The Effects of Technology on the Parent-Child Relationship

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Technology on the Parent-Child Relationship View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Smith College: Smith ScholarWorks Smith ScholarWorks Theses, Dissertations, and Projects 2013 Are you my motherboard? : the effects of technology on the parent-child relationship David S. Sullivan Follow this and additional works at: https://scholarworks.smith.edu/theses Part of the Social and Behavioral Sciences Commons Recommended Citation Sullivan, David S., "Are you my motherboard? : the effects of technology on the parent-child relationship" (2013). Masters Thesis, Smith College, Northampton, MA. https://scholarworks.smith.edu/theses/931 This Masters Thesis has been accepted for inclusion in Theses, Dissertations, and Projects by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected]. David Sullivan Are You My Motherboard? Effects of Technology on the Parent-Child Relationship Abstract New technologies have been evolving at a rapid pace over the last few decades. The convenience afforded by many technologies presents interesting questions in terms of attachment. Recent research on internet addiction disorder (IAD) has revealed that technology may be affecting people on a social, familial, and neurophysiological basis. This research explores the effects of technology on the parent-child relationship. The research interviewed six participants through telephone interviews: treatment participants (TP, n=2) in this research are both young men who meet criteria for IAD and completed treatment relative to their technology addiction; clinical participants (CP, n=4) in this research are clinicians that work in treatment centers that serve clients that meet criteria for IAD. Interviews were transcribed, coded, and analyzed. Due to the small sample size, this study's findings are not generalizable; however, there were still some interesting findings and considerations. This research identified some common behavioral patterns in people with IAD and their families. Additionally, study participants suggest that failure to recognize and treat IAD will likely result in persistence of symptoms. Findings may be of interest to clinicians in addition to future research. Are You My Motherboard? Effects of Technology on the Parent-Child Relationship A project based upon independent investigation, submitted in partial fulfillment of the requirements for the degree of Master of Social Work David Sullivan Smith College: School of Social Work Northampton, MA 01060 2013 ACKNOWLEDGEMENTS Like any large project, many people were involved in the creation of this thesis. I'm forever grateful of those that reached out to me to help in whatever ways that they knew how. There are several people that I would like to thank in particular, without these people, this thesis would still be a stack of blank pages. First and foremost, my parents, who have supported me in so many ways throughout the years. I have found my education at Smith to be nothing short of superb, and I couldn't have made it through without their help. My dad, went above and beyond by proof-reading my work and returning it with comments in less than three days. You guys are awesome, thank you both. My research advisor, Colette Duciaume-Wright, for helping me through what turned out to be an incredible process. There were several points in creating this thesis where her support helped me through what could have been some potentially nerve-racking experiences. Thank you for sharing your exceptional wisdom, guidance, and support. Hilarie Cash, for her extensive professional network and knowledge pertinent to technology addictions. This project was born out of a conversation that I had with Hilarie in September. I can honestly say that I've enjoyed writing this thesis, and I don’t know that I would have arrived at such an interesting topic without her intriguing perspective; and there surely wouldn't have been any reSTART participants to interview if it weren't for the wonderful program that she and Cosette Rae run. Thank you for helping me discover so many crucial resources and for being so accessible throughout my work. And last, but certainly not least, my fiancé Danni. For letting me turn various parts of our house into my "personal office" at any given moment, for taking care of our pets despite their spastic incompatibility, for researching and planning our wedding while I return to finish school, and especially for fielding my unpredictable mood swings that came out of the whole graduate school process. I could not have done this without her unconditional support. I love you. Thank you. i TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................... i TABLE OF CONTENTS ............................................................................................................. ii LIST OF FIGURES ..................................................................................................................... iii CHAPTER I INTRODUCTION .............................................................................................................. 1 II LITERATURE REVIEW ................................................................................................... 6 III METHODOLOGY ............................................................................................................. 62 IV FINDINGS .......................................................................................................................... 