In-Medium Excitations

Total Page:16

File Type:pdf, Size:1020Kb

In-Medium Excitations In-Medium Excitations version from December 6, 2008 Convenors: Ralf Rappa1, Burkhard K¨ampferb2 a Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843-3366, U.S.A. b Forschungszentrum Dresden-Rossendorf, Institut fur¨ Strahlenphysik, D-01314 Dresden, PF 510119, Germany Spectral properties of hadronic excitations are direct probes of the strongly interacting medium as created in energetic collisions of heavy nuclei. In this chapter we discuss the per- tinent theoretical background, recent developments and perspectives for using electromagnetic radiation, as well as strange and charm hadrons, to infer microscopic properties of QCD matter. In the electromagnetic emission sector, our focus is on thermal dileptons and the in-medium modifications of the light vector mesons. We outline their potential for characterizing the QCD phase transition by establishing connections of the electromagnetic correlation function to or- der parameters of chiral symmetry restoration. Complementary information can be obtained from hadronic decays of resonances probing the more dilute stage of a heavy-ion collision. We then turn to in-medium properties of strange and charm quarks and hadrons, which includes charm-quark diffusion in the QGP as well as spectral functions of K and D mesons in hadronic matter. While these quantities are not directly accessible in experiment, a careful study of their production systematics in terms of total abundance, chemistry and collective flow patterns will lead to key insights into the relevant interactions in high-density matter. Finally, we discuss medium effetcs on charmonia in both the QGP and hadronic matter, and how these could manifest themselves in observables. 1Email: [email protected] 2Email: [email protected] Contents 1 Introduction 2 2 Electromagnetic Probes and Light Vector Mesons 6 2.1 Brief Overview of Experimental Status and Interpretation . 6 2.2 Emissivity of Strongly Interacting Matter . 8 2.2.1 Electromagnetic Correlation Function and Thermal Emission Rates . 8 2.2.2 Electromagnetic Spectral Function in Vacuum . 9 2.2.3 Low-Density Expansions and Chiral Mixing . 11 2.3 Sum Rules . 12 2.3.1 QCD Sum Rules . 12 2.3.2 Chiral Sum Rules and Axialvector Spectral Function . 20 2.4 Vector Mesons in Medium: Hadronic Models . 23 2.4.1 ρ Meson . 24 2.4.2 ! Meson . 39 2.4.3 φ Meson . 42 2.5 Thermal Dilepton Rates . 42 2.5.1 Lattice QCD . 42 2.5.2 Hadronic Approaches . 44 2.5.3 RG Approach: Vector Manifestation . 46 2.6 Thermal Photon Rates . 48 2.6.1 Direct Single Photons . 48 2.6.2 Diphotons and In-Medium \σ" . 50 3 Hadronic Resonance Spectroscopy 55 3.1 Meson Resonances . 55 3.2 Baryon Resonances . 58 3.2.1 Chiral Symmetry of Baryons . 58 3.2.2 Baryon Masses and QCD Condensates . 58 3.2.3 Baryon Resonance Decays in Heavy-Ion Collisions . 60 4 Strangeness 63 4.1 Kaons in Dense Matter . 63 4.1.1 Mean Field Dynamics . 64 4.1.2 Effects Non-Linear in Density . 65 4.1.3 Coupled Channel Dynamics . 67 4.1.4 Kaons in Pion Matter . 73 4.1.5 Chiral Symmetry Restoration . 74 4.2 Strange Baryons . 75 2 4.2.1 QCD Sum Rules . 76 4.2.2 Hadronic Models . 76 4.2.3 Exotica . 76 5 Open Charm Probes 78 5.1 Perturbative Calculation of Charm-Quark Production near Threshold . 80 5.1.1 Resummation . 81 5.1.2 Charm-Quark Production in pp Collisions . 82 5.2 Charm-Quark Interactions in the QGP . 86 5.2.1 Energy Loss of Charm Quarks at High Momentum . 86 5.2.2 Charm Diffusion and Nonperturbative Correlations in the QGP . 88 5.2.3 Charm Dilepton Decays . 94 5.3 Charm Chemistry and Thermal Models . 95 5.4 QCD Sum Rules . 97 5.4.1 Open Charm Mesons . 97 5.4.2 Remarks on J= . 100 5.5 Charm Hadrons in Medium . 100 5.5.1 Cold Nuclear Matter . 100 5.5.2 Hot Pion Gas . 102 5.5.3 Hot and Dense Nuclear Matter . 103 5.5.4 Charm Baryons . 106 6 Charmonium 108 6.1 Charmonium in Equilibrium . 108 6.1.1 Color screening and quarkonium . 108 6.1.2 Free Energy of Static Quarks in Lattice QCD . 109 6.1.3 Spectral functions and Euclidean correlators . 111 6.1.4 Charmonium Spectral Functions and Potential Models . 112 6.2 Charm(onium) Production within the Statistical Hadronization Model . 113 6.2.1 Introduction . 113 6.2.2 Assumptions and ingredients of the statistical hadronization model . 114 6.2.3 Energy dependence of charmed hadrons yield . 117 6.2.4 Effects of in-medium modification of charmed hadrons masses . 118 6.2.5 Conclusions . 120 6.3 Charmonium Transport in Hot and Dense Medium . 121 6.3.1 Introduction . 121 6.3.2 Normal and Anomalous Suppression . 122 6.3.3 Regeneration . 127 6.3.4 Transverse-Momentum Distributions . 130 6.3.5 Charmonia in Heavy-Ion Collisions at Low Energies . 132 7 Excitations of Color-Superconducting Matter 135 7.1 Color Superconductivity in the QCD Phase Diagram . 135 7.2 Strong decays of mesonic resonances . 135 7.3 Pre-Critical Phenomena of Color Superconductivity . 