al.

of

intracellular,

origin,

culture

on

cells A

is

(Böttcher

isotopic

image

1998;

by is

conditions

microbial

for due parallel

TOC

pyrite

a

stained

ate

a

(essentially

(C

clear

decreases

of

tidal

of

mixing

essentially

to

and

Böttcher

able

at

sediment

the

changes

discrimination

with

with

et

Site

enzymatic d).

indication decrease

sediments

(e.g..

to a!.

sediment.

dlissiTnilatory

Epit1uonscence

of

the

Dangast

minor adsorb

2000).

with samples

minerals

Cy3-labelled

quartz).

et

decoupled

in

Morse

al.

the

of

reduction depth

for

elemental

of

significant

The

(a

2000;

have

pore

The sedimentological

the

et

the

between

and

In of

al.

image

accumulation

piobe

due sulfate

from

the German

dissirnilative contrast

additionally

observed

b) water

(1987).

Volkman

112

of

and

sulfur)

to

mud

DSS658

using

amounts

the

325042

of

sulfate

the

and

reduction

cells AVS

Wadden

fraction

to

UV

Solid

preferential decrease

were

(b

TOC

quartz,

et

compared

shown

of

in filter and

activity

and

of

trend

and

al.

a

phase

AVS

organic

found

d). 10

with

mineralogical

for

contents

Sea

took

2000).

the

that Scale (Fig.

phyllosilicate

in

dilution

DAPI

throughout

sulfur

of

(Delafontaine

increasing

to biodegradation

through pore

AVS-fractions

the

place.

sulfate-reducing

bar

matter

2C).

SO12

Stable

(a

with

from

=

labile

with

and

water

10

This the (Keil

properties

tIm.

an c),

(e.g.,

depth

higher

the

amounts

carbon

fraction,

minerals, acetate

and

content

sediment

et investigated

et

is

Kaplan green

of

has

is

al.

al.

oxidation

due

utilizing

bacteria

isotope

marine

a of

of

which

1994;

1996;

with

filter been

deaL’

and

core

the

to the

and

a Rittenberg 1964). The isotope enrichment factors observed in the sediment partly exceeds the maximum found in pure cultures. The enhanced sulfur isotope discrimination may be due to the activity of sulfate reducers in the Dangast sediments that have not been available in previous experiments on isotope discrimination and/or a contribution from the oxidative part of the sulfur cycle. H.,S is to a significant portion reoxidized and sulfur species with intermediate oxidation states may be formed (Jørgensen 1982a). It has been shown experimentally that bacterial disproportionation of the latter leads to the formation of S-32 enriched 2SH (Canfield et al. 1998; Cypionka et al. 1998; Böttcher and Thamdrup 2001) which may contribute to the observed overall isotope effect. Bacteria which are able to disproportionate elemental sulfur, for instance, have been isolated from the Dangast sediments and their ability to discriminate sulfur isotopes has been confirmed experimentally, too (Canfield et al, 1998). Compared to the AVS fraction, the physicochemically most stable phase pyrite from the top ii cm was generally enriched in S34 (Fig. 2). In the deeper more sandy sediment layers the isotope data of both fractions are close to each others. This may indicate the influence of particle mixing by bioturbation on the pyrite pooi in the upper sediment section. Additionally, the pyrite fractions have preserved a change in the depositional environment and the near surface sulfur cycle of the Jade Bay sediments in the last century (Böttcher et al., in prep.). Pore water composition. The compositions of interstitial waters sensitively mirror the biogeochemical processes in the sediment. According to the typical zonation scheme as proposed by Froelich et al. (1979), organic matter oxidation should be related to the consumption of oxygen followed by nitrate, the build up of Mn(II) and Fe(II) due to the reduction of Mn(lV) aid Fe(1II) (oxyhydr)oxides, and later to the depletion in sulfate. Highest oxygen concentration in the photic zone are not directly linked to maximum nitrate production (Fig. 3 and 4). In the top 0.7 mm, where oxygen is produced via photosynthesis and oxygen concentrations are high, nitrate production rates seem to be relatively low. The nitrate concentration profile in the upper part of the sediment is influenced by an advective transport of nitrate resulting from a macrofauna mediated bioturbation. Since an assumption for activity calculations is a diffusion regulated transport and steady state concentrations, the upper part of the profile should be considered as non-informative. Nitrate production is taking place in the depth of 1 mm to approx. 2 mm. Net nitrate consumption was observed below 2 mm depth, where little or no oxygen was present. Sulfate concentrations at the sediment-water interface correspond well to the measured salinities, indicating that dilution of seawater with sulfate-poor freshwaters took place in the

113 enrichment

surface exceeds

of

site

essentially

(BOttcher and

sulfate-reduction variations concentrations 1990:

most

sulfate Böttcher by

concentrations (Burdige

the reaction

in Thamdrup reactions

this (1994)

to

therefore, substrates

The in still

with

sulfide

The

the

Microbial interstitial SRR (Böttcher

degrade

composition result

phenomenon

reactions

not

likely

Kristensen

low

measured

reduction

reaction

the observed

waters

with

(l-Iartman

understood. near and

et

with

sulfate

of identical

of 1993,

in also

supply

et of

related

al.

polymeric

et microbial

34S.