72 V DISCUSSION ..................................................................................................................... 80 REFERENCES ............................................................................................................................ 98 APPENDICES Appendix A: HSR Approval Form ..............................................................................................112 Appendix B: Approval from reSTART for Recruitment .............................................................113 Appendix C: Approval from Insight Intensive for Recruitment ..................................................114 Appendix D: Online Gamers Anonymous Email Approval to Recruit .......................................115 Appendix E: List Serve Email Approval to Recruit ....................................................................116 Appendix F: HSR Approval for Expansion of Recruitment ........................................................117 Appendix G: Sample Recruitment Letter ....................................................................................118 Appendix H: Sample Consent Form - Treatment Participants ....................................................119 Appendix I: Sample Consent Form - Clinical Participants ..........................................................122 Appendix J: Interview Guide .......................................................................................................125 Appendix K: Sample Data Collection Form - Treatment Participants ........................................126 Appendix L: Sample Data Collection Form - Clinical Participants ............................................128 Appendix L: Referrals for Research Participants ........................................................................129 ii LIST OF FIGURES Figure Page 1. The two-dimensional model of individual differences in adult attachment ..................... 26 2. The two regions of the prefrontal cortex (dorsolateral and orbitomedial) and the anterior cingulate cortex ................................................................................................................ 44 3. Noted areas of the limbic system: the ventral tegmental area, amygdala, nucleus accumbens, caudate nucleus, and the hippocampus ......................................................... 46 4. Medium spiny neuron firing relative to damage inflicted to the hippocampus ................ 48 iii CHAPTER I Introduction Communities in America are facing a new crisis. Mental health of American youth is deteriorating at an alarming rate as we witness high and rising rates across multiple mental health diagnoses; researchers attribute this phenomenon to a new lack of inner-connectedness (Blankenhorn, 2008). While many may argue that we feel more connected than ever due to modern technology, there is research that would suggest otherwise (Lapidot-Lefler & Barak, 2012; Siomos et al., 2012). Attachment theory posits that most individuals pass through four crucial attachment phases by four years of age (Marvin & Britner, 2008). With the advent of modern technology occupying more time in the lives of children (Common Sense Media, 2011), in lieu of parent-child interactions, what consequences can we come to expect? There is a burgeoning need to explore the effects of technology on the parent-child relationship. In their study of nearly 1,400 parents, Common Sense Media (2011) found that two year- olds are spending twice as much time watching television as they are reading books and children under eight years old are becoming increasingly tech-savvy. Why is this relevant to technology use? In his latest work, The Science of the Art of Psychotherapy, Allan Schore (2012) asserts: In 1996, I proposed, "the self-organization of the developing brain occurs in the context of a relationship with another self, another brain." This book, like its three predecessors, presents the reader with a continually expanding body of
Recommended publications
  • Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West”
    © 2002 The Charles Babbage Institute for the History of Information Technology 211 Andersen Library, 222 – 21st Avenue South, Minneapolis, MN 55455 USA Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West” Juliet Burba University of Minnesota Philip L. Frana Charles Babbage Institute Date published: 13 September 2002 Sanity is a madness put to good uses. So wrote the great philosopher and poet Jorge Augustín Nicolás Ruiz de Santayana in his essay “The Elements and Function of Poetry.”1 Without doubt, the advent of the early Web unleashed a mania, an unreasonable recklessness that to this day resists being swept back under the rug. How can we tease “sanity” out of the Web? Can the historian put this madness to good use? When the World Wide Web made its debut in the early 1990s, it resembled a pageant that only a parent could love. The Internet Movie Database, the WebCrawler search engine, the Web cam of an isolated unbent spoon and its associated challenge to the telekinetic Uri Geller—those were “reliable” sites. Indeed, the most useful sites looked suspiciously like they had been ripped from Internet Gopher menus. Even Jerry’s Guide to the World Wide Web (later rechristened “Yahoo!”) could not be judged an entirely trustworthy directory in those days. Already it is difficult to remember a time when banner advertising could be used as a legitimate navigational tool, when sessions running a Mosaic browser with its (usually slowly) pulsing upper right-hand image of Earth and two orbiting plan- etoids seemed interminable, and where alternatives to the hand-coding of new Web pages did not exist.