138 8 Executive Summary and Relations to Observables 143 1 Chapter 1 Introduction The vacuum of strong interactions is of a rather complex nature giving rise to several funda- mental phenomena, most notably the confinement of quarks and the generation of (the major part of) hadronic masses. The nontrivial vacuum structure is associated with the formation of quark and gluon condensates, which are intimately related to the spontaneous breaking of chiral symmetry and the breaking of scale invariance of Quantum Chromodynamics (QCD). The condensates are, however, not directly observable, and therefore information has to be obtained from excitations of the ground state. At zero temperature and density, the physical excitations are colorless hadrons, whose spin and flavor structure provide a rich laboratory for spectroscopy. At sufficiently high temperature (T ) and/or baryon density, %B (or baryon chemical po- tential, µB), asymptotic freedom of QCD predicts the existence of new phases of matter, in particular the Quark-Gluon Plasma (QGP) at high T and the Color-Superconductor (CSC) at high µB and low T . It is expected that the bulk excitation of the QCD vacuum (thermal or density) induces a \melting" of the condensate structures, accompanied by the restoration of chiral symmetry and deconfinement of color charges. At finite temperature (and vanishing µB) this transition is fairly well established by lattice QCD (lQCD) computations, with a (pseudo-) critical temperature of T = 180 20 MeV. While this is presumably not a phase transition in c the strict sense, lQCD clearly reveals a rapid change in the thermodynamic properties of the system (most notably energy density) over a rather small interval in temperature. The prop- erties of the equation of state and their possible signals in heavy-ion reactions are discussed in detail in Parts [Bulk Properties] and [Observables] of this book. The phase transformation, in turn, implies dramatic changes in the underlying microscopic properties of the strongly interacting medium. Naively, this is realized by a conversion of the degrees of freedom, i.e., from hadrons to quarks and gluons, as roughly reflected in the (de- generacy) coefficient of the equation of state. However, this notion is far from providing an understanding of the mechanisms inducing deconfinement and chiral symmmetry restoration in the medium. More precisely, the microscopic matter properties are characterized by density and temperature dependent changes in hadronic spectral functions1. While medium modifications of hadrons in strongly interacting matter are an interesting and important subject in itself, connections to the underlying condensate structure(s) are essential to meet the challenge of conducting fundamental studies of the QCD phase diagram. Indeed, (approximate) chiral sym- metry alone predicts that (the spectral functions of) chiral partners (i.e. hadronic multiplets 1Note that the (gauge-invariant) concept of a hadronic spectral function is equally valid in the hadronic and QGP phases. 2 that transform into each other under chiral transformations) become (nearly) degenerate in the ∗ symmetric phase. The degeneracy of π and σ channels, ρ and a1, or N and N (1535), obviously implies major changes of the pertinent spectral functions toward the chiral transition. To detect such modifications in heavy-ion experiments, one needs access to the hot and dense phases of the fireball, leading to the notion of \penetrating probes". In general, the latter encompass elec- tromagnetic (photons and dileptons), heavy-quark and high transverse-momentum observables. In the present Part, we will focus on the former two due to their potential of characterizing the matter at relatively soft energy/momentum scales, T; Λ ; 4πf (f =92 MeV: pion decay ∼ QCD π π constant). The modes representing the prevalent degrees of freedom and encoding phase transi- tion properties are expected to operate at these scales. Our goal is to provide a comprehensive presentation of theoretical tools and approaches (with emphasis on recent developments) which are currently available to convert experimental data into meaningful information on spectral and phase-transition properties of QCD matter. The inherently non-perturbative nature of this problem renders a direct solution from first principles difficult. While lattice QCD is well suited to compute the equation of state, its formulation in euclidean space-time makes the evaluation of spectral functions much more de- manding. It is for this reason that effective hadronic (and quark) models are an indispensable tool to provide quantitative predictions that can be tested in experiment. No less important, hadronic models can serve as the main bridge between first principles and experiment, if the following program can be carried out: (a) The interaction Lagrangian is constructed based on essential symmetry principles (chiral, gauge).