Hespenheide sulfate overall

sulfide at.

waters,

sulfate-reducers

and

responsible reactive the

of

linked

of

2000).

al.

with

sulfate

within

can

et

of

5-fold Thamdrup

This

1994).

reduction

dissolved

mainly

of

2000)

the limited

sediment-water and

to

to

at.

SRB

reduction

react sulfate

Fe(I1l)

produced

In

boundary

results

therefore,

to

is

reoxidation

2000).

coastal metal Hydrogen Nielsen

the reduction

reduction higher

substances

During

the expected

the

and

to

(Böttcher

accumulation with

for

unpublished

suboxic

rates

the

Fe(l1)

by

present

production

or

obtained

et

(oxyhydr)oxides

in

The

the

depends

SRR

during

reoxidation transport

(e.g.,

region. iron 1969). Mn(IV)

other

short-time al.

depend conditions

(Fig.

quantitative

for rates of

sulfide

and

downcore

of

zone,

et

interface

1994: compounds

to

study at

the

a

Sørensen

sulfide

fine-grained

during

2).

dissimilatory

Mn(tl)

at.

short

system,

are

smaller data).

on

rate

The

compounds

on

of

from

respective

together

This

which 2000).

high

the

Böttcher within

of

incubations dissolved

the

of through

compared

summer

decrease

(Moeslund variation

114 The

H,S observed

balance the in is

activity

is

VFA.

where

balance

et

concentrations

molecules

to

the

in

most

is

This

sediment

the

same with

during tidal al.

form

agreement

produced

oxyhydroxides

sulfate

surface to

The

the and

sulfide

time

range

the

1981;

in

of

indicates

of

to

enhanced

intermediate likely

in

of sediments

in

of

is

iron

different et

years.

fermentative

concentrations incubation

consumption

long SRR

Thamdrup

the

also

coastal

sulfate on

production

water

reduction.

like al.

observed

sediments

Christensen

has

sulfdes

the

pore-waters

during

superimposed

with

incubation

found

of

found

1994:

The

a

been VFA.

dissolved

same

interface

of acetate

sediments,

environments,

similarity

was

but observations

with

sulfur

the

and

maximum for

Thamdrup

previously

bacterial

in

2001).

observed

The

and

bacteria

(Moeslund

mudflat of

which

may

associated

the North

of

the

time.

1984).

may

sulfate

and

times.

are

consumption

observed

or

Fe(ll)

species

volatile

present

community

also

in

Moeslund

by

Therefore.

by

not lactate

be

Sea are

which

dissimilatory

earlier 1

the

in reoxidation The

at They by et

however, by

year

reoxidation

re-oxidized and

result

necessarily

et

(Oenema the

or the

fatty

al. bacterial

with

seasonal

bacteria Novelli

study

al. decrease

coincide

SRR

are

Mn(Il)

before

sulfate

and

related

same

1994,

actual

1994:

et

from

rates.

size acids

able

an

the

is

are

al.

is

is,

et al. (1988) and Holmer and Kristensen (1996). One may speculate that this correlation may be due to changes in sedimentological parameters (e.g., decreased water content), the TOC composition and an overall decrease in the availability of substrates.

The sulfate reduction rates per cell observed in these sediment samples were around 1 fmol

42S0 1cell . 1day (as calculated from FISH and MPN results). This result is in agreement with previous reports (Sahm et al. 1999; Böttcher et al. 2000; Ravenschlag, 2000). They are at the lower end of cellular sulfate reduction rates determined for pure cultures of different psychrophilic, mesophilic, and thermophilic sulfate reducing bacteria (Canfield et al. 2000). Sulfate reducing bacteria. The distribution of SRB in the vertical profile of the sediment was studied with four independent techniques. First, the phospholipid fatty acids (PLFA) can be used as biomarkers for specific groups of organisms. The top 0.5 cm of the sediment was dominated by polyunsaturated PLFAs, which are typical for eucaryotic organisms (Vestal and White 1989; Findlay and Dobbs 1993), including protozoa, algae and higher plants. The sediment layers between 0.5 and 15 cm typically contained the PLFA Cli 18:1, characteristic of anaerobic bacteria (Findlay et a!. 1990; Findlay and Dobbs 1993; Vestal and White 1989). Thus the shift in PLFA pattern around 0.5 cm depth correlates well with the oxygen penetration as observed by the microsensor study (Fig. 3). In the deepest studied horizon (15-20 cm) a pronounced decrease in the diversity of PLFA indicated also a general decrease in microbial diversity. This is in good agreement with the changes of DGGE patterns (Fig. 5) and decrease in viable cell and

