Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds Mikhail M. Labushev Department of Ore Deposits Geology and Prospecting, Institute of Mining, Geology and Geotechnology, Siberian Federal University, Russian Federation ABSTRACT The concepts of α-and β-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals α-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical el- ements, the same way as chemical elements are located in increasing atomic weights in the Peri- odic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Β-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, β-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further devel- opment of the Periodic Table of Chemical Elements and Chemical Compounds and their proper- ties investigation. INTRODUCTION It is assumed that the number of chemical elements and minerals, as well as inorganic and organic chemical compounds in Nature corresponds to 1, 2, 3 and 4-combinations of a set of 95 and is respectively equal to 95, 4,465, 138,415 and 3,183,545. The explanation of these relations is suggested being based on the concept of information coefficient of proportionality Ip as math- ematical generalization of proportionality coefficient for any set of positive numbers. The indices of proportionality of atomic weights are taken as the mathematical expectations values of Iav symmetrized distributions of Ip values [1]. THE PACKETS OF MINERALS CALCULATION The calculations of Iav values using PAM method [2] are carried out with the help of Agemarker open source program, available for free calculation at www.skyproject.org. The ini- tial data for the calculations are chemical contents of elements and oxides in nominal mass %. To calculate Iav index, the content of each chemical element is divided into the atomic weight of the respective element and multiplied by the same large number being rounded to inte- ger, then each quotient is multiplied by 8. From this set 8 atomic weights are randomly taken, being then moved into a matrix with three rows and three columns. The ninth element of the matrix is ob- tained by summing the eight selected atomic weights. The information coefficients of proportionality Ip are calculated for all the elements of the set [1, 2]. For theoretically pure chemical compounds Agemarker calculations can be carried out di- rectly with the numbers of atomic weights of chemical elements. For example, initial data for calculation of ice index can be 2.016 value for hydrogen and 15.999 value for oxygen. These numbers are hereafter divided by the atomic weight of the corresponding element, and 40 million atomic weights of hydrogen and 20 million atomic weights of oxygen, for example, are taken in the calculations. There can be used some other proportionally changed numbers of atomic weights of hydrogen and oxygen, for example 400 and 200 million respectively. There are considerably more than 95 oxide minerals, with the same number being re- ferred to hydroxides. The selection of minerals of the same packet was made by the following rules: 1. A mineral should not be amorphous. 2. An oxide mineral must contain no more than two chemical elements. 3. A hydroxide mineral must contain no more than three chemical elements. 4. If a mineral except oxygen and hydrogen contains only one chemical element, it refers to the packet of oxides and hydroxides. There are 88 minerals of this type. Besides, N2O5, CO2, CO, SO3 and SO2 oxides occur- ring in nature and being able to exist in a crystalline state, were also included into the packet. The new minerals of oxides and hydroxides packet are proposed to be named after the first re- searchers of periodic changes of chemical elements properties in connection with atomic weights Alexandre-Emile Beguyer de Chancourtois, Julius Lothar Meyer, William Odling, John New- lands and Gustavus Hinrichs: chancourtoisite (N2O5), meyerite (CO2), odlingite (CO), new- landsite (SO3) and hinrichsite (SO2). The results of the calculations are shown in Table 1. Table 1: Iav indexes for minerals of oxides and hydroxides packet Number of I Standard p № Chemical formula I calculations, Mineral av deviation M 1 N2O5 0.332406 0.009425 500 Chancourtoisite 2 CO2 0.334644 0.020820 500 Meyerite 3 CO 0.335071 0.022840 500 Odlingite 4 MgO 