The Aromatic Amino Acid Responsive Tyrr Transcription Factor of Enterobacter

Total Page:16

File Type:pdf, Size:1020Kb

The Aromatic Amino Acid Responsive Tyrr Transcription Factor of Enterobacter The Aromatic Amino Acid Responsive TyrR Transcription Factor of Enterobacter cloacae UW5: Its Role in Regulation of Indole-3-Acetic Acid Biosynthesis and the Identification of an Expanded Regulon Using RNA-Sequencing by Thomas J.D. Coulson B.Sc. University of New Brunswick 2008 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate Academic Unit of Biology Supervisor: Cheryl L. Patten, PhD, Department of Biology Examining Board: Rene Malenfant, Ph.D, Biology Shawn MacLellan, Ph.D, Biology Ghislain Deslongchamps, Ph.D, Chemistry External Examiner: Ji Yang, Ph.D, Microbiology and Immunology, University of Melbourne This dissertation is accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK July, 2019 ©Thomas J.D. Coulson, 2019 ABSTRACT The control of transcription is an important process in all living cells. In the bacterial family Enterobacteriaceae, the transcription factor TyrR controls genes for aromatic amino acid uptake and biosynthesis. In this thesis, I explore the control of genes by TyrR in Enterobacter cloacae UW5, a soil bacterium commonly associated with plant roots that confer beneficial effects on its host and is also an inhabitant of human intestinal microflora and an opportunistic pathogen. Chapter 1 provides a general introduction to bacterial activities in the plant rhizosphere and transcriptional regulation, especially by TyrR. In Chapter 2, I investigated the regulation of two divergently transcribed genes, ipdC and akr, by TyrR. The ipdC gene encodes indolepyruvate decarboxylase for the production of the plant growth hormone indole-3-acetic acid, which plays an important role in the plant beneficial behavior of E. cloacae. TyrR is required for activation of ipdC by binding a single DNA element upstream of the promoter. All three aromatic amino acids act as cofactors for TyrR to induce ipdC expression. Expression of akr, encoding a putative aldo-keto reductase, was repressed by TyrR independently of aromatic amino acids and involved TyrR binding an atypical DNA site within the promoter. In Chapter 3, I assembled the E. cloacae UW5 genome sequence, which revealed genes and pathways that contribute to its plant-associated lifestyle and served as a reference for mapping RNA-sequencing data. In Chapter 4, I delineated the TyrR regulon by comparing transcription profiles in wild-type and tyrR mutant strains of E. cloacae generated through RNA-sequencing. Broad changes in gene expression were identified and several new TyrR members confirmed, including dmpM encoding a methyltransferase that is highly upregulated by tyrosine and phenylalanine, and cpxP and cpxR, which encode ii components of the envelope stress response. Additionally, pathways for aromatic metabolism, anaerobic respiration, and motility were altered in the tyrR mutant. Chapter 5 summarizes this research that suggests that the E. cloacae TyrR regulon has expanded from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrates the expansion and plasticity of transcription factor regulons. iii DEDICATION I dedicate this thesis to my parents, Dana and Heather Coulson, who have supported me both emotionally and financially, allowing me to pursue my lifelong dream of becoming a scientist. I love you both. iv ACKNOWLEDGEMENTS I would first and foremost like to thank my supervisor Dr. Cheryl Patten. I am eternally grateful to have studied under such an amazing mentor, who has supported my efforts over these many years. It has been wonderful to work, study and play in the lab. I would like to thank my supervisory committee members, Dr. Mike Duffy and Dr. Bryan Crawford for their input, suggestions and many conversations which have helped shape the direction of my work. And Dr. René M. Malenfant for his input and assistance with analysis of my sequencing data. Thank you to my family Dana, Heather, Caroline, Victoria, Charlotte, TJ, Shane, Bell, Mocha and Ru for your love, encouragement and patience. To my friends and fellow grad students who I have had the pleasure of knowing over the years I thank you for the insightful conversations, assistance in the lab and our times spent at the Grad House. And finally a super special thank you goes to Nebai, who has been there for me both professionally and emotionally. I look forward to the many adventures we will continue to have together and promise to take you back to Mount Carleton J v Table of Contents ABSTRACT ........................................................................................................................ ii DEDICATION ................................................................................................................... iv ACKNOWLEDGEMENTS ................................................................................................ v Table of Contents ............................................................................................................... vi List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xii Chapter 1 Introduction ........................................................................................................ 