Defence on Surface of Rhodophyta Halymenia Floresii : Metabolomic Profile and Interactions with Its Surface-Associated Bacteria Shareen a Abdul Malik

Total Page:16

File Type:pdf, Size:1020Kb

Defence on Surface of Rhodophyta Halymenia Floresii : Metabolomic Profile and Interactions with Its Surface-Associated Bacteria Shareen a Abdul Malik Defence on surface of Rhodophyta Halymenia floresii : metabolomic profile and interactions with its surface-associated bacteria Shareen a Abdul Malik To cite this version: Shareen a Abdul Malik. Defence on surface of Rhodophyta Halymenia floresii : metabolomic profile and interactions with its surface-associated bacteria. Agricultural sciences. Université de Bretagne Sud, 2020. English. NNT : 2020LORIS598. tel-03153270 HAL Id: tel-03153270 https://tel.archives-ouvertes.fr/tel-03153270 Submitted on 26 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE UNIVERSITE BRETAGNE SUD ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Biotechnologie Marine Par Shareen A ABDUL MALIK Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Thèse présentée et soutenue à « Vannes », le « 7 July 2020 » Unité de recherche : Laboratoire de Biotechnologie et Chimie Marines Thèse N°: Rapporteurs avant soutenance : Composition du Jury : Prof. Gérald Culioli Associate Professor Président : Université de Toulon (La Garde) Prof. Claire Gachon Professor Dr. Leila Tirichine Research Director (CNRS) Museum National d’Histoire Naturelle, Paris Université de Nantes Examinateur(s) : Prof. Gwenaëlle Le Blay Professor Université Bretagne Occidentale (UBO), Brest Dir. de thèse : Prof. Nathalie Bourgougnon Professor Université Bretagne Sud (UBS), Vannes Co-dir. de thèse : Dr. Daniel Robledo Director CINVESTAV, Mexico i Invité(s) Dr. Gilles Bedoux Maître de conferences Université Bretagne Sud (UBS), Vannes Title: Systèmes de défence de surface de la Rhodophycée Halymenia floresii : Analyse metabolomique et interactions avec les bactéries épiphytes Mots clés: Halymenia floresii, antibiofilm, antifouling, métabolomique, bactéries associées à la surface, quorum sensing, molecules de défense Abstract : Halymenia floresii, une Rhodophycée présente Vibrio owensii, ainsi que son signal C4-HSL QS, a été une surface remarquablement exempte d'épiphytes dans les identifié comme pathogène opportuniste induisant un conditions de l'Aquaculture MultiTrophique Intégrée (AMTI). blanchiment. Les métabolites extraits de la surface et Ce phénomène la présence en surface de composés actifs de cellules entières de H. floresii ont été analysés par allélopathiques. L'objectif de ce travail a été d'explorer les LC-MS. Une base de données a été constituée à partir mécanismes de défense développés par H. floresii contre d’une analyse métabolomique non ciblée. Quarante et l'épibiose, de détecter et d'identifier les métabolites un putatives actifs ont été identifiés, parmi lesquels les secondaires produits à la surface de l’algue et d'étudier les composés halogénés, des furanones et divers relations avec les bactéries épiphytes. Nous avons ainsi pu inhibiteurs étaient surreprésentés. Fait intéressant, isoler la communauté épibactérienne de H. floresii cultivée les deux premières classes sont connues comme de dans des conditions contrôlées (AMTI) et non contrôlées puissants composés interférant avec le QS. La (échantillons collectés in situ). Les épibactéries isolées ont présence relativement élevée de putatives été criblées in vitro pour analyser les signaux de détection allélopathiques à la surface de H. floresii soutient de Quorum Sensing (QS). Lesextraits produits en surface fortement l'hypothèse selon laquelle ils doivent être ont été analysés pour détecter toute interférence avec le impliqués dans la protection de l'hôte. Des recherches Quorum Sensing. Les épibactéries pathogènes et non- supplémentaires seront nécessaires pour explorer pathogènes ont été différenciées par leur capacité à induire l’ensemble des métabolites secondaires produits par une maladie algale, le blanchiment. H. floresii et leurs rôles chez l’algue. Title: Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Keywords: Halymenia floresii, antibiofilm, antifouling, metabolomics, surface-associated bacteria, quorum sensing, defence molecules Abstract: The surface of Halymenia floresii, a Mexican Vibrio owensii was identified as an opportunistic Rhodophyta, was observed to be remarkably free of pathogen inducing bleaching in H. floresii which was epiphytes under Integrated MultiTrophic Aquaculture also associated to the presence of its C4-HSL QS (IMTA) conditions. This suggests