DEVONA BRUŅUZIVJU UN AKANTOŽU PALEOEKOLOĢIJA Un to MAZUĻI LODES IEGULĀ

Total Page:16

File Type:pdf, Size:1020Kb

DEVONA BRUŅUZIVJU UN AKANTOŽU PALEOEKOLOĢIJA Un to MAZUĻI LODES IEGULĀ DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 21 IEVA UPENIECE DEVONA BRUŅUZIVJU UN AKANTOŽU PALEOEKOLOĢIJA un to MAZUĻI LODES IEGULĀ PROMOCIJAS DARBS Doktora grāda iegūšanai ģeoloģijas nozarē Apakšnozare: pamatiežu ģeoloģija LATVIJAS UNIVERSITĀTE Promocijas darbs izstrādāts Latvijas Universitātes Ģeoloģijas nodaļas Pamatiežu ģeoloģijas katedrā no 1995. gada līdz 2011. gadam. Šis darbs izstrādāts arī ar Eiropas Sociālā Fonda atbalstu projektā “Atbalsts doktora studijām Latvijas Universitātē” (2010./2011.māc.gads). Promocijas darba vadītājs: Ervīns Lukševičs, LU profesors, Dr. geol. (Latvijas Universitāte) Recenzenti: Ivars Zupiņš, Dr. geol., Latvijas Dabas Muzejs Elga Kurika, PhD, Tallinas Tehnoloģiju universitātes Ģeoloģijas institūts Aleksandrs Ivanovs, Cand. geol.-min. sci, Sankt-Pēterburgas Universitātes docents Promocijas padomes sastāvs: Vitālijs Zelčs, profesors, Dr. geol. – padomes priekšsēdētājs Ervīns Lukševičs, profesors, Dr. geol. – padomes priekšsēdētāja vietnieks Aija Dēliņa, docente, Dr. geol. Laimdota Kalniņa, asoc. profesore, Dr. geogr. Valdis Segliņš, profesors, Dr. geol. Ivars Zupiņš, Dr. geol. Padomes sekretārs: Ģirts Stinkulis, asoc. profesors, Dr. geol. Promocijas darbs pieņemts aizstāvēšanai ar LU Ģeoloģijas promocijas padomes 2011. gada 19. maija sēdes lēmumu Nr. 02/2011. Promocijas darba atklāta aizstāvēšana notiks LU Ģeoloģijas promocijas padomes sēdē 2011. gada 2. septembrī, Rīgā, Alberta ielā 10, Jāņa un Elfrīdas Rutku auditorijā (313. telpa). Ar promocijas darbu ir iespējams iepazīties Latvijas Universitātes Zinātniskajā bibliotēkā Rīgā, Kalpaka bulvārī 4 un Latvijas Akadēmiskajā bibliotēkā Rīgā, Lielvārdes ielā 4. Atsauksmes sūtīt: Dr. Ģirts Stinkulis, Latvijas Universitātes Ģeoloģijas nodaļa, Raiņa bulvāris 19, LV-1586, Rīga. Fakss: +371 6733 2704, e-pasts: [email protected] © Ieva Upeniece, 2011 Latvijas Universitāte www.lu.lv DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 21 IEVA UPENIECE PALAEOECOLOGY and JUVENILE INDIVIDUALS of the DEVONIAN PLACODERM and ACANTHODIAN FISHES from LODE site, LATVIA DOCTORAL THESIS In Partial Fulfillment of the Requirements of the Doctor Degree in Geology Subdiscipline of Bedrock Geology UNIVERSITY OF LATVIA The doctoral thesis was carried out: Chair of Bedrock Geology, Department of Geology, University of Latvia, 1995-2011. This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” (2010/2011 acad.year). Supervisor: Ervīns Lukševičs, Professor, Dr. geol. (University of Latvia) Reviewers: Ivars Zupiņš, Dr. geol., Natural History Museum of Latvia Elga Kurika, PhD, Institute of Geology, Tallinn University of Technology, Aleksandrs Ivanovs, Cand. geol.-min. sci, University of St.-Petersburg Doctoral Committee: Vitālijs Zelčs, Professor, Dr. geol. – chairman Ervīns Lukševičs, Professor, Dr. geol. – deputy chairman Aija Dēliņa, Dr. geol. Laimdota Kalniņa, Associate Professor, Dr. geogr. Valdis Segliņš, Professor, Dr. geol. Ivars Zupiņš, Dr. geol. Secretary: Ģirts Stinkulis, Associate Professor, Dr. geol. This thesis is accepted for the commencement of the degree of Doctor of Geology (in Bedrock Geology) on May, 19 by the Doctoral Commitee of Gelogy, University of Latvia. The thesis will be defended at the public session of the Doctoral Committee of Geology University of Latvia, on September, 2, 2011, Alberta Street 10, Jāņa un Elfrīdas Rutku auditorium (Room 313). The thesis is available at the Scientific Library of the University of Latvia Kalpaka Blvd. 4, Rīga, and Academic Library of Latvia, Lielvārdes Street 4, Rīga. Address for submitting of comments: Dr. Ģirts Stinkulis, Department of Geology, University of Latvia, Rainis bulvāris 19, LV- 1586, Rīga. Fax: +371 733 2704, e-mail: [email protected] © Ieva Upeniece, 2011 University of Latvia www.lu.lv CONTENTS Anotācija …………………………………………………………………………….. 