1 1.1 The Rhizosphere ....................................................................................................... 1 1.1.1 Plant root exudates ............................................................................................. 3 1.1.2 Rhizobacteria ..................................................................................................... 4 1.1.3 Chemotaxis and motility in the rhizosphere ...................................................... 6 1.1.4 Nutrient utilization by rhizobacteria ................................................................ 11 1.1.5 Mechanisms of plant growth promotion by rhizobacteria ............................... 14 1.2 Transcription in prokaryotes ................................................................................... 22 1.2.1 Transcription factors ........................................................................................ 23 1.3 The TyrR transcription factor ................................................................................. 26 1.3.1 Structure of the TyrR protein ........................................................................... 26 1.3.2 Cofactor-mediated oligomerization of TyrR ................................................... 29 1.3.3 TyrR DNA recognition and binding ................................................................ 31 1.3.4 TyrR repression of transcription ...................................................................... 32 1.3.5 TyrR activation of transcription ....................................................................... 37 vi 1.3.6 PhhR: A TyrR homologue in Pseudomonas .................................................... 39 1.4 Enterobacter cloacae .............................................................................................. 43 1.5 Objectives ............................................................................................................... 46 1.6 Organization of thesis ............................................................................................. 47 1.7 References ............................................................................................................... 49 Chapter 2 The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5a ............................................................................................. 75 2.1 Abstract ................................................................................................................... 75 2.2 Introduction ............................................................................................................. 76 2.3 Materials and Methods ............................................................................................ 80 2.3.1 Bacterial strains and culture conditions ........................................................... 80 2.3.2 Transcription start site identification ............................................................... 80 2.3.3 Construction of reporter gene fusions and promoter mutagenesis ................... 82 2.3.4 Reporter gene expression assays ...................................................................... 84 2.3.5 Electrophoretic mobility shift assays ............................................................... 85 2.3.6 Statistical analysis ............................................................................................ 87 2.4 Results ..................................................................................................................... 87 2.4.1 Mapping of the akr and ipdC promoters .......................................................... 87 2.4.2 ipdC is positively regulated by TyrR and the aromatic amino acids ............... 89 2.4.3 akr is negatively regulated by TyrR ................................................................. 89 vii 2.4.4 ipdC activation requires the strong TyrR binding site ..................................... 90 2.4.5 Repression of akr is facilitated by the weak TyrR binding site occluding the promoter ...................................................................................................................
Recommended publications
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • R Graphics Output