Recommended publications
  • Arxiv:2012.15102V2 [Hep-Ph] 13 May 2021 T > Tc
    Confinement of Fermions in Tachyon Matter at Finite Temperature Adamu Issifu,1, ∗ Julio C.M. Rocha,1, y and Francisco A. Brito1, 2, z 1Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970 Jo~aoPessoa, Para´ıba, Brazil 2Departamento de F´ısica, Universidade Federal de Campina Grande Caixa Postal 10071, 58429-900 Campina Grande, Para´ıba, Brazil We study a phenomenological model that mimics the characteristics of QCD theory at finite temperature. The model involves fermions coupled with a modified Abelian gauge field in a tachyon matter. It reproduces some important QCD features such as, confinement, deconfinement, chiral symmetry and quark-gluon-plasma (QGP) phase transitions. The study may shed light on both light and heavy quark potentials and their string tensions. Flux-tube and Cornell potentials are developed depending on the regime under consideration. Other confining properties such as scalar glueball mass, gluon mass, glueball-meson mixing states, gluon and chiral condensates are exploited as well. The study is focused on two possible regimes, the ultraviolet (UV) and the infrared (IR) regimes. I. INTRODUCTION Confinement of heavy quark states QQ¯ is an important subject in both theoretical and experimental study of high temperature QCD matter and quark-gluon-plasma phase (QGP) [1]. The production of heavy quarkonia such as the fundamental state ofcc ¯ in the Relativistic Heavy Iron Collider (RHIC) [2] and the Large Hadron Collider (LHC) [3] provides basics for the study of QGP. Lattice QCD simulations of quarkonium at finite temperature indicates that J= may persists even at T = 1:5Tc [4] i.e.
    [Show full text]
  • Spectator Model in D Meson Decays
    Transaction B: Mechanical Engineering Vol. 16, No. 2, pp. 140{148 c Sharif University of Technology, April 2009 Spectator Model in D Meson Decays H. Mehrban1 Abstract. In this research, the e ective Hamiltonian theory is described and applied to the calculation of current-current (Q1;2) and QCD penguin (Q3; ;6) decay rates. The channels of charm quark decay in the quark levels are: c ! dud, c ! dus, c ! sud and c ! sus where the channel c ! sud is dominant. The total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory are calculated. The decay rates of D meson decays according to Spectator Quark Model (SQM) are investigated for the calculation of D meson decays. It is intended to make the transition from decay rates at the quark level to D meson decay rates for two body hadronic decays, D ! h1h2. By means of that, the modes of nonleptonic D ! PV , D ! PP , D ! VV decays where V and P are light vector with J P = 0 and pseudoscalar with J P = 1 mesons are analyzed, respectively. So, the total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory, according to Colour Favoured (C-F) and Colour Suppressed (C-S) are obtained. Then the amplitude of the Colour Favoured and Colour Suppressed (F-S) processes are added and their decay rates are obtained. Using the spectator model, the branching ratio of some D meson decays are derived as well. Keywords: E ective Hamilton; c quark; D meson; Spectator model; Hadronic; Colour favoured; Colour suppressed.