4 Abstract ……………………………………………………………………………… 5 Introduction ………………………………………………………………………….. 6 1. Geological background and biostratigraphy of the Lode Formation ………. 11 1.1. Geological setting ……………………………………………………………. 11 1.2. Faunal characteristic ………………………………………………………….. 14 1.3. Comparison with similar ichthyofaunas of other areas ………………………. 17 2. Material and methods …………………………………………………………… 21 2.1. Examined fish and invertebrate material …………………………………….. 21 2.2. Field study methods ………………………………………………………….. 22 2.3. Methods of morphological research ………………………………………….. 23 2.4. Methods of taphonomical research and palaeoecological reconstructions …… 24 3. Palaeoecology and fish taphonomy of the Lode fossil site ……………………. 25 3.1. Distribution of fossils in the “juvenile fish” lens ……………………………. 25 3.2. Fish taphonomy ……………………………………………………………… 35 3.2.1. Disintegration process of placoderm Asterolepis ornata body ……….. 35 3.2.2. Disintegration process in other antiarchan fishes ……………………... 40 3.2.3. Taphonomy of acanthodian Lodeacanthus gaujicus ………………….. 41 3.2.4. Discussion on fish taphonomy ………………………………………… 41 3.3. Types of fossil fish taphocoenoses …………………………………………… 42 3.4. Trophic relations of Lode faunal and floral assemblage ……………………... 47 4. Morphology and ontogeny of juveniles of placoderm Asterolepis ornata Eichwald sensu Agassiz …………………………………………………………. 52 4.1. Morphology of juveniles of Asterolepis ornata ……………………………… 53 4.1.1. General remarks ………………………………………………………. 53 4.1.2. Size and general proportions …………………………………………. 55 4.1.3. Ridge system …………………………………………………………. 59 4.1.4. Head shield …………………………………………………………... 61 4.1.5. Visceral skeleton . …………………………………………………….. 75 4.1.6. Trunk-armour …………………………………………………………. 76 4.1.7. Pectoral fins …………………………………………………………… 97 4.1.8. Types of sutural connections ………………………………………… 100 4.1.9. Squamous part of the body …………………………………………… 105 4.1.10. Sensory canal system ………………………………………………… 109 4.1.11. Ornamentation ……………………………………………………….. 110 4.1.12. Internal structures ……………………………………………………. 114 4.2. Changes of characters in Asterolepis ornata during the early growth ………. 117 4.2.1. Morphological changes ………………………………………………. 117 4.2.2. Ontogenetic development of exoskeleton ……………………………. 119 4.3. Discussion …………………………………………………………………… 129 5. Morphology and ontogeny of acanthodian Lodeacanthus gaujicus Upeniece … 133 5.1. Morphology of Lodeacanthus gaujicus ………………………………………. 133 5.1.1. General remarks ………………………………………………………. 133 5.1.2. Systematic palaeontology ……………………………………………… 136 2 5.1.3. Histology of scales …………………………………………………….. 158 5.1.4. Comparison of Lodeacanthus with related genera ……………………. 159 5.2. Ontogeny of Lodeacanthus gaujicus ………………………………………… 160 5.2.1. Development of squamation ………………………………………….. 160 5.2.2. Sequence of ossification of skeletal elements ………………………… 165 5.2.3. Changes of proportions of body ………………………………………. 169 Conclusions ………………………………………………………………………… 171 Appendices ………………………………………………………………………… 174 1. Abbreviations used in text and figures Index of anatomical abbreviations used for placoderms ……………………… 174 Apzīmējumu saraksts bruņuzivīm …………………………………………….. 177 Index of anatomical abbreviations used for acanthodians ……………………. 180 Apzīmējumu saraksts akantodēm …………………………………………….. 180 2. Measurements and indicated distances of the head-shield and trunk armour plates of juveniles and adults of placoderm Asterolepis ornata ……………… 181 3. List of tables and figures ……………………………………………………… 193 Tabulu un attēlu un saraksts………………………………………………….. 