    883 | Desulfovibrio vulgaris | DvMF_2825 298701 | Desulfovibrio | DA2_3337 1121434 | Halodesulfovibrio aestuarii | AULY01000007_gene1045 207559 | Desulfovibrio alaskensis | Dde_0991 935942 | Desulfonatronum lacustre | KI912608_gene2193 159290 | Desulfonatronum | JPIK01000018_gene1259 1121448 | Desulfovibrio gigas | DGI_0655 1121445 | Desulfovibrio desulfuricans | ATUZ01000018_gene2316 525146 | Desulfovibrio desulfuricans | Ddes_0159 665942 | Desulfovibrio | HMPREF1022_02168 457398 | Desulfovibrio | HMPREF0326_00453 363253 | Lawsonia intracellularis | LI0397 882 | Desulfovibrio vulgaris | DVU_0784 1121413 | Desulfonatronovibrio hydrogenovorans | JMKT01000008_gene1463 555779 | Desulfonatronospira thiodismutans | Dthio_PD0935 690850 | Desulfovibrio africanus | Desaf_1578 643562 | Pseudodesulfovibrio aespoeensis | Daes_3115 1322246 | Pseudodesulfovibrio piezophilus | BN4_12523 641491 | Desulfovibrio desulfuricans | DND132_2573 1121440 | Desulfovibrio aminophilus | AUMA01000002_gene2198 1121456 | Desulfovibrio longus | ATVA01000018_gene290 526222 | Desulfovibrio salexigens | Desal_3460 1121451 | Desulfovibrio hydrothermalis | DESAM_21057 1121447 | Desulfovibrio frigidus | JONL01000008_gene3531 1121441 | Desulfovibrio bastinii | AUCX01000006_gene918 1121439 | Desulfovibrio alkalitolerans | dsat_0220 941449 | Desulfovibrio | dsx2_0067 1307759 | Desulfovibrio | JOMJ01000003_gene2163 1121406 | Desulfocurvus vexinensis | JAEX01000012_gene687 1304872 | Desulfovibrio magneticus | JAGC01000003_gene2904 573370 | Desulfovibrio magneticus | DMR_04750
    [Show full text]
  • Antimicrobial‐Producing Pseudoalteromonas From
    Received: 26 February 2018 | Revised: 11 May 2018 | Accepted: 2 June 2018 DOI: 10.1002/jobm.201800087 RESEARCH PAPER Antimicrobial-producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure Librada A. Atencio1,2 | Francesco Dal Grande3 | Giannina Ow Young1 | Ronnie Gavilán1,4,5 | Héctor M. Guzmán6 | Imke Schmitt3,7 | Luis C. Mejía1,6 | Marcelino Gutiérrez1 1 Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama, Republic of Panama 2 Department of Biotechnology, Acharya Nagarjuna University, Guntur, India 3 Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany 4 National Center for Public Health, Instituto Nacional de Salud, Lima, Peru 5 Environmental Management Department, Universidad San Ignacio de Loyola, Lima, Peru 6 Smithsonian Tropical Research Institute, Ancon, Panama, Republic of Panama 7 Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Frankfurt, Germany Correspondence Pseudoalteromonas is a genus of marine bacteria often found in association with other Luis C. Mejía, Marcelino Gutiérrez, Centro de Biodiversidad y Descubrimiento de organisms. Although several studies have examined Pseudoalteromonas diversity and Drogas, INDICASAT-AIP, City of their antimicrobial activity, its diversity in tropical environments is largely unexplored. – Knowledge, PO 0843 01103, Panama, We investigated the diversity of Pseudoalteromonas in marine environments of Panama Republic of Panama. Email: [email protected] (L.C.M); using a multilocus phylogenetic approach. Furthermore we tested their antimicrobial [email protected] (M.G) capacity and evaluated the effect of recombination and mutation in shaping their phylogenetic relationships.
    [Show full text]
  • Biotechnological Potential of Cold Adapted Pseudoalteromonas Spp
    marine drugs Article Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges Erik Borchert 1, Stephen Knobloch 2, Emilie Dwyer 1, Sinéad Flynn 1, Stephen A. Jackson 1, Ragnar Jóhannsson 2, Viggó T. Marteinsson 2, Fergal O’Gara 1,3,4 and Alan D. W. Dobson 1,* 1 School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland; [email protected] (E.B.); [email protected] (E.D.); [email protected] (S.F.); [email protected] (S.A.J.); [email protected] (F.O.) 2 Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland; [email protected] (S.K.); [email protected] (R.J.); [email protected] (V.T.M.) 3 Biomerit Research Centre, University College Cork, National University of Ireland, Cork T12 YN60, Ireland 4 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia * Correspondence: [email protected]; Tel.: +353-21-490-2743 Received: 22 February 2017; Accepted: 14 June 2017; Published: 19 June 2017 Abstract: The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments.
    [Show full text]
  • 2011 Book Bacteriallipopolysa
    Yuriy A. Knirel l Miguel A. Valvano Editors Bacterial Lipopolysaccharides Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells SpringerWienNewYork Yuriy A. Knirel Miguel A. Valvano N.D. Zelinsky Institute of Centre for Human Immunology and Organic Chemistry Department of Microbiology and Immunology Russian Academy of Sciences University of Western Ontario Leninsky Prospekt 47 London, ON N6A 5C1 119991 Moscow, V-334 Canada Russia [email protected] [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2011 Springer-Verlag/Wien SpringerWienNewYork is a part of Springer Science+Business Media springer.at Cover design: WMXDesign GmbH, Heidelberg, Germany Typesetting: SPi, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12599509 With 65 Figures Library of Congress Control Number: 2011932724 ISBN 978-3-7091-0732-4 e-ISBN 978-3-7091-0733-1 DOI 10.1007/978-3-7091-0733-1 SpringerWienNewYork Preface The lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. It contributes essentially to the integrity and stability of the outer membrane, represents an effective permeability barrier towards external stress factors, and is thus indispensable for the viability of bacteria in various niches, including animal and plant environment.