    [Show full text]
  • Chance, Luck and Statistics : the Science of Chance
    University of Calgary PRISM: University of Calgary's Digital Repository Alberta Gambling Research Institute Alberta Gambling Research Institute 1963 Chance, luck and statistics : the science of chance Levinson, Horace C. Dover Publications, Inc. http://hdl.handle.net/1880/41334 book Downloaded from PRISM: https://prism.ucalgary.ca Chance, Luck and Statistics THE SCIENCE OF CHANCE (formerly titled: The Science of Chance) BY Horace C. Levinson, Ph. D. Dover Publications, Inc., New York Copyright @ 1939, 1950, 1963 by Horace C. Levinson All rights reserved under Pan American and International Copyright Conventions. Published in Canada by General Publishing Company, Ltd., 30 Lesmill Road, Don Mills, Toronto, Ontario. Published in the United Kingdom by Constable and Company, Ltd., 10 Orange Street, London, W.C. 2. This new Dover edition, first published in 1963. is a revised and enlarged version ot the work pub- lished by Rinehart & Company in 1950 under the former title: The Science of Chance. The first edi- tion of this work, published in 1939, was called Your Chance to Win. International Standard Rook Number: 0-486-21007-3 Libraiy of Congress Catalog Card Number: 63-3453 Manufactured in the United States of America Dover Publications, Inc. 180 Varick Street New York, N.Y. 10014 PREFACE TO DOVER EDITION THE present edition is essentially unchanged from that of 1950. There are only a few revisions that call for comment. On the other hand, the edition of 1950 contained far more extensive revisions of the first edition, which appeared in 1939 under the title Your Chance to Win. One major revision was required by the appearance in 1953 of a very important work, a life of Cardan,* a brief account of whom is given in Chapter 11.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • North Carolina Obituaries Courier Tribune Name Date of Paper Page # Date of Death Abbott, Blannie Allen 7-Aug-84 7A 6-Aug-84
    North Carolina Obituaries Courier Tribune Name Date of Paper Page # Date of Death Abbott, Blannie Allen 7-Aug-84 7A 6-Aug-84 Abbott, Douglas L. 1-Sep-82 12A 30-Aug-82 Abbott, Helen Hartsook 3-Dec-82 9A 2-Dec-82 Abbott, Molly Jeane 3-Nov-81 8A 31-Oct-81 Abbott, Nora Johnson Mitchell 14-Oct-83 12A 13-Oct-83 Abbott, Roger 1-Aug-84 6A 31-Jul-84 Abercrombie, Dodd 5-Oct-80 6A 3-Oct-80 Abernathy, Ray Paul 29-Jun-80 8A 28-Jun-80 Abernathy, Shaun Travis 24-May-83 8A 24-May-83 Abrams, Reagan Vincent 28-Sep-80 6A 26-Sep-80 Abston, Thomas Earl 30-Dec-82 10A 29-Dec-82 Ackerman, Elsie K. 20-Apr-82 8A 19-Apr-82 Acree, Una Mae Phillips 6-Jul-81 6A 5-Jul-81 Adams, Anna Threadgill 9-Dec-85 9A 8-Dec-85 Adams, Annie Vaughn 12-Mar-85 6A 11-Mar-85 Adams, Bernice Hooper 6-Jul-82 8A 5-Jul-82 Adams, Dora Carrick 13-Jun-80 10A 12-Jun-80 Adams, Edward Vance 23-May-83 6A 23-May-83 Adams, Herman Hugh Sr. 29-Oct-81 8A 27-Oct-81 Adams, James Clifton 18-Sep-84 9A 17-Sep-84 Adams, John Edwin 1-Mar-84 10A 29-Feb-84 Adams, T.B. 15-Oct-82 10A 14-Oct-82 Adams, Velma D. 11-Aug-81 8A 10-Aug-81 Adcock, Plackard C. 6-Jul-82 8A 5-Jul-82 Aderholt, Daniel H. 17-May-85 10A 13-May-85 Adkins, Clarence Odell 1-Jan-85 7A 1-Jan-85 Adkins, E.G.