201 References ………………………………………………………………………… 210 3 Anotācija Promocijas darbs veltīts unikālu, izcili labi saglabājušos bruņuzivju mazuļu, žokļžaunzivju un dažādu bezmugurkaulnieku izpētei, kurus autore ievākusi ilglaicīgu izrakumu laikā Liepas (Lodes) māla karjerā Latvijā. Materiāla ģeoloģiskais vecums attiecas uz augšdevona Lodes svītu. Veikta abu izmirušo zivju klašu pārstāvju - bruņuzivju Placodermi un žokļžaunzivju Acanthodii dažādās attīstības pakāpēs esošu mazuļu skeletu izpēte, izveidotas ķermeņu rekonstrukcijas. Izstrādāta to agrīnās ontoģenēzes un attīstības stadiju pētījumu metodoloģija. Katras agrīnās augšanas stadijas izdalīšanai tika noteikts kvalitatīvo un kvantitatīvo īpašību izmaiņu kopums. Detalizēti aprakstīta devona bruņuzivju mazuļu Asterolepis ornata Eichwald sensu Agassiz morfoloģija un bruņu plātņu veidošanās process. Bruņuzivju mazuļiem izdalītas un aprakstītas piecas secīgas agrīnās augšanas attīstības stadijas. Veikta dažādu augšanas stadiju salīdzināšana, lai atšķirīga vecuma vienas sugas bruņuzivis netiktu aprakstītas kā piederošas jauniem, dažādiem zivju taksoniem. Aprakstīta devona akantožu (žokļžaunzivju) Lodeacanthus gaujicus Upeniece morfoloģija un piecas secīgas augšanas stadijas, kas pamatojas uz dažādu izmēru veselu eksemplāru izpēti. Izpētīts zvīņojuma veidošanās process un veikts tā attīstības salīdzinājums ar citiem Acanthodiformes kārtas pārstāvjiem. Izdalītas sešas zvīņojuma zonas, kas ļauj morfoloģiski atšķirīgās zvīņas kļūdaini neaprakstīt kā piederošus jauniem, dažādiem zivju taksoniem. Izpētīts Lodes laikposma deltu nogulumu ihtiofaunas un bezmugurkaulnieku komplekss. Lodes svītas organismu saraksts papildināts ar jauniem zivju, bezmugurkaulnieku un augu taksoniem. Bruņuzivju mazuļos un akantodēs atrastas un aprakstītas unikālas parazītisko tārpu fosilās atliekas, kas ir senākie līdz šim zināmie zivju parazītu atradumi paleontoloģiskajā hronikā. Tie pārstāv arī senāko mugurkaulnieku- parazītorganismu asociāciju. Tiek sniegts parazītisko tārpu fosilo atlieku salīdzinājums ar mūsdienu parazītiskajiem tārpiem. Tika apstiprināta parazitologa Llewellyn
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Newsletter No. 236 April 2016
    NewsletterNewsletter No.No. 236236 AprilApril 20162016 Contents: Future Programme 2 Other Societies and Events 4 Editorial 6 Annual General Meeting Report 7 Committee Norwegian Mines: Nickel, Molybdenum, Chairman Niobium, Cobalt and Silver 8 Graham Worton The Palaeobiology of the Placoderms 11 Vice Chairman Mike's Musings No. 2 - Age of the Earth? 14 Peter Twigg Members' Forum Hon Treasurer Alan Clewlow Birds, Diaphragms and Dinosaurs 16 Hon Secretary More Photos from the Lapworth 16 Linda Tonkin Cairngorm Gems Exhibition, Braemar 16 Field Secretary Andrew Harrison Newsletter Editor Julie Schroder Webmaster John Schroder Other Members Christopher Broughton Bob Bucki Copy date for the next Newsletter is Wednesday 1 June Newsletter No. 236 The Black Country Geological Society April 2016 Linda Tonkin, Andy Harrison, Julie Schroder, Honorary Secretary, Field Secretary, Newsletter Editor, 4 Heath Farm Road, Codsall, 42 Billesley Lane, Moseley, ☎ Wolverhampton, WV8 1HT. 01384 379 320 Birmingham, B13 9QS. ☎ 01902 846074 Mob: 07973 330706 ☎ 0121 449 2407 [email protected] [email protected] [email protected] For enquiries about field and geoconservation meetings please contact the Field Secretary. To submit items for the Newsletter please contact the Newsletter Editor. For all other business and enquiries please contact the Honorary Secretary. For further information see our website: bcgs.info Future Programme Indoor meetings will be held in the Abbey Room at the Dudley Archives, Tipton Road, Dudley, DY1 4SQ, 7.30 for 8.00 o’clock start unless stated otherwise. Visitors are welcome to attend BCGS events but there will be a charge of £1.00 from January 2016. Please let Andy Harrison know in advance if you intend to go to any of the field or geoconservation meetings.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Catalogue Palaeontology Vertebrates (Updated July 2020)