    [Show full text]
  • Marine Biotechnology
    Evidence-Based Complementary and Alternative Medicine Marine Biotechnology Guest Editors: Song Qin, W. E. G. Müller, and Edwin L. Cooper Marine Biotechnology Evidence-Based Complementary and Alternative Medicine Marine Biotechnology Guest Editors: Song Qin, W. E. G. Muller,¨ and Edwin L. Cooper Copyright © 2011 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in volume 2011 of “Evidence-Based Complementary and Alternative Medicine.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and repro- duction in any medium, provided the original work is properly cited. Editorial Board Shrikant Anant, USA Toshiaki Kogure, Japan JoseLuisR´ ´ıos, Spain Vassya Bankova, Bulgaria Alfred Langler,¨ Germany Paolo Roberti di Sarsina, Italy Winfried Banzer, Germany Lixing Lao, USA Julie Ryan, USA Vernon Barnes, USA Jang-Hern Lee, Republic of Korea Bashar Saad, Palestinian Authority DebraL.Barton,USA Myeong Soo Lee, Republic of Korea Andreas Sandner-Kiesling, Austria Jairo Kenupp Bastos, Brazil Tat leang Lee, Singapore Adair Roberto Soares Santos, Brazil David Baxter, New Zealand Christian Lehmann, Canada Guillermo Schmeda-Hirschmann, Chile Alvin J. Beitz, USA Ping-Chung Leung, Hong Kong Andrew Scholey, Australia Paolo Bellavite, Italy Xiu-Min Li, USA Dana Seidlova-Wuttke, Germany Francesca Borrelli, Italy Chun Guang Li, Australia Senthamil R. Selvan, USA Arndt Bussing,¨ Germany Sabina Lim, Republic of Korea Ronald Sherman, USA Leigh F. Callahan, USA Gerhard Litscher, Austria Kan Shimpo, Japan Raffaele Capasso, Italy I-Min Liu, Taiwan Venil N. Sumantran, India Il-Moo Chang, Republic of Korea Ke Liu, China Takashi Takahashi, Japan Yunfei Chen, China John C.
    [Show full text]
  • The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria
    Mar. Drugs 2011, 9, 1914-1954; doi:10.3390/md9101914 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria Evgeny L. Nazarenko 1, Russell J. Crawford 2 and Elena P. Ivanova 2,* 1 Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; E-Mail: [email protected] 2 Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-3-9214-5237; Fax: +61-3-9819-0834. Received: 3 August 2011; in revised form: 7 September 2011 / Accepted: 13 September 2011 / Published: 14 October 2011 Abstract: Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors.
    [Show full text]
  • Bioactivity, Chemical Profiling, and 16S Rrna-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise Vynne, Nikolaj Grønnegaard; Månsson, Maria; Nielsen, Kristian Fog; Gram, Lone Published in: Marine Biotechnology Link to article, DOI: 10.1007/s10126-011-9369-4 Publication date: 2011 Link back to DTU Orbit Citation (APA): Vynne, N. G., Månsson, M., Nielsen, K. F., & Gram, L. (2011). Bioactivity, Chemical Profiling, and 16S rRNA- Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise. Marine Biotechnology, 13(6), 1062-1073. https://doi.org/10.1007/s10126-011-9369-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Bioactivity, chemical profiling and 16S rRNA based phylogeny of 2 Pseudoalteromonas strains collected on a global research cruise 3 4 Nikolaj G. Vynne1*, Maria Månsson2, Kristian F. Nielsen2 and Lone Gram1 5 6 1 Technical University of Denmark, National Food Institute, Søltofts Plads, bldg.
    [Show full text]
  • Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance
    marine drugs Review Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance Clément Offret, Florie Desriac †, Patrick Le Chevalier, Jérôme Mounier, Camille Jégou and Yannick Fleury * Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France; [email protected] (C.O.); fl[email protected] (F.D.); [email protected] (P.L.C.); [email protected] (J.M.); [email protected] (C.J.) * Correspondence: yannick.fl[email protected]; Tel.: +33-298-641-935 † Present address: University of Lille, INRA, ISA; University of Artois; University of Littoral Côte d’Opale; Institute of Charles Viollette, EA 7394 Lille, France. Academic Editor: Paola Laurienzo Received: 30 May 2016; Accepted: 29 June 2016; Published: 8 July 2016 Abstract: This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota. Keywords: Pseudoalteromonas; antimicrobial metabolites; alkaloid; polyketide; non ribosomal peptide; genome mining; marine host-associated microbiota; probiotic 1. Introduction Last October, we celebrated the 20th anniversary of the genus Pseudoalteromonas having been split from Alteromonas [1]. The genus Pseudoalteromonas includes Gram-negative, heterotrophic, and aerobic bacteria with a polar flagellum and has a GC content comprised between 38% and 50% [2].