the presence of signal. The surface and whole cell metabolites allelopathic active compounds released by this extracts from H. floresii specimens cultivated under macroalgae. The aim of this work was to explore the controlled conditions were analysed by means of defence mechanisms developed by H. floresii against LC/MS. An untargeted metabolomic analysis of H. surface epibiosis, to detect and identify the secondary floresii was performed to provide a global metabolic metabolites produced at the surface of the alga, and to fingerprint as a first baseline. We identified ‘41’ active study its relation with surface associated bacteria. For the putatives in H. floresii, among which halogenated first time, we isolated the epibacterial community of H. compounds, furanones and various inhibitors were floresii cultivated under controlled conditions (IMTA) and overrepresented. Interestingly, the first two classes uncontrolled ones (beach-cast material collected in the are well known potent QS interfering compounds. area). The isolated epibacteria were screened in vitro to The relatively higher occurrences of allelopathic analyse Quorum Sensing (QS) signals, and others H. putatives at the surface of H. floresii strongly floresii surface extracts were assayed for any QS supports the hypothesis that they must be involved in interference with them. We differentiated the epibacteria the host protection. Further investigations are significant pathogens from the non-pathogens ones by their needed to explore the secondary metabolites of H. ability to induce bleaching, a well-known algal disease. floresii and their role in the seaweed. ii Defence on surface of Rhodophyta Halymenia floresii: metabolomic profile and interactions with its surface-associated bacteria Shareen Arockiasamy 2020 iii Defence on surface of Rhodophyta Halymenia floresii: metabolomic profile and interactions with its surface-associated bacteria Shareen Arockiasamy 2020 Empty your mind, be formless, shapeless — like water. Now you put water in a cup, it becomes the cup; You put water into a bottle it becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it can crash. Be water, my friend. - Bruce Lee Be careful what you water your dreams with. Water them with worry and fear and you will produce weeds that choke the life from your dream. Water them with optimism and solutions and you will cultivate success. Always be on the lookout for ways to turn a problem into an opportunity for success. Always be on the lookout for ways to nurture your dream - Lao Tzu iv Defence on surface of Rhodophyta Halymenia floresii: metabolomic profile and interactions with its surface-associated bacteria Shareen Arockiasamy 2020 Acknowledgements Wow... Expressing gratitude is such a greatest human emotion and it’s very exciting to start acknowledging the BEings who have been and/or being with me throughout my PhD. This period of ‘3’ years in my life gave me a lot of people and lots and lots of wonderful experiences. And I am very grateful for it. Firstly, I sincerely thank Prof. Gérald Culioli, Associate Professor of the Laboratory of Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Université de Toulon (La Garde) and Dr. Leila Tirichine, Research Director of the Epigénomique des microalgues et interactions avec l’environment, Université de Nantes, for being rapporteurs and examining the work. I also thank other members of jury Prof. Claire Gachon, Professor, Museum National d’Histoire Naturelle and Prof. Gwenaëlle Le Blay, Professor, Université Bretagne Occidentale (UBO) for equally participating in examining my work. I profoundly thank my doctoral school, Ecole Doctorale Sciences de la Mer et du Littoral (EDSML) for constantly supporting throughout my thesis and granting me scholarship for my international mobility. I also thank ECOS-Nord CONACYT for their financial support towards my research stay in Mexico. I sincerely thank GlobalSeaweedSTAR for their financial help towards attending the conference of ISS, 2019, Korea. Well, my Directors of the thesis... Words are not enough to express my deep gratitude to Prof. Nathalie Bourgougnon, firstly for the offering me this wonderful opportunity to pursue my PhD under her wonderful supervision. Her immense knowledge always influenced me to think critically and develop my ideas. I always admired her way of valuing others TIME equally as she values her own. I could not have imagined having a better supervisor for my PhD study. I equally thank my Co-director Dr. Daniel Robledo for sharing his knowledge on his all-time favourite, macroalgae.