    [Show full text]
  • MTS on Wikipedia Snapshot Taken 9 January 2011
    MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors
    [Show full text]
  • Tomo II • Maestría En Ciencia E Ingeniería De La Computación
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN Tomo II (Maestría en Ciencia e Ingeniería de la Computación) Planes de Estudio Maestría en Ciencia e Ingeniería de la Computación Doctorado en Ciencia e Ingeniería de la Computación Especialización en Cómputo de Alto Rendimiento Grados que se otorgan Maestro(a) en Ciencia e Ingeniería de la Computación Doctor(a) en Ciencia e Ingeniería de la Computación Especialista en Cómputo de Alto Rendimiento Campos de conocimiento que comprende Teoría de la Computación Inteligencia Artificial Computación Científica Señales, Imágenes y Ambientes Virtuales Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Campos de conocimiento en los que se articula la especialización Computación Científica Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Entidades académicas participantes • Facultad de Ciencias • Facultad de Ingeniería • Facultad de Estudios Superiores Cuautitlán • Instituto de Ingeniería • Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas • Instituto de Matemáticas • Centro de Ciencias Aplicadas y Desarrollo Tecnológico Entidades académicas que se incorporan de manera exclusiva a la especialización • Instituto de Geofísica (IG) • Instituto de Astronomía (IA) • Instituto de Física (IF) • Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC) Fechas de aprobación u opiniones Modificación del Programa de Posgrado en Ciencia e Ingeniería de la Computación, que implica: a) Adecuación y modificación del plan de estudios de la Maestría en Ciencia e Ingeniería de la Computación. b) Modificación del plan de estudios de Doctorado en Ciencias e Ingeniería de la Computación. c) Cambio de denominación del campo de conocimiento de: “Ingeniería de Sistemas y Redes Computacionales" por "Redes y seguridad en cómputo".
    [Show full text]
  • Publications Core Magazine, 2007 Read
    CA PUBLICATIONo OF THE COMPUTERre HISTORY MUSEUM ⁄⁄ SPRINg–SUMMER 2007 REMARKABLE PEOPLE R E scuE d TREAsuREs A collection saved by SAP Focus on E x TRAORdinARy i MAGEs Computers through the Robert Noyce lens of Mark Richards PUBLISHER & Ed I t o R - I n - c hie f THE BEST WAY Karen M. Tucker E X E c U t I V E E d I t o R TO SEE THE FUTURE Leonard J. Shustek M A n A GI n G E d I t o R OF COMPUTING IS Robert S. Stetson A S S o c IA t E E d I t o R TO BROWSE ITS PAST. Kirsten Tashev t E c H n I c A L E d I t o R Dag Spicer E d I t o R Laurie Putnam c o n t RIBU t o RS Leslie Berlin Chris garcia Paula Jabloner Luanne Johnson Len Shustek Dag Spicer Kirsten Tashev d E S IG n Kerry Conboy P R o d U c t I o n ma n ager Robert S. Stetson W E BSI t E M A n AGER Bob Sanguedolce W E BSI t E d ESIG n The computer. In all of human history, rarely has one invention done Dana Chrisler so much to change the world in such a short time. Ton Luong The Computer History Museum is home to the world’s largest collection computerhistory.org/core of computing artifacts and offers a variety of exhibits, programs, and © 2007 Computer History Museum.
    [Show full text]
  • The Digital Information Revolution: the Era of Immediacy
    The Digital Information Revolution: The Era of Immediacy Michael B. Spring May 2011 The Digital Information Revolution: the Era of Immediacy Table of Contents Table of Contents .................................................................................................................................................. ii Chapter I: Introduction ................................................................................................................ 1 Origins of This Book ............................................................................................................................................ 1 Audience for this Book ......................................................................................................................................... 2 The Author’s Perspective ..................................................................................................................................... 2 Acknowledgments ................................................................................................................................................ 4 Organization of the Book ...................................................................................................................................... 5 Chapter II: History ........................................................................................................................ 6 Introduction .........................................................................................................................................................