FISH numbers (Table 3 and 5). Throughout the studied sediment horizons PLFA markers characteristic of SRB genera were identified pointing to an even distribution of SRB in the sediment profile. We found the marker fatty acids lOMel6:0 for Desulfobacter (Taylor and Parkes 1983) and il7:l for DesulfovibriolDesulfornicrobiurn (Vainshtein et al. 1992) in significant quantities in all horizons. We also found a17:l, a fatty acid which can be detected in Desutfrcoccus and Destilfosarcina (Kohring et al. 1994). The highest relative percentage of i17:1 was discovered in 15 to 20 cm depth. Whereas the most relative amount of lOMel6:0 was found between 4.0 and 15 cm depth. Second, DGGE analysis was carried out to study the diversity of SRB (Fig. 5). A similar electrophoretic pattern was observed in the different horizons within the upper 15 cm of the sediment, showing an even distribution of SRB. Phylogentic identification of the most prominent bands showed diverse phylogenetic affiliation within the 6-subclass of Proteobacteria. Interestingly most sequences were closely related to SRBs originating from marine environments, e.g. Desulfonema ishimotoei (isolated from Dangast, the present study

115 area,

Hole, identified the substrates

dilution properties substrates as

addition, growth predominantly

utilization of

(i.e. During time The

but should

may as

performed

cells, DGGE 6) (DGGE discrimination evenly

based

that 3

Third,

substrates

cm)

compared

Fourth, the

vertical

were

formed

with

more

ref.

the of

result

USA.

rendering

DGGE

of

be genera

incubation

distributed

about profiles

as

showing

Desulfr’bacter/Desuljobacula

4

Fukui

the every

H,/CO,,

also

the

used

of

and

added

of

noted

abundant

and

known

in profile ref.

flocs

the using

typical

known

to which

sediment, viable

an six

profiling.

quantified

found

or

6; Deculfrbacter

Rabus

substrate et members FISH

of

from analysis

this

that

(Fig.

to growth underestimation

weeks

Fig. the

FISH

the

al.

generally of

throughout

detectable

from

requires

the

for

SRBs.

cells

population

method

this

Length reversly

the

(Table

in 1999)

et

5) 7 utilization

Desul,tovibrio.

if

MPN

c

a

al. In and

was

the

all Desulfobacteriuni used

sediment

of

population

monitored and

in

by of

more

For

contrast,

1993).

of

and of

the

two

5). the

the

a

the DGGE DOGE

performed combining

and/or d). transcribed cultures,

and

bands

the

possible

the

those example,

required

rapidly capacity

Destilfrbacula

presence

active types

The

genus of

of

studied

with

incubation

was

this

which by

the

type

identified

analysis with

profiles

Desulfrbacula, observation

type

were

of

every

tool results

observed

growing

16S

Desulfobacteriu,n. actual SRB with

band cultures

of a

MPN

populations did sediment

16S

of

depth

prolonged

SRB

requires

complete

indeed

rRNA-based to

autotrophicuni

a

sampling 116 period,

FISH

not

of

rRNA could of

or

identify

were

cell

by

variety

and

represented toluolica population

was

with

reversty

(Table

16S those grow

that

DGGE

dominated

horizons numbers

(Table

FISH only

the

in

indirectly

an

oxidation,

incubation

found. could

either these

both rRNA.

active depth of

homogenously good

even

with

capacity

3).

DGGE

be

profiling

substrates

transcribed

(isolated

studies.

4).

known

SRB

of

Identification

be

lactate

detected if MPN-cultures

by determined

tested). agreement

For distribution

cells.

a

(Brysch

by

However, With

monitored

less

reflect

observed

DGGE

were

high

profiling.

time

predominantly

members

example,

for

abundant

of

or

to Regardless

Except

respect

from

typical

After

dominated

in

chemolithoautotrophic

the

ribosome

16S HJCO,/acetate of

possess

in

l6S

et

band

the

with with

under

about

in

with of the ribosome

Eel at.

of

rDNA

This

of

a

for

rRNA

with

to lower

DGGE

cells

the

5

short cells

for

SRB

culture

this

MPN 1987),

the

Pond,

the the

are

two

this

all

of

could 10

grow

latter by content

SRBs

acetate,

throughout

(Fig.

nutritional

species.

developed. part

most individual

16S

conditions in incubation

fragments. the

months.

content

sequences

capacity. members

band (Table

Woods

medium

highest yielded

known

in

indicate

rDNA

(below

MPN

case

5,

were

active

floes

was

Fig.

the

5

In

3)

of

It

is

a in the lower part of the sediment, even though they are also present in the upper part. The opposite was observed for DGGE band 3, representing Desiilfovibrio type SRB. The examination of the microbial community in Dangast by FISH showed that SRB account for a significant part of the detectable Bacteria. Up to 6.5 x lO cells per 3cm were identified as SRB. This number of cells was always higher than the number of viable SRB observed using MPN. Similar discrepancy between MPN counts and for instance DAPI based cell counts have been described (Sievert et al. 1999). The absolute numbers of the different physiological groups might be underestimated since typically less than 1% of the total bacterial population in natural habitats may be accessible by current cultivation dependent methods (Amann et al. 1995). In addition, floc formation and clumping of cells may also lead to an underestimation, since the MPN evaluation assumes that only a single cell is required to initiate growth at the highest dilution. The Desulfosarcina-Desulfococcus-Desulfofrigus group (targeted by probe DSS658) was identified as the most abundant SRB when sediment samples were directly analysed by FISH. This group was also identified by PLFA analysis of sediment samples. However, this group was not identified when MPN and DGGE methods were applied. Possible explanations could be on the one hand that the cultivation conditions used for MPNs do not select for SRBs affiliating with the Desulfisarcina-Desulftcocciis-Desulfofrigus group, and on the other hand that the primers used for DGGE are not targeting this group (Ravenschlag et a!. 2000). The second most abundant group of SRB identified in the sediment samples by FISH belong to the

Desulfiwibrio group. In this case, identification was possible with all three other techniques.

