Desulfoconvexum Algidum Gen. Nov., Sp. Nov., a Psychrophilic Sulfate-Reducing Bacterium Isolated from a Permanently Cold Marine Sediment

Total Page:16

File Type:pdf, Size:1020Kb

Desulfoconvexum Algidum Gen. Nov., Sp. Nov., a Psychrophilic Sulfate-Reducing Bacterium Isolated from a Permanently Cold Marine Sediment International Journal of Systematic and Evolutionary Microbiology (2013), 63, 959–964 DOI 10.1099/ijs.0.043703-0 Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated from a permanently cold marine sediment Martin Ko¨nneke,13 Jan Kuever,2 Alexander Galushko14 and Bo Barker Jørgensen11 Correspondence 1Max-Planck Institute for Marine Microbiology, Bremen, Germany Martin Ko¨nneke 2Bremen Institute for Materials Testing, Bremen, Germany [email protected] A sulfate-reducing bacterium, designated JHA1T, was isolated from a permanently cold marine sediment sampled in an Artic fjord on the north-west coast of Svalbard. The isolate was originally enriched at 4 6C in a highly diluted liquid culture amended with hydrogen and sulfate. Strain JHA1T was a psychrophile, growing fastest between 14 and 16 6C and not growing above 20 6C. Fastest growth was found at neutral pH (pH 7.2–7.4) and at marine concentrations of NaCl (20– 30 g l”1). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain JHA1T was a member of the family Desulfobacteraceae in the Deltaproteobacteria. The isolate shared 99 % 16S rRNA gene sequence similarity with an environmental sequence obtained from permanently cold Antarctic sediment. The closest recognized relatives were Desulfobacula phenolica DSM 3384T and Desulfobacula toluolica DSM 7467T (both ,95 % sequence similarity). In contrast to its closest phylogenetic relatives, strain JHA1T grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity indicated the operation of the reductive acetyl-CoA pathway for inorganic carbon assimilation. Beside differences in physiology and morphology, strain JHA1T could be distinguished chemotaxonomically from the genus Desulfobacula by the absence of the cellular fatty acid C16 : 0 10-methyl. Phylogenetic differentiation from other genera was further supported by DsrAB and AprBA sequence analysis. Based on the described phylogenetic and phenotypic differences between strain JHA1T and its closest relatives, the establishment of a novel genus and a novel species, Desulfoconvexum algidum gen. nov., sp. nov. is proposed. The type strain is JHA1T (5DSM 21856T 5JCM 16085T). Anaerobic degradation of organic matter in marine anoxic marine sediments (Jørgensen, 1982). The major sediments generally proceeds via several steps of catabolic electron donors for sulfate reduction are end products of processes which are catalysed by a variety of micro- fermentation, such as short-chain organic acids and organisms. Since sulfate occurs at a high concentration hydrogen (Rabus et al., 2000). The concentrations of these in ocean water, the dissimilatory reduction of sulfate compounds in marine sediments are generally low, represents the major terminal remineralization process in indicating the close coupling of fermentation and the terminal oxidation step (Finke & Jørgensen, 2008). 3Present address: Organic Geochemistry Group, Department of Most of the ocean’s seafloor, including the deep ocean and Geosciences and MARUM Center for Marine Environmental Sciences, polar coastal areas, exhibits permanently cold conditions. University of Bremen, Germany Yet, only a limited number of psychrophilic or psychro- 4Present address: Department of Microbial Ecology, University of tolerant sulfate-reducing bacteria (SRB) have been isolated Vienna, Austria so far. However, rates of in situ sulfate reduction in 1Present address: Center for Geomicrobiology, Department of permanently cold sediments at the coast of the Svalbard Bioscience, Aarhus University, Denmark archipelago have been determined to be as high as those of Abbreviation: SRB, Sulfate-reducing bacteria. temperate marine sediments, pointing to the occurrence of The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA cold-adapted SRB (Sagemann et al., 1998). From the same gene, dsrAB and aprBA sequences of strain JHA1T are EF442984, location, novel psychrophilic SRB were selectively isolated JQ901403 and EF442915, respectively. at low temperatures with acetate, lactate or propionate as Two supplementary figures are available with the online version of this the electron donors (Knoblauch & Jørgensen, 1999, paper. Knoblauch et al., 1999) and most of the described isolates 043703 G 2013 IUMS Printed in Great Britain 959 M. Ko¨nneke and others Table 1. Selected characteristics for differentiation of strain JHA1T from its closest relatives Strains: 1, Desulfoconvexum algidum gen. nov., sp. nov. JHA1T;2,Desulfobacula toluolica (DSM 7467T) (data from Rabus et al.,1993);3,Desulfobacula phenolica (DSM 3384T) (Bak & Widdel, 1986); 4, Desulfospira joergensenii (Finster et al., 1997). All strains used butyrate (5 mM) and fumarate (10 mM) as electron donors, and sulfate (28 mM) and thiosulfate (10 mM) as electron acceptors. SRWG, Sulfate reduction without growth; +,positive;2, negative; ND, no data available. Characteristic 1 2 3 4 Cell morphology Curved, vibrioid Oval–coccoid Oval to curved Curved, vibrioid Cell width (mm) 1.5 1.2–1.4 1–1.5 0.7–0.8 Cell length (mm) 2.0–3.5 1.2–2.0 2–3 1–2 Motility +++2 G+C content (mol%) 46 42 41 49 Electron donors for sulfate reduction (mM) Hydrogen + 22+ Formate (20) + 2 ++ Acetate (20) 22+ 2 Propionate (15) 222 Valerate (5) + 2 ND ND Caproate (5) + 22ND Caprate (2) + ND ND ND Lactate (10) + 22+ Malate (10) +++2 Succinate (10) 2 +++ Pyruvate (10) 2 +++ Ethanol (10) +++2 n-Propanol (10) +++2 n-Butanol (10) +++2 Methanol (10) + 2 ND SRWG Glycerol (10) + ND ND + Glycine (10) + ND ND SRWG Alanine (10) + ND ND SRWG Serine (10) + ND ND ND Betaine (10) + ND ND + Choline chloride (10) + ND ND + Proline (10) + ND ND + Sorbitol (10) + ND ND 2 Mannitol (5) + ND ND 2 Benzoate (3) +++SRWG Electron acceptors (mM) Sulfite (5) 2 ND 2 + Sulfur + ND 2 + Nitrate 2 ND 22 Fermentable substrates (mM) Pyruvate 2 ND ND 2 Malate + ND ND 2 Lactate 2 ND ND 2 Fumarate + ND ND 2 Autotrophy + 22+ Conditions for growth Range (uC) 0–20 ND ND 8–30 Optimum (uC) 14–16 28 28 26–30 Optimum pH 7.2–7.4 7.0–7.1 ND 7.4 Optimum NaCl (g l21) 20–30 20 20 12–20 belonged to the order Desulfobacterales. Further studies using 1999; Ravenschlag et al., 1999, 2000, 2001). In order to molecular methods verified the presence of active and culture and identify the potentially most abundant and active abundant SRB in several coastal sediments sampled from lithotrophic SRB from these fjords, liquid-dilution cultures different fjords of the Svalbard archipelago (Sahm et al., were incubated at 4 uC with hydrogen or formate as the 960 International Journal of Systematic and Evolutionary Microbiology 63 Desulfoconvexum algidum gen. nov., sp. nov. electron donor in combination with sulfate as the sole A variety of organic compounds were tested as potential electron acceptor (Ko¨nneke, 2001). From dilution series with electron donors for sulfate reduction. Substrates were formate, seven isolates were obtained that were identified by added from sterile stock solutions at a final concentration 16S rRNA gene sequence analysis as Desulfotalea psychrophila of 2–20 mM. Hydrogen was provided (H2/CO2, 90 : 10) or Desulfotalea arctica. Three lithotrophic SRB were isolated with 1 bar overpressure in the headspace. Acetate and in pure culture with hydrogen as the sole electron donor. lactate oxidation were determined with an HPLC system According to their 16S rRNA genes, two strains were equipped with an Aminex HPX-87H ion-exclusion column affiliated with the Desulfobulbaceae within the Deltaproteo- (Bio-Rad) and analysed at 60 uC using 5 mM H2SO4 as the bacteria, sharing highest identity with the psychrophilic SRB mobile phase. Spectrophotometric detection and quan- strain LSv53 (99.9 %) and an environmental 16S rRNA gene tification were performed at 210 nm (UVIS 204; Linear sequence (Sva0999; 97.2 %). The third pure culture, strain Instruments). JHA1T, was isolated from Smeerenburgfjorden and was found to be a member of the Desulfobacteraceae.Strain The psychrophilic isolate utilized a variety of organic JHA1T was subjected to a phylogenetic, physiological and compounds, including fatty acids, alcohols and sugars as well as amino acids (Table 1). Lactate as an electron donor chemotaxonomic characterization and comparison with its T closest described relatives, Desulfobacula phenolica DSM was completely oxidized to CO2. Strain JHA1 shared the 3384T, Desulfobacula toluolica DSM 7467T (both ,95 % 16S capacity with Desulfobacula toluolica and Desulfobacula rRNA gene sequence similarity) and Desulfospira joergensenii phenolica to grow with the aromatic compound benzoate DSM 10085T (,93 %). as an electron donor for sulfate reduction. In contrast to both members of the genus Desulfobacula, strain JHA1T T Strain JHA1 was isolated from sediment at a depth of grew chemolithoautrophically with hydrogen as a sole 5 cm from a fjord on the north-west coast of Svalbard electron donor and with CO2/bicarbonate as a sole carbon (Smeerenburgfjorden; 79u 429 8150 N11u 059 1890 E). The source. Autotrophic growth was verified by transferring bottom water temperature during sampling (July 1998) the culture repeatedly into medium free of any organic was 0 uC. Initial enrichment was performed in a 10,000- substrate. Activity of CO dehydrogenase in a cell-free extract times dilution in defined carbonate-buffered saltwater of strain JHA1T, measured as previously described at 20 uC medium (Widdel & Bak, 1992) with hydrogen (headspace (Galushko & Schink, 2000), indicated the operation of the H2/CO2 90 : 10) as the sole electron