Recommended publications
  • View Article
    Cronicon OPEN ACCESS EC Microbiology Review Article Spirulina Rising: Microalgae, Phyconutrients, and Oxidative Stress Mark F McCarty1 and Nicholas A Kerna2,3* 1Catalytic Longevity, USA 2SMC-Medical Research, Thailand 3First InterHealth Group, Thailand *Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangrak, Bangkok, Thailand 10500. Contact: [email protected] Received: August 22, 2019; Pubished: June 30, 2021 DOI: 10.31080/ecmi.2021.17.01135 Abstract Oxidative stress provokes the development of many common diseases and contributes to the aging process. Also, oxidative stress is a critical factor in common vascular disorders and type 2 diabetes. It plays a role in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amytrophic lateral sclerosis, multiple sclerosis, and cancer. Oxidative stress contributes to the healthy regulation of cell function. However, excessive oxidative stress results in pathological processes. Antioxidant vitamins have a limited from oxidative stress, and inhibits NOX. PhyCB, a component of the microalgae Spirulina, shares a similar structure with biliverdin, influence on oxidative stress as most oxidative stress results from the cellular production of superoxide. Bilirubin protects cells a biosynthetic precursor of bilirubin. Thus, the oral administration of PhyCB, phycocyanin, or whole Spirulina shows promise for preventing and or treating human disorders that have resulted from excessive oxidative stress. Keywords: Microalgae; Oxidative Stress; Phycocyanobilin; Phyconutrients; Singlet Oxygen; Spirulina; Superoxide Abbreviations DHA: Docosahexaenoic Acid; HO-1: Heme Oxygenase-1; O2: Oxygen; PhyCB: Phycocyanobilin Introduction To understand how phyconutrients, found abundantly in microalgae, can provide preventive and therapeutic effects, it is fundamental to understand how oxidative stress triggers or contributes to the development of many common diseases—and how microalgae, such as Spirulina can help inhibit oxidative stress in the human body.
    [Show full text]
  • Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V.
    [Show full text]
  • Barcoding Eukaryotic Richness Beyond the Animal, Plant, and Fungal Kingdoms
    Community Page CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms Jan Pawlowski1*, Ste´phane Audic2, Sina Adl3, David Bass4, Lassaaˆd Belbahri5,Ce´dric Berney4, Samuel S. Bowser6, Ivan Cepicka7, Johan Decelle2, Micah Dunthorn8, Anna Maria Fiore-Donno9, Gillian H. Gile10, Maria Holzmann1, Regine Jahn11, Miloslav Jirku˚ 12, Patrick J. Keeling13, Martin Kostka12,14, Alexander Kudryavtsev1,15, Enrique Lara5, Julius Lukesˇ12,14, David G. Mann16, Edward A. D. Mitchell5, Frank Nitsche17, Maria Romeralo18, Gary W. Saunders19, Alastair G. B. Simpson20, Alexey V. Smirnov15, John L. Spouge21, Rowena F. Stern22, Thorsten Stoeck8, Jonas Zimmermann11,23, David Schindel24, Colomban de Vargas2* 1 Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland, 2 Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 7144 and Universite´ Pierre et Marie Curie, Paris 6, Station Biologique de Roscoff, France, 3 Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 4 Department of Life Sciences, Natural History Museum, London, United Kingdom, 5 Laboratory of Soil Biology, University of Neuchaˆtel, Neuchaˆtel, Switzerland, 6 Wadsworth Center, New York State Department of Health, Albany, New York, United States of America, 7 Department of Zoology, Charles University in Prague, Prague, Czech Republic, 8 Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany, 9 Institute of Botany and Landscape Ecology, University of Greifswald,
    [Show full text]
  • Comparative Proteomic Profiling of Newly Acquired, Virulent And
    www.nature.com/scientificreports OPEN Comparative proteomic profling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease Kerrie Ní Dhufaigh1*, Eugene Dillon2, Natasha Botwright3, Anita Talbot1, Ian O’Connor1, Eugene MacCarthy1 & Orla Slattery4 The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC–MS/MS). The challenge trial using naïve smolts confrmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins diferentially expressed between the three cultures. The present LC–MS/ MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifcations for therapeutic purposes in infected farmed fsh. Neoparamoeba perurans is an ectoparasitic protozoan responsible for the hyperplastic gill infection of marine cultured fnfsh referred to as amoebic gill disease (AGD)1.
