Repurposing a Chemosensory Macromolecular Machine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Doctoral Thesis 2016 UNDERSTANDING the AROMATIC HYDROCARBON DEGRADATION POTENTIAL of PSEUDOMONAS STUTZERI
Doctoral Thesis 2016 UNDERSTANDING THE AROMATIC HYDROCARBON DEGRADATION POTENTIAL OF PSEUDOMONAS STUTZERI: A PROTEO-GENOMIC APPROACH Isabel Brunet Galmés Doctoral Thesis 2016 Doctoral Program of “Microbiologia Ambiental i Biotecnologia” UNDERSTANDING THE AROMATIC HYDROCARBON DEGRADATION POTENTIAL OF PSEUDOMONAS STUTZERI: A PROTEO-GENOMIC APPROACH Isabel Brunet Galmés Thesis Supervisor: Dr. Rafael Bosch Thesis Supervisor: Dra. Balbina Nogales Doctor by the Universitat de les Illes Balears A mumpare i a mumare Agraïments Gràcies Rafel i Balbina per dirigir aquesta tesis, que és tant meva com vostre. A en Rafel per l’oportunitat que em vares donar, ja fa 7 anys, d’entrar al laboratori. Així com també per engrescar-me dins el món de la ciència, i ensenyar-me a treballar tant dins com fora del laboratori. I a na Balbina, pels mil consells que m’ha donat aquests anys, per ensenyar-me a ser més meticulosa amb el que faig i per ajudar-me amb tot el que ha pogut. A en Jordi i n’Elena, per acollir-me dins aquest grup de recerca, pels vostres consells i noves idees per continuar aquesta feina. Voldria agrair també a en Toni Bennasar i en Sebastià les crítiques constructives que m’heu anat fent al llarg d’aquests anys, des del projecte final de màster fins ara. Gràcies també a tots els companys de laboratori, a més de companys sou uns grans amics. Sempre estaré agraïda a na Marga, en Toni Busquets i n’Arantxa, pels grans consells que m’heu donat, tant dins com fora del laboratori, i per estar sempre disposats a donar-me una mà. -
Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co. -
Public Health Aspects of Yersinia Pseudotuberculosis in Deer and Venison
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. PUBLIC HEALTH ASPECTS OF YERSINIA PSEUDOTUBERCULOSIS IN DEER AND VENISON A THESIS PRESENTED IN PARTIAL FULFlLMENT (75%) OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN VETERINARY PUBLIC HEALTH AT MASSEY UNIVERSITY EDWIN BOSI September, 1992 DEDICATED TO MY PARENTS (MR. RICHARD BOSI AND MRS. VICTORIA CHUAN) MY WIFE (EVELYN DEL ROZARIO) AND MY CHILDREN (AMELIA, DON AND JACQUELINE) i Abstract A study was conducted to determine the possible carriage of Yersinia pseudotuberculosisand related species from faeces of farmed Red deer presented/or slaughter and the contamination of deer carcase meat and venison products with these organisms. Experiments were conducted to study the growth patternsof !.pseudotuberculosis in vacuum packed venison storedat chilling andfreezing temperatures. The serological status of slaughtered deer in regards to l..oseudotubercu/osis serogroups 1, 2 and 3 was assessed by Microp late Agglutination Tests. Forty sera were examined comprising 19 from positive and 20 from negative intestinal carriers. Included in this study was one serum from an animal that yielded carcase meat from which l..pseudotuberculosiswas isolated. Caecal contents were collected from 360 animals, and cold-enriched for 3 weeks before being subjected to bacteriological examination for Yersinia spp. A total of 345 and 321 carcases surface samples for bacteriological examination for Yersiniae were collected at the Deer Slaughter Premises (DSP) and meat Packing House respectively. -
Tesis Doctoral
Dpto. Inmunología, Microbiología y Parasitología Immunologia, Mikrobiologia eta Parasitologia Saila Tesis Doctoral Efecto del cambio climático en la costa vasca: presencia de bacterias del género Vibrio e influencia de los factores ambientales en su perdurabilidad. Elixabet Ogayar Sandoval Leioa 2021 (c) 2021 Elixabet Ogayar Sandoval Dpto. Inmunología, Microbiología y Parasitología Immunologia, Mikrobiologia eta Parasitologia Saila TESIS DOCTORAL Efecto del cambio climático en la costa vasca: presencia de bacterias del género Vibrio e influencia de los factores ambientales en su perdurabilidad. ELIXABET OGAYAR SANDOVAL Leioa, 2021 UNIVERSIDAD DEL PAIS VASCO EUSKAL HERRIKO UNIBERTSITATEA FACULTAD DE CIENCIA Y TECNOLOGÍA Departamento de Inmunología, Microbiología y Parasitología Efecto del cambio climático en la costa vasca: presencia de bacterias del género Vibrio e influencia de los factores ambientales en su perdurabilidad. ELIXABET OGAYAR SANDOVAL Directoras: INÉS ARANA BASABE MAITE ORRUÑO BELTRÁN La presente Tesis Doctoral ha sido realizada gracias a la financiación recibida de los siguientes proyectos de investigación: Beca de Investigación Predoctoral UPV/EHU. Abril 2016 – Abril 2020. PPP 2017-3686 (UPV/EHU) Título del proyecto: Presencia de bacterias del género Vibrio en la costa vasca e influencia de los factores ambientales en su supervivencia Entidad financiadora: Universidad del País Vasco Duración: 2016 - 2018 Investigador responsable: Maite Orruño Los resultados obtenidos durante esta Tesis Doctoral han sido objeto de las siguientes publicaciones y contribuciones a congresos: Publicaciones: - Orruño M, Parada C, Ogayar E, Kaberdin VR, Arana I (2019). Effects of abiotic and biotic factors on Vibrio harveyi ATCC 14126T survival dynamics in seawater microcosms. Aquatic Microbial Ecology 83:109-118. DOI: 10.3354/ame01910. -
Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen. -
Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright. -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
Which Organisms Are Used for Anti-Biofouling Studies
Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E. -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
EMBRIC (Grant Agreement No
Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Grant Agreement Number: 654008 EMBRIC European Marine Biological Research Infrastructure Cluster to promote the Blue Bioeconomy Horizon 2020 – the Framework Programme for Research and Innovation (2014-2020), H2020-INFRADEV-1-2014-1 Start Date of Project: 01.06.2015 Duration: 48 Months Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery (M36) HORIZON 2020 - INFRADEV Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 1 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Implementation and operation of cross-cutting services and solutions for clusters of ESFRI Grant agreement no.: 654008 Project acronym: EMBRIC Project website: www.embric.eu Project full title: European Marine Biological Research Infrastructure cluster to promote the Bioeconomy Project start date: June 2015 (48 months) Submission due date : May 2018 Actual submission date: May 2018 Work Package: WP 6 Microbial pipeline from environment to active compounds Lead Beneficiary: CABI Version: 9.0 Authors: SMITH David GOSS Rebecca OVERMANN Jörg BRÖNSTRUP Mark PASCUAL Javier BAJERSKI Felizitas HENSLER Michael WANG Yunpeng ABRAHAM Emily Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 2 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Project funded by the European Union’s Horizon 2020 research and innovation programme (2015-2019) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission X Services Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 3 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. -
Hal 89-106 Alimuddin Enzim
Microbial community of black band disease on infection ... (Ofri Johan) MICROBIAL COMMUNITY OF BLACK BAND DISEASE ON INFECTION, HEALTHY, AND DEAD PART OF SCLERACTINIAN Montipora sp. COLONY AT SERIBU ISLANDS, INDONESIA Ofri Johan*)#, Dietriech G. Bengen**), Neviaty P. Zamani**), Suharsono***), David Smith****), Angela Mariana Lusiastuti*****), and Michael J. Sweet******) *) Research and Development Institute for Ornamental Fish Culture, Jakarta **) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University ***) Research Center for Oceanography, The Indonesian Institute of Science ****) School of Biology, Newcastle University, NE1 7RU, United Kingdom *****) Center for Aquaculture Research and Development ******) Biological Sciences Research Group, University of Derby, Kedleston Road, Derby, DE22 1GB, United Kingdom (Received 19 March 2014; Final revised 12 September 2014; Accepted 10 November 2014) ABSTRACT It is crucial to understand the microbial community associated with the host when attempting to discern the pathogen responsible for disease outbreaks in scleractinian corals. This study determines changes in the bacterial community associated with Montipora sp. in response to black band disease in Indonesian waters. Healthy, diseased, and dead Montipora sp. (n = 3 for each sample type per location) were collected from three different locations (Pari Island, Pramuka Island, and Peteloran Island). DGGE (Denaturing Gradient Gel Electrophoresis) was carried out to identify the bacterial community associated with each sample type and histological analysis was conducted to identify pathogens associated with specific tissues. Various Desulfovibrio species were found as novelty to be associated with infection samples, including Desulfovibrio desulfuricans, Desulfovibrio magneticus, and Desulfovibrio gigas, Bacillus benzoevorans, Bacillus farraginis in genus which previously associated with pathogenicity in corals. -
Nor Hawani Salikin
Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.