    [Show full text]
  • HADRONIC DECAYS of the Ds MESON and a MODEL-INDEPENDENT DETERMINATION of the BRANCHING FRACTION
    SLAC-R-95-470 UC-414 HADRONIC DECAYS OF THE Ds MESON AND A MODEL-INDEPENDENT DETERMINATION OF THE BRANCHING FRACTION FOR THE Ds DECAY OF THE PHI PI* John Nicholas Synodinos Stanford Linear Accelerator Center Stanford University Stanford, California 94309 To the memory of my parents, July 1995 Alexander and Cnryssoula Synodinos Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. *Ph.D. thesis 0lSr^BUTlONoFT^ J "OFTH/3DOCUM*.~ ^ Abstract Acknowledgements During the running periods of the years 1992, 1993, 1994 the BES experiment at This work would not have been possible without the continuing guidance and support the Beijing Electron Positron Collider (BEPC) collected 22.9 ± 0.7pt_1 of data at an from BES collaborators, fellow graduate students, family members and friends. It is energy of 4.03 GeV, which corresponds to a local peak for e+e~ —* DfD~ production. difficult to give proper recognition to all of them, and I wish to apologize up front to Four Ds hadronic decay modes were tagged: anyone whose contributions I have overlooked in these acknowledgements. I owe many thanks to my advisor, Jonathan Dorfan, for providing me with guid• • D -> <t>w; <t> -* K+K~ s ance and encouragement. It was a priviledge to have been his graduate student. I wish to thank Bill Dunwoodie for his day to day advice. His understanding of physics • Ds~> 7F(892)°A'; 7F°(892) -> K~JT+ and his willingness to share his knowledge have been essential to the completion of • D -» WK; ~K° -> -K+TT- s this analysis.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • LD2668T41961L36.Pdf
    CARBC^IA-CONTAINIMG CGHFOUKDS PRODUCED BI THE PILE-SEOTRQH IRRADIATIGH OP CYAHOGUANIDIIE THOMAS WILLIAM LAPP * B.A., Co* College, 1959 A MAS TBI'S THESIS . submitted in partial fulfillment of the requirements for the degree MASTER 07 SCIENCE Department of Chemistry KANSAS STATE UNIVERSITY Manhattan, Kansas 1%1 TABLE OP COHTKHTS INTRODUCTIOU 1 Theoretical Considerations 3 Previous llH(n,p)cU studies 10 EXPERIMENTAL 21 Sample Preparation. 21 Irradiation of the Cyanoguanidine Sample. • 21 Analysis of the Irradiated Sample 23 Total Carbon-U Activity 25 Chemical Separations 25 Radiochemical Counting Techniques 31 RESULTS AND DISCUSSION 37 Distribution of the Carbon-14 Recoil Atom 40 Radiocarbon Product Distribution 46 SUMMARY 50 ACKNOWLEDGMENTS 51 REFERENCES 52 t nmtCLXTroi In a flux of thermal neutrons, nitrogen atone undergo the nuclear trine- formation NH(n>p)cH. in normal pile-neutron irradiations, the compound to be Irradiated is also subjected to gamma radiation. Both the gamma radia- tion and the nuclear reactions initiated by the neutrons are capable of supplying energy to promote chemical reactions which normally would occur only at elevated temperatures. Collins and Calkins (6) have estimated the average energy of the gamma rays in the Oak Ridge graphite reactor to be approximately 1 Mev. Few nuclear reactions are initiated by the absorption of gamma rays at this photon energy and thus, the important nuclear reactions are those produced by the neutrons. The eyanoguanidine molecule is interesting for studying the chemical consequences produced by the nuclear transformation NU( n ,p)cH for two reasons (1) Within the eyanoguanidine molecule, the nitrogen atoms are bound to carbon atoms by three different types of bonding: single, double and triple bonds.
    [Show full text]
  • Impact Cratering in the Solar System
    Impact Cratering in the Solar System Michelle Kirchoff Lunar and Planetary Institute University of Houston - Clear Lake Physics Seminar March 24, 2008 Outline What is an impact crater? Why should we care about impact craters? Inner Solar System Outer Solar System Conclusions Open Questions What is an impact crater? Basically a hole in the ground… Barringer Meteor Crater (Earth) Bessel Crater (Moon) Diameter = 1.2 km Diameter = 16 km Depth = 200 m Depth = 2 km www.lpi.usra.edu What creates an “impact” crater? •Galileo sees circular features on Moon & realizes they are depressions (1610) •In 1600-1800’s many think they are volcanic features: look similar to extinct volcanoes on Earth; some even claim to see volcanic eruptions; space is empty (meteorites not verified until 1819 by Chladni) •G.K. Gilbert (1893) first serious support for lunar craters from impacts (geology and experiments) •On Earth Barringer (Meteor) crater recognized as created by impact by Barringer (1906) •Opik (1916) - impacts are high velocity, thus create circular craters at most impact angles Melosh, 1989 …High-Velocity Impacts! www.lpl.arizona.edu/SIC/impact_cratering/Chicxulub/Animation.gif Physics of Impact Cratering Understand how stress (or shock) waves propagate through material in 3 stages: 1. Contact and Compression 2. Excavation 3. Modification www.psi.edu/explorecraters/background.htm Hugoniot Equations Derived by P.H. Hugoniot (1887) to describe shock fronts using conservation of mass, momentum and energy across the discontinuity. equation (U-up) = oU of state P-Po = oupU E-Eo = (P+Po)(Vo-V)/2 P - pressure U - shock velocity up - particle velocity E - specific internal energy V = 1/specific volume) Understanding Crater Formation laboratory large simulations explosives (1950’s) (1940’s) www.nasa.gov/centers/ames/ numerical simulations (1960’s) www.lanl.gov/ Crater Morphology • Simple • Complex • Central peak/pit • Peak ring www3.imperial.ac.