    [Show full text]
  • AAA Vol 2 CD.Indb
    Isolation and Identification of Cold-Adapted Fungi in the Fox Permafrost Tunnel, Alaska Mark P. Waldrop United States Geological Survey, Geologic Division, Menlo Park, CA, USA Richard White III United States Geological Survey, Geologic Division, Menlo Park, CA, USA Thomas A. Douglas Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA Abstract Permafrost microbiology is important for understanding biogeochemical processes, paleoecology, and life in extreme environments. Within the Fox, Alaska, permafrost tunnel, fungi grow on tunnel walls despite below freezing (-3°C) temperatures for the past 15,000 years. We collected fungal mycelia from ice, Pleistocene roots, and frozen loess. We identified the fungi by PCR, amplifying the ITS region of rRNA and searching for related sequences. The fungi within the tunnel were predominantly one genus, Geomyces, a cold-adapted fungi, and has likely “contaminated” the permafrost tunnel from outside. We were unable to obtain DNA or fungal isolates from the frozen loess, indicating fungal survival in permafrost soils can be strongly restricted. Geomyces can degrade complex carbon compounds, but we are unable to determine whether this is occurring. Results from this study suggest Geomyces may be an important colonizer species of other permafrost environments. Keywords: Fox tunnel; fungi; Geomyces; ice wedge; loess; permafrost. Introduction starts to melt and then sublimate. Therefore, when a hole is drilled, moisture is liberated, and fungal growth at these sites The permafrost tunnel near Fox, Alaska, was constructed should be possible. in the early 1960s to examine mining, tunneling, and Our research objective was to determine the identity of the construction techniques in permafrost.
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Scalable Production of Biliverdin Ixα by Escherichia Coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2*
    Chen et al. BMC Biotechnology 2012, 12:89 http://www.biomedcentral.com/1472-6750/12/89 RESEARCH ARTICLE Open Access Scalable production of biliverdin IXα by Escherichia coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2* Abstract Background: Biliverdin IXα is produced when heme undergoes reductive ring cleavage at the α-methene bridge catalyzed by heme oxygenase. It is subsequently reduced by biliverdin reductase to bilirubin IXα which is a potent endogenous antioxidant. Biliverdin IXα, through interaction with biliverdin reductase, also initiates signaling pathways leading to anti-inflammatory responses and suppression of cellular pro-inflammatory events. The use of biliverdin IXα as a cytoprotective therapeutic has been suggested, but its clinical development and use is currently limited by insufficient quantity, uncertain purity, and derivation from mammalian materials. To address these limitations, methods to produce, recover and purify biliverdin IXα from bacterial cultures of Escherichia coli were investigated and developed. Results: Recombinant E. coli strains BL21(HO1) and BL21(mHO1) expressing cyanobacterial heme oxygenase gene ho1 and a sequence modified version (mho1) optimized for E. coli expression, respectively, were constructed and shown to produce biliverdin IXα in batch and fed-batch bioreactor cultures. Strain BL21(mHO1) produced roughly twice the amount of biliverdin IXα than did strain BL21(HO1). Lactose either alone or in combination with glycerol supported consistent biliverdin IXα production by strain BL21(mHO1) (up to an average of 23. 5mg L-1 culture) in fed-batch mode and production by strain BL21 (HO1) in batch-mode was scalable to 100L bioreactor culture volumes.