    Hermann L. Strack Livres Anciens - Antiquarian Bookdealer - Antiquariaat Histoire Naturelle - Sciences - Médecine - Voyages Sciences - Natural History - Medicine - Travel Wetenschappen - Natuurlijke Historie - Medisch - Reizen Porzh Hervé - 22780 Loguivy Plougras - Bretagne - France Tel.: +33-(0)679439230 - email: [email protected] site: www.strackbooks.nl Dear friends and customers, I am pleased to present my new catalogue. Most of my book stock contains many rare and seldom offered items. I hope you will find something of interest in this catalogue, otherwise I am in the position to search any book you find difficult to obtain. Please send me your want list. I am always interested in buying books, journals or even whole libraries on all fields of science (zoology, botany, geology, medicine, archaeology, physics etc.). Please offer me your duplicates. Terms of sale and delivery: We accept orders by mail, telephone or e-mail. All items are offered subject to prior sale. Please do not forget to mention the unique item number when ordering books. Prices are in Euro. Postage, handling and bank costs are charged extra. Books are sent by surface mail (unless we are instructed otherwise) upon receipt of payment. Confirmed orders are reserved for 30 days. If payment is not received within that period, we are in liberty to sell those items to other customers. Return policy: Books may be returned within 14 days, provided we are notified in advance and that the books are well packed and still in good condition. Catalogue Palaeontology Vertebrates (Updated July 2020) Archaeology AE11189 ROSSI, M.S. DE, 1867. € 80,00 Rapporto sugli studi e sulle scoperte paleoetnologiche nel bacino della campagna romana del Cav.
    [Show full text]
  • Upper Devonian) of Latvia
    Estonian Journal of Earth Sciences, 2021, 70, 1, 3–17 https://doi.org/10.3176/earth.2021.01 Revision of asterolepidoid antiarch remains from the Ogre Formation (Upper Devonian) of Latvia Ervīns Lukševičs Department of Geology, University of Latvia, Raiņa Boulevard 19, Riga LV­1586, Latvia; [email protected] Received 3 June 2020, accepted 8 September 2020, available online 15 December 2020 Abstract. The Frasnian (Upper Devonian) antiarch Walterilepis speciosa was first described in 1933 (as Taeniolepis) on the basis of a single specimen. The newly collected material has allowed the head to be described in a more detail, especially the nuchal and paranuchal plates. Other newly described elements include bones of the pectoral appendages and trunk armour, demonstrating a rather high and short trunk armour. The shape and proportions of the head and trunk armour suggest the attribution of Walterilepis to the family Pterichthyodidae; it is most probably closely related to Lepadolepis from the Late Frasnian of Germany. Whilst W. speciosa is endemic to the Latvian part of the Baltic Devonian Basin, the connection to the Rheinisches Schiefergebirge is probably closer than previously presumed. Walterilepis fits into the biostratigraphical column at the same level as Bothriolepis maxima and B. evaldi, indicating the high diversity of antiarchs during Pamūšis time. Key words: Frasnian, biostratigraphy, morphology, placoderm, Baltic Devonian basin. INTRODUCTION noted that the generic name of Gross (1932, 1933a) is preoccupied by the sarcopterygian name Taeniolepis The well­known Baltic German palaeontologist Walter Trautschold, 1874, and he erected the replacement name Gross, who was born in the close vicinity of Riga, made Walterilepis (Moloshnikov 2001).