    [Show full text]
  • Computer History a Look Back Contents
    Computer History A look back Contents 1 Computer 1 1.1 Etymology ................................................. 1 1.2 History ................................................... 1 1.2.1 Pre-twentieth century ....................................... 1 1.2.2 First general-purpose computing device ............................. 3 1.2.3 Later analog computers ...................................... 3 1.2.4 Digital computer development .................................. 4 1.2.5 Mobile computers become dominant ............................... 7 1.3 Programs ................................................. 7 1.3.1 Stored program architecture ................................... 8 1.3.2 Machine code ........................................... 8 1.3.3 Programming language ...................................... 9 1.3.4 Fourth Generation Languages ................................... 9 1.3.5 Program design .......................................... 9 1.3.6 Bugs ................................................ 9 1.4 Components ................................................ 10 1.4.1 Control unit ............................................ 10 1.4.2 Central processing unit (CPU) .................................. 11 1.4.3 Arithmetic logic unit (ALU) ................................... 11 1.4.4 Memory .............................................. 11 1.4.5 Input/output (I/O) ......................................... 12 1.4.6 Multitasking ............................................ 12 1.4.7 Multiprocessing .........................................
    [Show full text]
  • Timeline of Computing History 4000-1200 B.C
    T o commemorate the 50th year of modern computing and the Computer Society, the timeline on the following pages traces the evolution of computing and computer technology. Timeline research by Bob Carlson, Angela Burgess, and Christine Miller. Timeline design and production by Larry Bauer. We thank our reviewers: Ted Biggerstaff, George Cybenko, Martin Campbell-Kelly, Alan Davis, Dan O’Leary, Edward Parrish, and Michael Williams. In 2012 the timeline was augmented through 2010 by the Society's History Committee. Janice Hall did the update graphics. Timeline of Computing History 4000-1200 B.C. 3000 B.C. The abacus is invented Inhabitants of in Babylonia. the first known civilization in Sumer keep 250-230 B.C. The Sieve of records of Eratosthenes is used to determine commercial prime numbers. transactions on clay tablets. About 79 A.D. The “Antikythera IBM Archives Device,” when set correctly About 1300 The more familiar according to latitude and day wire-and-bead abacus replaces The University Museum, of Pennsylvania of the week, gives alternating the Chinese calculating rods. 29- and 30-day lunar months. 4000 B.C. — 1300 1612-1614 John Napier uses the printed decimal point, devises 1622 William Oughtred invents the circular slide 1666 In logarithms, and uses numbered sticks, England, or Napiers Bones, for calculating. rule on the basis of Napier’s logarithms. Samuel Morland produces a mechanical 1623 William (Wilhelm) calculator that Schickard designs a can add and “calculating clock” with subtract. a gear-driven carry mechanism to aid in The Computer Museum multiplication of 1642-1643 Blaise Pascal creates a multi-digit numbers.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]
  • History of Data Centre Development
    History of Data Centre Development Rihards Balodis and Inara Opmane Institute of Mathematics and Computer Science, University of Latvia (IMCS UL), Riga, Latvia [email protected] Abstract: Computers are used to solve different problems. For solving these problems computer software and hardware are used, but for operations of those computing facilities a Data Centre is necessary. Therefore, development of the data centre is subordinated to solvable tasks and computing resources. We are studying the history of data centres’ development, taking into consideration an understanding of this. In the beginning of the computer era computers were installed in computing centres, because all computing centres have defined requirements according to whom their operation is intended for. Even though the concept of ‘data centre’ itself has been used since the 1990s, the characteristic features and requirement descriptions have been identified since the beginning of the very first computer operation. In this article the authors describe the historical development of data centres based on their personal experience obtained by working in the Institute of Mathematics and Computer Science, University of Latvia and comparing it with the theory of data centre development, e.g. standards, as well as other publicly available information about computer development on the internet. Keywords: Computing facilities, Data Centre, historical development. 1. Basic Characteristics of Data Centre Facilities 1.1 Data centre definition A data centre is a physical environment facility intended for housing computer systems and associated components. Data centres comprise the above-mentioned computer systems and staff that maintains them. The necessary physical environment facility encompasses power supplies with the possibility to ensure backup power, necessary communication equipment and redundant communication cabling systems, air conditioning, fire suppression and physical security devices for staff entrances.