    [Show full text]
  • Diversity and Saline Resistance of Endophytic Fungi Associated with Pinus Thunbergii in Coastal Shelterbelts of Korea Young Ju Min1, Myung Soo Park1, Jonathan J
    J. Microbiol. Biotechnol. (2014), 24(3), 324–333 http://dx.doi.org/10.4014/jmb.1310.10041 Research Article jmb Diversity and Saline Resistance of Endophytic Fungi Associated with Pinus thunbergii in Coastal Shelterbelts of Korea Young Ju Min1, Myung Soo Park1, Jonathan J. Fong1, Ying Quan1, Sungcheol Jung2, and Young Woon Lim1* 1School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea 2Warm-Temperate and Subtropical Forest Research Center, KFRI, Seogwipo 697-050, Republic of Korea Received: October 14, 2013 Revised: November 29, 2013 The Black Pine, Pinus thunbergii, is widely distributed along the eastern coast of Korea and its Accepted: December 4, 2013 importance as a shelterbelt was highlighted after tsunamis in Indonesia and Japan. The root endophytic diversity of P. thunbergii was investigated in three coastal regions; Goseong, Uljin, and Busan. Fungi were isolated from the root tips, and growth rates of pure cultures were First published online measured and compared between PDA with and without 3% NaCl to determine their saline December 9, 2013 resistance. A total of 259 isolates were divided into 136 morphotypes, of which internal *Corresponding author transcribed spacer region sequences identified 58 species. Representatives of each major fungi Phone: +82-2-880-6708; phylum were present: 44 Ascomycota, 8 Zygomycota, and 6 Basidiomycota. Eighteen species Fax: +82-2-871-5191; exhibited saline resistance, many of which were Penicillium and Trichoderma species. Shoreline E-mail: [email protected] habitats harbored higher saline-tolerant endophytic diversity compared with inland sites. This investigation indicates that endophytes of P. thunbergii living closer to the coast may have pISSN 1017-7825, eISSN 1738-8872 higher resistance to salinity and potentially have specific relationships with P.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
    ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19
    [Show full text]
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • Microscopic Fungi Isolated from the Domica Cave System (Slovak Karst National Park, Slovakia)
    International Journal of Speleology 38 (1) 71-82 Bologna (Italy) January 2009 Available online at www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review Alena Nováková1 Abstract: Novakova A. 2009. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. International Journal of Speleology, 38 (1), 71-82. Bologna (Italy). ISSN 0392-6672. A broad spectrum, total of 195 microfungal taxa, were isolated from various cave substrates (cave air, cave sediments, bat droppings and/or guano, earthworm casts, isopods and diplopods faeces, mammalian dung, cadavers, vermiculations, insect bodies, plant material, etc.) from the cave system of the Domica Cave (Slovak Karst National Park, Slovakia) using dilution, direct and gravity settling culture plate methods and several isolation media. Penicillium glandicola, Trichoderma polysporum, Oidiodendron cerealis, Mucor spp., Talaromyces flavus and species of the genus Doratomyces were isolated frequently during our study. Estimated microfungal species diversity was compared with literature records from the same substrates published in the past. Keywords: Domica Cave system, microfungi, air, sediments, bat guano, invertebrate traces, dung, vermiculations, cadavers Received 29 April 2008; Revised 15 September 2008; Accepted 15 September 2008 INTRODUCTION the obtained microfungal spectrum with records of Microscopic fungi are an important part of cave previously published data from the Baradla Cave and microflora and occur in various substrates in caves, other caves in the world. such as cave sediments, vermiculations, bat droppings and/or guano, decaying organic material, etc. Their DESCRIPTION OF STUDIED CAVES widespread distribution contributes to their important The Domica Cave system is located on the south- role in the feeding strategies of cave fauna.
    [Show full text]