    [Show full text]
  • Tartu, 26.-27. September 2003 Elga Mark-Kurik Ja Jйri Nemliher Tallinna
    Eesti geoloogia uue sajandi kiinnisel 38 Tartu, 26.-27. september 2003 VEEL KORD КESK-DEVONI АВА V А КIНТIDEST Elga Mark-Kurik ja Jйri Nemliher Tallinna Tehnikatilikooli Geoloogia Instituut, Estonia pst. 7, 10143 Tallinn ([email protected]; [email protected]) Abava kihid on kauaaegse asendi tottu Kesk- ja Ulem-Devoni piiril pohjustanud rohkem vaidlusi kui mбni teine stratigraafiline tiksus Baltikumi Нibiloigetes. Selle asendiga seoses on neid kihte kasitletud kord iseseisva tiksusena (Liepins 1960, Mark-Kurik 1991), marksa sagedamini aga lasuva, Gauja lademe osana (Kurss et al. 1981, Mark-Kurik 1981) vбi lamava, Burtnieki lademe osana (Kleesment 1995, Kleesment & Mark-Kurik 1997, Vingisaar 1997). Abava kihtide kui Uksuse liitmist selle vбi teise kбrgemat jarku Uksusega on pбhjustanud antud Uksuse piiride, eriti Ulemise piiri ebamaarasus ning halb jalgitavus geoloogilisel kaш·distamisel (Kurik et al. 1989). Viimatimainitud asjaolu tottu loobus Kurss hiljem ( 1992) Abava kui iseseisva stratigraafilise tiksuse kasutamisest. Siiski ei saa mainimata jatta Abava kihtidele spetsiifilist kalafaunat, samuti selle tiksikelementide.laia levikut Ida­ Euroopa platvormil ning naaberaladel ja kaugemalgi ning nimetatud kihtide tllhtsust regioonidevahelise korrelatsiooni aspektist (Mark-Kurik 1991, Ahlberg et al. 1999, Mark-Kurik et al. 1999). Eestis kuuluvad Abava kihid Givet' ladejargu Burtnieki lademesse, moodustades selle kolmanda ehk Ulemise kihikompleksi. Кihtide paksus on 15,1-32 m. Need koosnevad heledavarvilisest peeneteralisest pбimjaskihilisest liivakivist, ka peeneteralisest hallist, rohekas- voi lillakashallist aleuroliidist. Aleuroliiti on antud Uksuses enam kui 25 %. Samuti esineb selles halli voi punakaspruuni savi. Kagu-Eesti puurstidamikes on Abava tasemelt leitud dolokivi ning domeriiti. Mineraloogiliselt on meie Vбhandu jбе aarsed paljandid ning Latis paiknev Lejeji paljand sarnased (Kleesment 1995). Eelpool mainitud paljand (stratottiiip) asub Kuramaal Venta jбgikonnas Abava jбе vasakul kaldal (suudmest 4 km Ulesvoolu) Lejeji talu vastas.