Conclusions A combined microbiological, molecular, biogeochemical and isotope geochemical approach was applied to gain new information on the relationship between abundance, community structure and activity of the sulfate-reducing bacteria (SRB) of a surface marine sediment. Dissolved oxygen and nitrate were only found within the first few mm of the top sediment with different microscaled zones of formation and consumption, as obtained from profile modeling. Bacterial dissimilatory sulfate reduction was measured through the whole investigated sediment section. However, further reaction and reoxidation of hydrogen sulfide led to the development of sub-oxic conditions in the pore water. Microbial and chemical reactions led to the accumulation of dissolved iron and manganese in the suboxic zone.

Maximum sulfate reduction rates (SRR) were found in the top 2 to 10 cm coinciding with a maximum of active SRBs as detected by FISH. Cellular SRR calculated from combined FISH

117 and sulfur

dissolved sulfate

sulfur pyrite, sedimentation

Thus microbiological

found

situ community SRB

Desuifofrigus DSV698

DesulJovibrio possess concentrations results Desul,toi.’ibrio terminal

Acknowledgments. We

the S.

measurements,

microsensors.

facilities. the mansucript.

Munich.

The

Fleischer,

volumetric abundance

laboratory.

wish

allowance

population,

presence

across species.

isotopic

seem

reduction

combined

we

mineralization

the

to

sulfate

and

We

in

suggest

to thank

We the

K.

capacity conditions

group,

spp.

the Contents

of are be

thus

of or

composition

and

The

to

SRR

H.-J.

(PLFA

Neumann, and

studied

wish a

with

cultivatable

cellular decoupled at

lactate

work

upper B.

grateful

good application -

Desuljm’ibrio authors

at

most

low

to that

by

data

Schnetger

to Brumsack

additional

the

and 0.

step

to

and

DGGE correlation

in vertical

and

thank

and sediment

cellular

activity.

the

basically

sampling

likely

to Eickert, J.

the

utilize

are

MPN

in

of sulfur

from

particle

acetate

Botzenhardt,

B.B.

SRBs

Desu1sarcina-Desu1fococcus-Desu1fofrigus

the the

tidal

indebted of

iron of

and

sediment

contributions

(ICBM

the

analyses) by rates

reversly

anaerobic

However,

Nationalparkverwaltung was molecular

isotopic

Jørgensen

acetate

was

A.

groups.

H.

stay

in

time flats.

in mono

mixing

vertical

members

Lüschen a

the

Eggers, dominated

observed under

to

given

constant

point

profile,

Oldenburg)

The

C.

T. transcribed upper

sulfides

compositions

and

tools

(bioturbation).

zone

with

as

Probian 118 Kjaer

profile

for

(DGGE

conditions

study

horizon

in

from

and

(ICBM

revealed

of

layers lactate.

constructive

between respect demonstrated

regardless

of

June

along

by

for

the

(AVS)

V.

the

of

the

was

and

SRBs

16S

of

providing

kindly

1999 cannot

Hübner of

Oldenburg) AVS

temperate

Desulfosarcina-Desulfococcus

the disproportionation

to

of

by

This D.

supported

essentially the PCR-amplified

the

rRNA.

Niedersächsisches

is

the

targeted

of

the -

Lange

vertical

and

FISH

sediment.

different

are in

suggestions

always

allowed

the

presumably

that

for

is

most

the agreement

significantly

the

It

intertidal

biogeochemical

in

(MPI for constructing

and

diverse is

by biosensors

by

sediment

key

stable

open

be

known agreement

technical

techniques.

Max

Based probes

access

in

Bremen) related

populations

and

16S

active

mud

with

the SRB

of

sulfide

with

Planck

Wattenmeer

that

influenced

on

reading

intermediate

profile.

for DSS685

to

rDNA)

case

support,

flat.

0, to

group

respect

are

the

part microbial

these

with for

The zonation.

analytical the

either

species,

and

Society,

evenly

present

of

help for

of

nitrate

of

SRB

The

SRB

and

low and

and

H,S

the

the

and

by

the to

the

in

for

in References

AlBERT, D., AND C. S. MARTlNs. 1997. Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Marine Chem. 56: 27-37.

AMANN, R., W. LuDwIG, ANI) K. H. ScHI.I.I1IR. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169. BERNER, R. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282: 45 1-473. BI.IGH, E.G., ANI)W. J. DYi. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. BOTTcHIR, M., B. HIsPlNHIl1)t, E. LLonIT-BRossA, C. BEARDsI.Ey, 0. LARSEN, A.

SCHRAMM, A. WIELAND, G. BOTTCHIR, U.-G. BlNlNGEI, AND R. AMANN. 2000. The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont. Shelf Res. 20: 1749-1769.