Recommended publications
  • Prokaryotic Community Structure and Activity of Sulfate Reducers in Production Water from High-Temperature Oil Reservoirs with and Without Nitrate Treatment
    Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment Dr. Antje Gittel Dept. of Biological Sciences, Aarhus University ISMOS 2 Aarhus 2009 Introduction Hypothesis Results Conclusions Offshore oil production systems Separation Oil Gas Water Production Injection ~80 degC 50-60 degC Reservoir ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Characteristics of the study sites Norway Halfdan • Injection of sulfate-rich seawater Denmark • High loads of organic carbon compounds in the reservoir Dan Enrichment of sulfate -reducing prokaryotes Danish Underground Consortium, Maersk Oil (SRP ) that produce H 2S Souring, plugging, biocorrosion, toxicity, ..... • Strategy to control SRP activity at Halfdan: Addition of nitrate to the injection water ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Principles of SRP inhibition by nitrate addition (i) Stimulation of heterothrophic nitrate- reducing bacteria (hNRB ) that hNRB outcompete SRP for electron donors (ii) Activity of nitrate -reducing, sulfide - oxidizing bacteria (NR-SOB ) resulting in SRP NR-SOB a decreasing net production of H2S (iii) Increase in redox potential by the production of nitrite and nitrous oxides and thereby and inhibition of SRP ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Compared to an untreated oil field (Dan), nitrate addition to the injection water at Halfdan stimulates the growth of hNRB and/or NR-SOB , resulting in: 1) A general change in the prokaryotic community composition, i.e. • Presence of competitive hNRB and NR-SOB and/or • Presence of SRP that are able to reduce nitrate instead of sulfate 2) A decrease in SRP abundance and activity and 3) A reduced net sulfide production.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
    Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion.
    [Show full text]
  • Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
    Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, R. Guyoneaud To cite this version: Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, et al.. Distribution of Sulfate- Reducing Communities from Estuarine to Marine Bay Waters. Microbial Ecology, Springer Verlag, 2017, 73 (1), pp.39-49. 10.1007/s00248-016-0842-5. hal-01499135 HAL Id: hal-01499135 https://hal.archives-ouvertes.fr/hal-01499135 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Microb Ecol (2017) 73:39–49 DOI 10.1007/s00248-016-0842-5 MICROBIOLOGY OF AQUATIC SYSTEMS Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin 1,2 & Marisol Goñi-Urriza1 & Claire Gassie1 & Elisabeth Carlier 1 & Mathilde Monperrus3 & Rémy Guyoneaud1 Received: 23 May 2016 /Accepted: 17 August 2016 /Published online: 31 August 2016 # Springer Science+Business Media New York 2016 Abstract Estuaries are highly dynamic ecosystems in which gradient. The concentration of cultured sulfidogenic microor- freshwater and seawater mix together.
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
    d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]
  • Biogeochemical Processes and Microbial Diversity of the Gullfaks and Tommeliten Methane Seeps (Northern North Sea)
    Biogeosciences, 5, 1127–1144, 2008 www.biogeosciences.net/5/1127/2008/ Biogeosciences © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea) G. Wegener1, M. Shovitri1, K. Knittel1, H. Niemann1,2,*, M. Hovland3, and A. Boetius1,2,4 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 3Statoil, Stavanger, Norway 4Jacobs University Bremen, Bremen, Germany *now at: Institute for Environmental Geosciences, University of Basel, Switzerland Received: 21 January 2008 – Published in Biogeosciences Discuss.: 25 February 2008 Revised: 3 June 2008 – Accepted: 11 July 2008 – Published: 18 August 2008 Abstract. Fluid flow related seafloor structures and gas seeps microbial community incorporates methane or its metabo- were detected in the North Sea in the 1970s and 1980s by lites. The microbial community composition of both shallow acoustic sub-bottom profiling and oil rig surveys. A vari- seeps shows high similarities to the deep water seeps asso- ety of features like pockmarks, gas vents and authigenic car- ciated with gas hydrates such as Hydrate Ridge or the Eel bonate cements were found to be associated with sites of River basin. oil and gas exploration, indicating a link between these sur- face structures and the underlying, deep hydrocarbon reser- voirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tom- 1 Introduction meliten, Witch’s Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of The North Sea is a marginal sea of the Atlantic on the Eu- cold seep ecosystems in the Northern North Sea.