    [Show full text]
  • Assigned Estates 1821-1942
    Chester County Assigned Estates 1821-1942 Last Name/Company First Name Spouse/Partner's Name Township Dates File Number Abel William Unknown1870/71 398 Ackland Baldwin Mary Wallace1879/81 901 Ackland & Co. Wallace1879 900 Acme Lime Co. Ltd London Grove1895/02 1246 Agnew Wilto Alice Kennett Square1877/81 749 Aker Zack Anna Schuylkill1882/83 957 Aldred George West Whiteland1878/79 822 Alexander Clement Londonderry1923/24 1610 Alexander Ellis Annie Elk1874/76 582 Alexander James Edith Elk1874/76 582 Alison John G. Elizabeth East Brandywine1878/80 827 Allcut William Sarah Pocopson1872/74 508 Allison William Unknown1823 unnb Amole Jesse North Coventry1889/90 1116 Amole John Elizabeth Warwick1893/94 1200 Amon Samuel Hattie Valley1921/22 1594 Anderson Estella Oxford1913 1542 Anderson John Margaret Elk1899/00 1342 Anderson Mathias Elizabeth Upper Uwchlan1878/80 812 Anderson Samuel Sarah Ann Franklin1859 235 Anderson Samuel Franklin1909/10 1488 Andress Frederic Unknown1845/46 68 Andrews David Esther Oxford1874/76 612 Antry Simon Unknown1845/47 61 Ash Franklin Mary West Chester1882/85 954 Ash Grover Phoenixville1914/15 1556 Chester County Archives and Record Services, West Chester, PA 19380 Last Name/Company First Name Spouse/Partner's Name Township Dates File Number Ashbridge Edward Susan West Chester1911 1503 Ashbridge Thomas Willistown1837 16 Ashton John S. West Chester1872/73 511 Atkins Davis East Brandywine1848/52 109 Atkins John Joseph King 1822/24 unnumbered Atkins John D. Wallace1856/59 193 Ayers John Lydia Anna New London1874 605 Aymold
    [Show full text]
  • How Complicated Can Structures Be? NAW 5/9 Nr
    1 1 Jouko Väänänen How complicated can structures be? NAW 5/9 nr. 2 June 2008 117 Jouko Väänänen University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam The Netherlands [email protected] How complicated can structures be? Is there a measure of how ’close’ non-isomorphic mathematical structures are? Jouko functions f : N → N endowed with the topolo- Väänänen, professor of logic at the Universities of Amsterdam and Helsinki, shows how con- gy of pointwise convergence, where N is given temporary logic, in particular set theory and model theory, provides a vehicle for a meaningful the discrete topology. discussion of this question. As the journey proceeds, we accelerate to higher and higher We can now consider the orbit of an arbi- cardinalities, so fasten your seatbelts. trary countable structure under all permuta- tions of N and ask how complex this set is By a structure we mean a set endowed with a eyes of the difficult uncountable structures. in the topological space N. If the orbit is a finite number of relations, functions and con- New ideas are needed here and a lot of work closed set in this topology, we should think of stants. Examples of structures are groups, lies ahead. Finally we tie the uncountable the structure as an uncomplicated one. This fields, ordered sets and graphs. Such struc- case to stability theory, a recent trend in mod- is because the orbit being closed means, in tures can have great complexity and indeed el theory. It turns out that stability theory and view of the definition of the topology, that the this is a good reason to concentrate on the the topological approach proposed here give finite parts of the structure completely deter- less complicated ones and to try to make similar suggestions as to what is complicated mine the whole structure, as is easily seen to some sense of them.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]