—, B. 0II.scHl.Ao1.:I, T. HOPNER, H.-J. BRUMSACK, ANT) J. RULLKOTTER. 1998. Sulfate reduction related to the early diagenetic degradation of organic matter and ‘black spot” formation in tidal sandflats of the German Wadden Sea: Stable isotope 3(‘C, S,34 180) and other geochemical results. Org. Geochem. 29: 1517-1530. —, ANI) B. THAMI)Iup. 2001. Anaerobic sulfide oxidation and stable isotope fractionation

associated with bacterial sulfur disproportionation in the presence of MnO,. Geochim.

Cosmochim. Ada. 65: 1573-1581.

BOWMAN, J., S. M. RI.:A, S. A. MCCAMMON, AND T. A. MCMEEKIN. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestiold Hills, Eastern Antartica. Environ. Microbiol. 2: 227-237.

BRYSCH, K., C. ScHNlII)I. G. FUCHS, AND F. WIDDEL. 1987. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacteri urn autotrophicurn gen. nov., sp. nov. Arch. Microbiol. 148: 264-274. BURDIGE, D. 1993. Biogeochemistry of manganese and iron reduction in marine sediments. Earth Science Reviews. 35: 249-284.

CANIu.D, D. E., K. HABICHT, AND B. THAMDRLTP. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658-661.

119 —,

CHAMBLRS.

CHRiSTLNSLN, DUAN, C1.INL, CoID-RuwIscl-I.

CYPTONKA, —,

DAIMS,

DEI.AIONTAINE,

DIvIRIux,

FENCHT•:L, FINDI.Ay,

Oceanogr. pure

isotopes species cores

Limnol.

1602- sulfides

compound

evaluation specific

dry adjacent WHITMAN. a 18 bacterial

ecophysiology B. Microbiol.

using Publishers.

M.

family.

1-186.

THAMIup,

POC

J.

and W.-M..

R.

H.,

of 1607.

lipid

in

1969.

W1NHy,

R.

in

marine Oceanogr.

probe by

A.

T.. L.,

sand

H.,

enrichment

J. R.,

sediments mass

43:

ribosomal

cultures

of

disproportionation

H.,

Ecol.

D. analysis,

1990.

Bacteriol. continuous

BRUHI.,

P.

ML.

S. A.

M., a G.

R. Spectrophotometric

253-264.

flats.

AND

EUB338

1984.

more

of in

TRUD1NGLR. sediment.

AN1)

H.

SMOCK,

1985.

20:

A.

J.

Diversity

KING. surficial

mineral

of

COLEMAN,

14:

Hit,

Senckenbergiana F. —

WINI1uy,

R. BAwrH0L0MA,

p.

S.

comprehensive

23-31.

Determination

sulfate-reducing

RNA

cultures

an 172:

C.

454-45

A

27

AMANN, F1jIscHI:1. cultures

C.

is

evaluation

AND

quick

DoBBs.

Limnol

ANT)

1-284,

cycling.

L. insufficient intertidal

3609-36

and

and

J.

Doyij.,

8.

in

T.

M. ANT)

of

method

origin

SMITH.

of

Desu1ftvibrio

Handbook ANT)

mercury

K.

Oceanogr.

1993.

BLACKBURN.

elemental

E.

2

determination

Desuifm’ibrio

19. 1998.

and

D.

B.

H.

probe

ed.

of

sediments:

maritima.

BOTTCHER.

bacteria. K.

S.

of

FIJMMING,

A. for

SCHl.IIlmR,

substrates for

Quantitative

modified

Academic

ANT)

ORKEAND,

PYE.

DesiilJovibuio

Isotope

STAHl..

methylation

the 120 set.

the

of

29:

sulfur-disproportionating

M.

methods

detection

Syst.

determination

26: desulfitricans.

J.

a 1997.

189-192.

technique. Microbiol.

of comparison

fractionation 1998.

oxidized

BURNS.

desul/liricans.

ANI) Press,

1996. 1998.

167-178.

ANT)

AppI.

D.

description hydrogen

Determination

in

R.

species: in

A.

of

M.

Depth Bacterial

San

A

aquatic

Microbiol.

KURMIS.

an

STAHL, 1975.

all

by

combined

WAGNER. Chem.

Methods.

of

Diego.

FEMS

between

estuarine

Bacteria:

sulfate

and

sulfide

dissolved profile

Phylogenetic

of

Fractionation

microbial

Can.

J.

Geol.

microbial

sulfur

1996.

biogeochemistry:

Microbiol.

22:

LIGAI,I,,

of

4:

reduction

1999.

pathway

biogenic

of

bacteria. in J.

Development

sediment. reduced 33-36.

434-444.

141:

Volume-specific

and

Microbiol.

sulfate-reducing

natural metabolism

ecology.

The

communities

definition

precipitated

185-194,

ANT)

Lett.

of

muds

of

Limnol.

in

domain-

sulphur

waters.

sulfur

FEMS sulfur

intact

W.

Lewis

166:

21:

and

and by

the

B.

of —, G. M. KING.AND L. WATUNG. 1989. Efficancy of phospholipid analysis in determining microbial biomass in sediments. App!. Environ. Microbiol. 55: 2888-2893.