    [Show full text]
  • Social Issues in Computing
    Social Issues in Computing Exploring the Ways Computers Affect Our Lives Colin Edmonds June 2009 Social Issues in Computing Istanbul, Turkey June 2009 This text is a work in progress – at this time, a “beta” version. Special thanks to John Royce @ the Robert College library for his suggestions based on a first reading. The general idea for this book is based on my experience teaching an International Baccalaureate course about Social Issues in Computing called Information Technology for a Global Society. It was initially used as the textbook for a one semester course in the Spring of 2009. A series of slide presentations, one for almost each chapter was used as in-class lecture notes and this was accompanied by a large collection of videos from a variety of sources online. For my family - the social issue above all others. Cover photo: Colin Edmonds Images, unless otherwise specifically identified are also the (Creative Commons) work of Colin Edmonds. Other images are GNU Free Documentation available online from Wikimedia Commons which states: Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Subject to disclaimers. Social Issues in Computing (Exploring the Ways Computers Affect Our Lives) 2009 Colin Edmonds (check www.cedmonds.net for updates) Table of Contents Chapter 1 – The History of Computing Page 7 Chapter
    [Show full text]
  • Philosophy of Computer Science: an Introductory Course
    Philosophy of Computer Science: An Introductory Course William J. Rapaport Department of Computer Science and Engineering, Department of Philosophy, and Center for Cognitive Science State University of New York at Buffalo, Buffalo, NY 14260-2000 [email protected] http://www.cse.buffalo.edu/ rapaport/ ∼ June 21, 2005 1 Philosophy of Computer Science: An Introductory Course Abstract There are many branches of philosophy called “the philosophy of X”, where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well- developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments. 2 1 Introduction During the Spring 2004 semester, I created and taught a course on the Philosophy of Computer Science. The course was both dual-listed at the upper-level undergraduate and first-year graduate levels and cross-listed in the Department of Computer Science and Engineering (CSE) (where I am an Associate Professor) and the Department of Philosophy (where I have a courtesy appointment as an Adjunct Professor) at State University of New York at Buffalo (“UB”). The philosophy of computer science is not the philosophy of artificial intelligence (AI); it includes the philosophy of AI, of course, but extends far beyond it in scope. There seem to be less than a handful of such broader courses that have been taught: A Web search turned up some 3 or 4 that were similar to my course in both title and content.1 There are several more courses with that title, but their content is more accurately described as covering the philosophy of AI.
    [Show full text]
  • Università Degli Studi Di Milano
    Università degli Studi di Milano Corso ITP 2005/06 Panoramica sull'informatica STEFANO FERRARI Informatica di base Corso di Informatica di base Stefano Ferrari Panoramica sull'informatica Pagina 2 di 39 Corso di Informatica di base Stefano Ferrari Indice 1 INTRODUZIONE . 6 2 INFORMATICA: DEFINIZIONE E AREE DI INTERESSE . 7 2.1 Cos'è l'Informatica? . 7 2.2 Cosa studia l'Informatica? . 8 2.2.1 Algoritmi e Informatica Teorica . 8 2.2.2 Linguaggi ed Ingegneria del Software . 8 2.2.3 Gestione della Conoscenza . 9 2.2.4 Architetture di Sistemi e di Reti . 9 2.2.5 Interazione Uomo/Macchina . 9 3 STORIA DELL'INFORMATICA . 10 3.1 Preistoria informatica . 10 3.2 Storia informatica . 13 3.3 Informatica moderna . 18 3.4 Dove va il futuro? . 30 3.4.1 Applicazioni . 31 Panoramica sull'informatica Pagina 3 di 39 Corso di Informatica di base Stefano Ferrari wearable PC . 31 PC+TV+telefono . 31 3.4.2 Tecnologie . 31 Calcolatori ottici . 32 Calcolatori chimici . 32 Calcolatori quantistici . 32 3.4.3 Frontiere . 32 4 CLASSI DI CALCOLATORI . 33 4.1 Calcolatori analogici . 33 4.1.1 Calcolo analogico: esempi . 33 4.2 Calcolatori digitali . 34 4.2.1 Calcolo digitale: esempi . 34 4.3 Calcolatori attuali . 34 4.3.1 Categorie di calcolatori . 34 Microcomputer . 34 Mainframe . 35 Minicomputer . 35 Supercomputer . 35 Cluster . 35 Sistemi dedicati . 35 4.3.2 Categorie hardware . 36 Processore . 36 Hardware programmabile . 36 DSP . 36 ASICS . 36 System on chip . 36 Panoramica sull'informatica Pagina 4 di 39 Corso di Informatica di base Stefano Ferrari Riferimenti bibliografici .
    [Show full text]