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Ornamentation of Dermal Bones of Placodermi from the Lower Devonian of Morocco As a Measure of Biodiversity
    Mateusz Antczak, Błażej Berkowski Geologos 23, 2 (2017): 65–73 doi: 10.1515/logos-2017-0009 Ornamentation of dermal bones of Placodermi from the Lower Devonian of Morocco as a measure of biodiversity Mateusz Antczak1*, Błażej Berkowski1 1Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Institute of Geology, Department of Palaeontology and Stratigraphy, Krygowskiego 12, 61-680 Poznań, Poland * corresponding author, e-mail: [email protected] Abstract Dermal bones are formed early during growth and thus constitute an important tool in studies of ontogenetic and evo- lutionary changes amongst early vertebrates. Ornamentation of dermal bones of terrestrial vertebrates is often used as a taxonomic tool, for instance in Aetosauria, extant lungfishes (Dipnoi) and ray-finned fishes (Actinopterygii), for which it have been proved to be of use in differentiating specimens to species level. However, it has not been utilised to the same extent in placoderms. Several features of the ornamentation of Early Devonian placoderms from Hamar Laghdad (Morocco) were examined using both optical and scanning electron microscopy to determine whether it is possible to distinguish armoured Palaeozoic fishes. Four distinct morphotypes, based on ornamentation of dermal bones, are dif- ferentiated. These distinct types of ornamentation may be the result of either different location of dermal plates on the body or of ontogenetic (intraspecific) and/or interspecific variation. Keywords: Arthrodira, interspecific variation, ontogeny, fishes, North Africa 1. Introduction both between species and ontogenetic stages (Tri- najstic, 1999); acanthodians are almost exclusively Dermal bones, or membranous bones, form known by scale taxa (Brazeau & Friedman, 2015), as without a chondral stage; in extant fish taxa these are many sharks (e.g., Martin, 2009).
    [Show full text]
  • EGT Aastaraamat 2020 ENG.Indd
    YEARBOOK GEOLOGICAL SURVEY OF ESTONIA F. R. Kreutzwaldi 5 44314 Rakvere Telephone: (+372) 630 2333 E-mail: [email protected] ISSN 2733-3337 © Eesti Geoloogiateenistus 2021 2 Foreword . 3 About GSE . 5 Cooperation . 6 Human resource development . 9 Fieldwork areas 2020 . 12 GEOLOGICAL MAPPING AND GEOLOGICAL DATA Coring – a major milestone in subsurface investigations in Estonia . 13 Coring projects for geological investigations at the GSE in 2020 . 15 Distribution, extraction, and exploitation of construction minerals in Pärnu county . 17 Mineral resources, geophysical anomalies, and Kärdla Crater in Hiiumaa . .22 Geological mapping in Pärnu County . .26 Opening year of the digital Geological Archive . .29 HYDROGEOLOGY AND ENVIRONMENTAL GEOLOGY Status of Estonian groundwater bodies in 2014–2019 . 31 Salinisation of groundwater in Ida-Viru County . .35 Groundwater survey of Kukruse waste rock heap . .37 The quality of groundwater and surface water in areas with a high proportion of agricultural land . .39 Transient 3D modelling of 18O concentrations with the MODFLOW-2005 and MT3DMS codes in a regional-scale aquifer system: an example from the Estonian Artesian Basin . .42 Radon research in insuffi ciently studied municipalities: Keila and Võru towns, Rõuge, Setomaa, Võru, and Ruhnu rural municipalities . .46 GroundEco – joint management of groundwater dependent ecosystems in transboundary Gauja–Koiva river basin . .50 MARINE GEOLOGY Coastal monitoring in 2019-2020 . .53 Geophysical surveys of fairways . .56 Environmental status of seabed sediments in the Baltic Sea . .58 The strait of Suur väin between the Estonian mainland and the Muhu Island overlies a complex bedrock valley . 60 Foreword 2020 has been an unusual year that none of us is likely to soon forget.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Tesis De Grado Valentina Blandon 201511522
    Reconstrucción científica del Macizo Devónico de Floresta, ilustrada en un diorama. Por Valentina Blandón Hurtado 201511522 Director Dr. Leslie F. Noè Uniandes Co director Dr. Jaime Reyes Abril S.G.C. Universidad de los Andes Facultad de Ciencias Departamento de Geociencias Bogotá, Colombia Noviembre 2019 Leslie F. Noè Jaime A. Reyes Valentina Blandón Hurtado II Tabla de contenido Dedicación .................................................................................................................................V Agradecimiento ..........................................................................................................................V Resumen ...................................................................................................................................VI Abstract ...................................................................................................................................VII Introducción ................................................................................................................................1 Metodología y Materiales ...........................................................................................................5 Resultados y Discusiones ...........................................................................................................7 Devónico Inferior – Formación El Tibet ....................................................................................7 Descripción organismos Formación El Tibet .........................................................................8
    [Show full text]