—, P. C. POLLARD, D. J. W. MORIARTY, ANT) D. C. WHITE. 1985. Quantitative determination of microbial activity and community nutritional status in estuarine sediments: evidence for a disturbance artifact. Can. J. Microbio!. 31: 493-498.

—, M. B. J. B. GUCKERT, ANT)D.C. WHITE. 1990. Laboratory study of disturbance

in marine sediments: response of a microbial community. Mar. Ecol. Prog. Ser. 62: 121- 133.

FossiNG, H., ANT) B. JøIxINsTN. 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem. 8: 205- 222.

FRoIJ.IcH, P. N., G. P. KLINKHAMMFR, M. L. BENNER, N. A. LUEDTKE, G. R. HEATH, D.

CUIA.EN, P. DAUPHIN, D. HAMMOND, B. HARTMANN, ANT) V. MAYNARD. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochem. Cosmochim. Acta 43: 1075-1090.

FLKUI, M., A. T1.sKE, B. ABMUS. G. MuYZER, AN!) F. WIDDI-i. 1999. Physiology, phylogenetic relationships. and ecology of filamentous sulfate-reducing bacteria (genus Desuijonema). Arch. Microbiol. 172: 193-203.

GARCIA, H. E.. AND L. I. GORDON. 1992. Oxygen solubility in seawater - better fitting

equations. Lirnnol. Oceanogr. 37: 1307-1312. Glans, R. J. 1981. Sites of river derived sedimentation in the ocean. Geology. 9:77-80. HARTMANN, M., AND H. NII:LslN. 1969. 34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofi!e aus der westlichen Ostsee. Geologische Rundschau. 58: 62 1-655.

HOI.MIR, M., AND E. KRISTENSHN. 1996. Seasonality of sulfate reduction and pore water solutes in a marine fish farm: the importance of temperature and sedimentary organic matter. Biogeochem. 32: 15-39. IRION, G. 1994. Morphological, sedimentological and historical evolution of the Jade Bay, southern North Sea. Senckenbergiana maritima. 24: 171-186. JØRGFNsEN. B. B. 1978. A comparison of methods for the quantification of bacterial sulfate

reduction in coastal marine sediments. I. Measurements with radiotracer techniques.

Geomicrobiol. J. 1: 11-27. —. 1982a. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic

interface environments. Phil. Trans. Royal Soc. London. B298: 543-56 1.

121 —. —.

KAPI,AN,

KIIL.

K0IIRIN;,

KRISTENSEN,

KUHI,,

KOHl.,

LARSEN,

LIOIWT-BRoss.’\,

LUDWIG,

LUTHER

MAIDAK,

Nature. Oceanogr.

Gen.

organic C.

acid reducing

Sulfur

sulfate

profiling

Ecol.

biofilm. photosynthesis

environmental

composition 1982b.

Appi.

M.

sequence 1977.

Fe(II)

G.

2000.

WHITE. R..

BAcI-ILF:ITNI:R,

M., M., M.

Microbiol.

profiles

15:

I.,

cycling

Ill,

Environ. D.

L.

The 296: reduction The L. complexes

W.,

matter

B.

Mineralization

GARRITY,

R.

C.

J.

bacteria.

ANI)

biofilms

201-209.

L.,

MARTLUCAN, 22:

H., G., analysis.

L.,

Phycol.

N.

E., 1994.

ST

RDP

0. sulfur

643-645.

D. of

and S. 8

J.

P. Glu1),

in of

T.

J.

STRUNK.

UCKART, applications.

14-832.

34:

Microbiol. E.,

Wadden

B.

R.

and

RIYrINIwRG.

SCHELLENBERGER,

marine and

intertidal (Ribosomal

BO

Comparison

FEMS

KJAER,

in

cycle and

ribosomal

32:

B.

AND RINGUJILRG,

COLE,

Electrophoresis.

195-2

R.

salt

sulfur

H.

photosynthesis-coupled

I:N1IENDER,

LI,

799-8

sediments:

of

Rossu,iO-M0RA,

K.

G. sediments. F.

PLOUG,

S.

of

marsh

Microbiol

Sea

12. 0.

organic

T. ANI)

Wadden

64:

PRAHI..

KLUGHAUER. H.

EIUKE

gas

a

Anal.

12.

J. G.

Database

sediments

coastal

RNA

SCHLEIFLR.

of 1964.

269

emission.

porewaters. N.

Ol.sEN,

LILBURN,

ANI)

R.

RT,

phylogenetic

Chem. M.

Application

matter

1-2696.

P.

AND

Lett. Nature.

Sea

D,viiuux.

19:

ANI)

sequence

Microbiological

N.

AM)

JENSEN. marine

REVSBECH.

Project)

sediments

S.

554-568. J.

B. as

119:

N.

P.

J.

69:

in

P.

C. 1998.

HII)uis.

revealed

PRAMANIK, RAMSING.

122

370:

ANt)

Geochim. Sea

BRENDEL.

KEUGHALER,

the

JIROSCFUWSKI.

T. 3527-3531.

sediment

303-308.

respiration in similarities

continues.