    [Show full text]
  • BIOSYNTHESIS of PRODIGININE and TAMBJAMINE NATURAL PRODUCTS in PSEUDOALTEROMONAS SP. by Katherine J. Picott a Thesis Submitted T
    BIOSYNTHESIS OF PRODIGININE AND TAMBJAMINE NATURAL PRODUCTS IN PSEUDOALTEROMONAS SP. by Katherine J. Picott A thesis submitted to the Department of Biomedical and Molecular Sciences in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada October, 2018 Copyright © Katherine J. Picott, 2018 ‘The more that you read, the more things you will know. The more that you learn, the more places you’ll go” – Dr. Suess ii Abstract Prodiginines and tambjamines are two classes of pigmented natural products that display structural variety and hold many useful bioactivities, making them a desirable target for pharmaceutical agents1. Enzymes PigC and TamQ are responsible for the final step in prodiginine and tambjamine biosynthesis respectively, involving the coupling of a product specific intermediate to the shared intermediate 4-methoxy-2,2’-bipyrrole-5-carbaldehyde2. Previous investigations have focused solely on PigC and have not successfully purified the enzyme, inciting the use of crude cell lysate to test enzyme activity3,4. The objectives of this research were to directly compare the kinetic characteristics and substrate selectivity of PigC and TamQ. PigC was cloned from Pseudoalteromonas rubra, a known producer of several prodiginine analogues5,6. TamQ was cloned from Pseudoalteromonas citrea, which is predicted to produce tambjamine YP1 based on genomic mining. PigC and TamQ were successfully heterologously expressed and purified, and enzymatic activities of both PigC and TamQ were reconstituted with their native and pseudo-native substrates. The true kinetic parameters of two substrates for PigC were determined, allowing for prediction of the reaction sequence and a proposed Ter Bi Ping Pong enzyme system.
    [Show full text]
  • Repurposing a Chemosensory Macromolecular Machine
    Supplementary Information Repurposing a chemosensory macromolecular machine Ortega D. R. et. al. 1 Supplementary Discussion Our results also shed light on the biological function of CheD. CheD is thought to interact with chemoreceptors in an adaptation mechanism together with CheC and CheY1, but more recent results showed that CheD from Bacillus subtilis is able to deamidate chemoreceptors in vitro without CheC2. Our results provide two further pieces of evidence supporting the idea that CheD is able to perform a biological role independently of CheC. First, the ancestral F7 system included cheD but not cheC. Second, cheD co-evolved with the ancestral F7 cheY (it was lost in the same evolutionary step), pointing to a functional link. A recent study in Comamonas testosteroni, an organism with a stage 4 F7 system, shows that the kinase CheA is able to phosphorylate both the ancient CheY as well as the recently acquired CheY- F6-like3. Deletion of the CheY-F6-like protein completely abolished chemotaxis response, while the deletion of CheY-F7 only partially affected it. The study further shows that CheY-F7 has a much faster auto-dephosphorylation rate than CheY-F6-like. The authors interpreted these results such that the CheY-F6-like is the primary response regulator, and CheY-F7 may act as a phosphate sink. These conclusions are based on previous work in organisms with multiple CheY genes per chemosensory cluster. However, because CheY-F7 in stages 1 and 2 is the sole response regulator of the system, we hypothesize that it plays a major role in the control of a yet-unknown cellular process, at least in stages 1 and 2.
    [Show full text]
  • Bioactivity and Phylogeny of the Marine Bacterial Genus Pseudoalteromonas
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas Vynne, Nikolaj Grønnegaard Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vynne, N. G. (2011). Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas Ph.D. thesis by Nikolaj Grønnegaard Vynne 2011 Technical University of Denmark National Food Institute Division of Industrial Food Research Cover illustrations: Map of the Galathea 3 route (www.galathea3.dk) Structure of the antibiotic indolmycin Excerpt of 16S rRNA phylogenetic tree P. luteoviolacea S4054 grown in MMM PREFACE The present Ph.D. study has been conducted at the National Food Institute (previously the National Institute for Aquatic Resources) at the Technical University of Denmark.
    [Show full text]