    [Show full text]
  • An Investigation Into the Suitability of Sulfate-Reducing Bacteria As Models for Martian Forward Contamination" (2018)
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 An Investigation into the Suitability of Sulfate- Reducing Bacteria as Models for Martian Forward Contamination Maxwell M. W. Silver University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, Stars, Interstellar Medium and the Galaxy Commons, and the The unS and the Solar System Commons Recommended Citation Silver, Maxwell M. W., "An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination" (2018). Theses and Dissertations. 2828. http://scholarworks.uark.edu/etd/2828 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Space and Planetary Sciences by Maxwell M. W. Silver Pacific Lutheran University Bachelor of Science in Geosciences, 2015 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. Vincent Chevrier, Ph.D. Dissertation Director D. Mack Ivey, Ph.D. Timothy Kral, Ph.D. Committee Member Committee Member Larry Roe, Ph.D. Committee Member Abstract The NASA Planetary Protection policy requires interplanetary space missions do not compromise the target body for a current or future scientific investigation and do not pose an unacceptable risk to Earth, including biologic materials.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Micro-Organisms and Earth Systems--Advances In
    65 Book 22/7/05 1:19 pm Page i Micro-organisms and Earth systems – advances in geomicrobiology There is growing awareness that important environmental transformations are catalysed, mediated and influenced by micro-organisms, and such knowledge is having an increasing influence on disciplines other than microbiology, such as geology and mineralogy. Geo- microbiology can be defined as the study of the role that microbes have played and are playing in processes of fundamental importance to geology. As such, it is a truly inter- disciplinary subject area, necessitating input from physical, chemical and biological sciences. The book focuses on some important microbial functions in aquatic and terrestrial environments and their influence on ‘global’ processes and includes state-of-the-art approaches to visualization, culture and identification, community interactions and gene transfer, and diversity studies in relation to key processes. Microbial involvement in key global biogeochemical cycles is exemplified by aquatic and terrestrial examples. All major groups of geochemically active microbes are represented, including cyanobacteria, bacteria, archaea, microalgae and fungi, in a wide range of habitats, reflecting the wealth of diversity in both the natural and the microbial world. This book represents environmental microbiology in its broadest sense and will help to promote exciting collaborations between microbiologists and those in complementary physical and chemical disciplines. Geoffrey Michael Gadd is Professor of Microbiology and Head of the Division of Environmental and Applied Biology in the School of Life Sciences at the University of Dundee, UK. Kirk T. Semple is a Reader in the Department of Environmental Science at Lancaster University, UK. Hilary M.
    [Show full text]
  • Copyright © 2018 by Boryoung Shin
    HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO A Dissertation Presented to The Academic Faculty by Boryoung Shin In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Georgia Institute of Technology Georgia Institute of Technology May 2018 COPYRIGHT © 2018 BY BORYOUNG SHIN HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO Approved by: Dr. Joel E. Kostka, Advisor Dr. Kuk-Jeong Chin School of Biologial Sciences Department of Biology Georgia Institute of Technology Georgia State University Dr. Martial Taillefert Dr. Karsten Zengler School of Earth and Atmospheric Sciences Department of Pediatrics Georgia Institute of Technology University of California, San Diego Dr. Thomas DiChristina School of Biological Sciences Georgia Institute of Technology Date Approved: 03/15/2018 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor Prof. Joel E Kostka for the continuous support of my Ph.D studies and related research, for his patience, and immense knowledge. His guidance greatly helped me during the research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Martial Taillefert, Prof. Thomas DiChristina, Prof. Kuk-Jeong Chin, and Prof. Karsten Zengler for their insightful comments and encouragement, but also for the hard questions which provided me with incentive to widen my research perspectives. I thank my fellow labmates for the stimulating discussions and for all of the fun we had in the last six years. Last but not the least, I would like to greatly thank my family: my parents and to my brother for supporting me spiritually throughout my whole Ph.D period and my life in general.
    [Show full text]