H. relationships

Res.

D. PARKER,

sea

Bacterial 549-552.

R.

an

(Konigshafen,

1997.

RENNENBERU,

A.

AMANN.

by

bed

1994.

43:

acidic

fractionation

1996.

Cosmochim.

STAHL,

1996.

Fluorescence-in-situ-Hybridization.

T.

(Limfjorden,

93-104. -

A

P.

Nuci.

M.

phylogeny

the

M.

Sorptive

in

lake among

Microenvironmental

microscale

R.

Dissolved

based

1998.

1998. WEIZENEGGER,

SCHMIDT, M.

an

role

SAXMAN,

Acids

sediment.

Island

W.

epilithic

ANI)

of

Acta. of

A

dissimilatory

on

preservation

Microbial

MITTII.MAN, based

Denmark).

H2S sulphate sulphur

Res.

phospholipid

of

K.

organic NO-biosensor

AND

60:

J.

Sylt,

microsensor

JF.N

Aquat.

28:

cyanobacterial

on

M.

95

J.

J.

isotopes.

SEN.

comparative

STREDWICK, community

reduction.

Germany):

173-174.

1-960.

NEUMAIFR,

Fe(IIl)

M.

control

of

Limnol.

sulfate-

Microb.

ANI)

TIEDJE.

labile

2000.

fatty

D. for

and

for

J.

of MAyI, L. 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 114: 347-363.

MIYI:R, R. L.. T. KJAER. AND N. P. RIvsI3LcH. 2000. Nitrification and denitrification activity at various salinities and light conditions in estuarine sediment, calculated from nitrate

microsenor profiles, p. 230-253. In T. Kjaer (ed.), Ph. D. Thesis: Development and application of new biosensors for microbial ecology. Aarhus University, Institute for Biological Sciences, Dept. for Microbial Ecology, Aarhus.

MoisLuND, L., B. THAMDRUP, ANT)B. B. JøRGI.NsIN. 1994. Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochem. 27: 129-152.

Moisi, J., F. Mii.i.iio, J. CoINwI:I.1,, AND D. RICKARD. 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Rev. 24: 1-42.

Muyzi, G., S. HoTT1NTRAGl1, A. T1sKI, ANT)C. WAWER. 1996. Denaturing gradient gel

electrophoresis of PCR-amplified 16S rDNA - A new molecular approach to analyse the

genetic diversity of mixed microbial communities, p. 3.4.4.1-3.4.4.22. In A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (ed.), Molecular Microbial Ecology Manual, 2nd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Novijjj, P.C., A. R. M1cH1J,soN, M. 1. SCRANTON, G. T. BANTA, J. E. HOBBlE, AND R. W. HOWARTH. 1988. Hydrogen and acetate cycling in two sulfate reducing sediments: Buzzards Bay and Town Cove, Mass. Geochim. Cosmochim. Acta 52: 2477-2486. OENEMA, 0. 1990. Sulfate reduction in fine-grained sediments in the Eastern Scheldt, southwest Netherlands. Biogeochem. 9: 53-74.

PAIoJAIvI, A., ANT) B. P. A1.I3I.i.s. 1998. Extraktion und Bestimmung membrangebundener

Phospholipidfettsauren, p. 187-196. In Remde, P., and Tipmann, P. (ed.), Mikrobiologische Charakterisierung aquatischer Sedimente. R. Oldenbourg Verlag, MUnchen,Wien. PICHLMAYER, F. AND K. BLOCHBERGER, 1988. Isotopenhaufigkeitsanalyse vo Kohienstoff, Stickstoff und Schwefel mittels Geratekopplung Elementaranalysator Massenspektrometer. Fresenius. Z. Anal. Chem. 33: 196-201.

RAl3us, R., T. HANSEN, AND F. WIDDEI.. 2000. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed), The Prokaryotes: An evolving electronic resource for the microbiological community. Springer, New York.

R. NORDHAUS, W. LUDWIG, AND F. WIDDEI.. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. AppI. Environ. Microbiol. 59: 1444-1451.

123 RAVLNSCHI.AG, K., K. SAHM, C. KN0I3I.AucFI, B. B. JøRGINs1N, ANI) R. AMANN. 2000. Community structure, cellular rRNA content and activity of sulfate-reducing bacteria in marine Arctic sediments. App!. Environ. Microbiol. 66: 3592-3602.

—, K. SAHM. J. PERNTHALIR, ANI)R. AMANN. 1999. High bacterial diversity in permanently cold marine sediments. AppI. Environm. Microbiol. 65: 3982-3989. Rivsnici-i, N. p. 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34: 474-478.

RocHEI.1i, P., B. CRAGG, J. FRY, R. PARKES, AND A. WIIGHTMAN. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbio!. Ecol. 15: 215-226.

SAHM, K., ANI) lj.-G. BININcIR. 1998. Abundance. vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Mar. Ecol. Prog. Ser. 165: 7 1-80.

—, B. J. MACGREGOR, B. B. JøRGINs1N, ANI) D. A. STAHl.. 1999. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol. 1: 65-74.

SASS, H., E. WwRINGA, H. CYPIONKA. H. D. BABENY.IEN. AND J. OVFRMANN. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch. Microbiol. 170: 243-251. ScHuI1IRT,C. J., T. FlRDll.MAN. AM) B. STROTMANN. 2000. Organic matter composition and sulfate reduction rates in sediments off Chile. Org. Geochem. 31: 35 1-361. SwvIIT. S., T. BRINKHol1-,G. MUYZIR, W. Ziinis. ANDJ. KuEvlR. 1999. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appi. Environ. Microbiol. 65: 3834-3842.

SNAIDR, J., R. AMANN, I. Hunu. W. LuDwIG. ANI) K-H. ScHI±n±R. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appi. Environ. Microbiol. 63: 2884-2896.

SØRENSEN, J., D. CHRISTENSEN,AND B. B. JøRouNsiN. 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. App!. Environ. Microbiol. 42: 5-11.

STRIJNK,0., 0. GROSS, B. Ri.:IcHEL,M. MAY, S. HERMANN,N. STUCKMANN,B. NONHOFF.T.

GINHART,A. VILBIG, M. LENKE, T. LUDWIG,A. BODE. K.-H. ScHuIFER. AND W.

124 LUDWIG. 1998-2000. ARB: a software environment for sequence data. http://www.mikro.biologie.tu-muenchen.de.

TAYLOR, J., AND J. PARKES. 1983. The celluLarfatty acids of the sulphate-reducing bacteria,

Desuijobacter sp., Desulfobulbus sp. and Desuljovibrio desulfuricans. J. Gen. Microbiol. 129: 3303-3309.

THAMDRUP, B., H. FossING, AND B. B. JØRGENSEN. 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta. 58:5115-5129.

TRUDINGER, P. 1992. Bacterial sulfate reduction: Current status and possible origin, p. 367- 377. In M. Schidlowski, S. Golubic, M. Kimberley, D. McKirdy, and P. Trudinger (ed.), Early organic evolution. Springer, Berlin.

VAINSHTEIN, M., H. HIPPE.ANI) R. M. KROPPENSTEDT. 1992. Cellular fatty acid composition of DesulJovibrio species and its use in classification of sulfate-reducing bacteria. Syst. AppI. Microbiol. 15: 554-566.

Vi:sTAI, J. R., AND D. C. WHITE. 1989. Lipid analysis in microbial ecology. BioScience. 39: 535-541.

VOLKMAN, J. K., D. ROJHAN, J. RULLKOTTER, B. M. SCHOLZ-BOTrCHER, AND G. LIEBZEIT. 2000. Sources and diagenesis of organic matter in tidal flats sediments from the German Wadden Sea. Cont. Shelf Res. 20: 1139-1158.

VOSJAN, J. 1974. Sulphate in water and sediment of the Dutch Wadden Sea. Neth. J. Sea Res. 8:208-213.

WESTRICH, J., ANt) R. BERNER. 1988. The effect of temperature on rates of sulphate reduction

in marine sediments. Geomicrobiol. J. 6: 99-1 17.

WIDDEL, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, p. 469- 585. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms. John Wiley & Sons, New York.

WIDDEL, F., AND F. BAK. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352- 3378. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The

prokaryotes, 2 ed. vol. 3. Springer-Verlag, New York.

WIERINGA, E., J. OVERMANN, AND H. C’pIoNKA. 2000. Detection of abundant sulphate-

reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ. Microbiol. 2: 417-427.

125 Wo1.I.AsT.

In change.

R.

F.

R. C.

John

Mantoura,

1991.

Wiley

The

&

coastal

J.-M.

Sons,

Martin,

New

organic

York.

and

carbon

R.

Wollast

126

cycle:

fluxes,

(ed.),

Ocean

sources,

margin

and

sinks.

processes

p.

365-381.

in

global

Mein

Verständnis

hier

Stefan

Dirk

hatten

haben.

Mein

aussprechen,

Meinen Danksagung

Weiterhin

Einen

nicht

Schüler.

groBer

allergroBter

und

Sievert.

besonderen

ersten

genannten

von

bedanke

ich

die

Dank

[hr

Olaf

deren

stets

Dank

inir

seid

Dank

Dank

gilt

ich

Kniemeyer,

Kollegen

gestarkt

das

Fachwissen

nicht

mich

auch

rnöchte

wende

Thema

gilt

nur

bei

wurde.

Jens

jedoch

des

die

ich

der

dieser

ich

Udo

ich

Institutes,

Harder

besten

an

gesamten

häufig

Prof.

Susanne

Heyen.

meine

Arbeit

und

Kollegen

Fritz

profitiert

mit

Mitstreiter

Jan

uberlassen

Abteilung

Jan

und

deren

Detmers

Widdel

Küver,

sondern

meiner

habe.

Hilfe

Karsten

Mikrobiologie

und

die

und

und

diese

Mutter,

auch

deren

stets

natürlich

Prof.

Arbeit

gute

Zengler,

em

Durchführung

durch

Freunde.

Bo

offenes

und

meinem

entstanden

Barker

deren

allen

Astrid

Ohr

Büropartner

anderen

Liebe

ermoglicht

JØrgensen

Behrends,

ist.

für

mich und