0.338624 0.033081 500 Periclase 5 Al2O3 0.342151 0.041762 500 Corundum 6 SiO2 0.343090 0.044471 500 Cristobalite Coesite Quartz 7 BeO 0.344351 0.044889 500 Bromellite 8 SO3 0.346614 0.052920 500 Newlandsite Number of I Standard p № Chemical formula I calculations, Mineral av deviation M 9 SO2 0.348803 0.055130 500 Hinrichsite 10 CaO 0.361776 0.069259 500 Lime 11 (Al2O3)5·H2O 0.369020 0.067487 500 Akdalaite 12 TiO2 0.371583 0.086450 500 Akaogiite Anatase Brookite Rutile 13 Ti2O3 0.373157 0.085253 500 Tistarite 14 V2O5 0.373309 0.090911 500 Shcherbinaite 15 VO2 0.375687 0.091087 500 Paramontroseite 16 V2VO5 0.376923 0.090356 500 Oxyvanite 17 V2O3 0.377333 0.089582 500 Karelianite 18 Cr2O3 0.378730 0.090988 500 Eskolaite 19 Cu2O 0.379726 0.079924 500 Cuprite 20 MnO2 0.380805 0.096598 500 Akhtenskite Pyrolusite Ramsdellite 21 MnO 0.381569 0.088971 500 Manganosite 22 Mn2O3 0.382530 0.094720 500 Bixbyite 23 FeO 0.382655 0.089922 500 Wüstite 24 Fe2O3 0.383667 0.095809 500 Hematite Maghemite 25 Fe3O4 0.383795 0.094443 500 Magnetite 26 NiO 0.385977 0.092748 500 Bunsenite 27 Cu2Cu2O3 0.387604 0.090459 500 Paramelaconite 28 CuO 0.391341 0.097115 500 Tenorite 29 ZnO 0.393268 0.098647 500 Zincite 30 GeO2 0.400652 0.115779 500 Argutite 31 Si3O6·H2O 0.402364 0.090650 500 Silhydrite 32 As2O3 0.404773 0.114155 500 Arsenolite Claudetite 33 Fe10O14(OH)2 0.406592 0.108005 500 Ferrihydrite 34 SeO2 0.406764 0.121061 500 Downeyite 35 MoO3 0.413036 0.135216 500 Molybdite 36 ZrO2 0.417419 0.129485 500 Baddeleyite 37 HBO2 0.418176 0.099024 500 Clinometaborite 38 MoO2 0.421127 0.132318 500 Tugarinovite 39 PdO 0.426397 0.119814 500 Palladinite 40 AlO(OH) 0.428162 0.105947 500 Böhmite Diaspore 41 CdO 0.429978 0.121769 500 Cadmoxite Monteponite 42 SnO 0.433497 0.123663 500 Romarchite 43 SnO2 0.436390 0.143601 500 Cassiterite 44 SbSbO4 0.438165 0.144873 500 Clinocervantite 45 Sb2O3 0.439876 0.137776 500 Sénarmontite Valentinite 46 TeO2 0.441400 0.147196 500 Paratellurite Tellurite 47 CeO2 0.447737 0.151718 500 Cerianite-(Ce) 48 V3O4(OH)4 0.452137 0.131279 500 Doloresite 49 CrO(OH) 0.452205 0.131051 500 Bracewellite Grimaldiite Guyanaite 50 Be(OH)2 0.454080 0.127962 500 Behoite Clinobehoite 51 MnO(OH) 0.454560 0.133513 500 Feitknechtite Groutite Manganite 52 FeO(OH) 0.455263 0.134258 500 Feroxyhyte Goethite Lepidocrocite 53 CoO(OH) 0.457595 0.136687 500 Heterogenite 54 Ta2O5 0.459329 0.168787 500 Tantite 55 B(OH)3 0.460796 0.131486 500 Sassolite 56 VVO2(OH)3 0.461047 0.136635 500 Häggite 57 HgO 0.463864 0.139328 500 Montroydite 58 Mg(OH)2 0.464782 0.131371 500 Brucite 59 GaO(OH) 0.464960 0.144360 500 Tsumgallite 60 PbO 0.465528 0.140154 500 Litharge Massicot Number of I Standard p № Chemical formula I calculations, Mineral av deviation M 61 V2O4·2H2O 0.466318 0.140399 500 Lenoblite 62 VO(OH)2 0.469651 0.142789 500 Duttonite 63 Al(OH)3 0.470961 0.137824 500 Bayerite Doyleite Gibbsite Nordstrandite 64 PbO2 0.471819 0.168797 500 Plattnerite Scrutinyite 65 Pb2PbO4 0.471980 0.153031 500 Minium 66 Tl2O3 0.472338 0.157569 500 Avicennite 67 V6O13·8H2O 0.472464 0.145067 500 Vanoxite 68 Bi2O3 0.473565 0.499328 500 Bismite Sphaerobismoite 69 Ca(OH)2 0.477573 0.145200 500 Portlandite 70 ThO2 0.477976 0.173250 500 Thorianite 71 UO2 0.479302 0.174226 500 Uraninite 72 (UO2)8O2(OH)12 ·10H2O 0.482057 0.181286 500 Metaschoepite 73 H2O 0.482604 0.176645 500 Ice 74 Fe(OH)3 0.486588 0.158802 500 Bernalite 75 Mn(OH)2 0.486746 0.156527 500 Pyrochroite 76 UO4·2H2O 0.486864 0.192867 500 Metastudtite 77 WO3·H2O 0.486937 0.187248 500 Tungstite 78 500 79 Sn3O2(OH)2 0.487554 0.160135 500 Hydroromarchite 80 500 81 Ni(OH)2 0.488687 0.159032 500 Theophrastite 82 Cu(OH)2 0.491008 0.162074 500 Spertiniite 83 Ga(OH)3 0.491527 0.166835 500 Söhngeite 84 (UO2)O2(H2O)2·2H2O 0.491563 0.198072 500 Studtite 85 UO2(OH)2 0.491566 0.198061 500 Paulscherrerite 86 Zn(OH)2 0.491818 0.163176 500 Ashoverite Sweetite Wülfingite 87 WO2(OH)2·H2O 0.493119 0.191232 500 Hydrotungstite 88 MoO3·2H2O 0.494433 0.176963 500 Sidwillite 89 UO3·2H2O 0.495015 0.200296 500 Paraschoepite 90 (UO2)8O2(OH)12·12H2O 0.495193 0.200340 500 Schoepite 91 Cu(OH)2· 3H2O 0.495787 0.180577 500 Anthonyite 92 Cu(OH)2·2H2O 0.497209 0.179069 500 Calumetite 93 U2(UO2)4O6 (OH)4·9H2O 0.497813 0.202956 500 Ianthinite 94 In(OH)3 0.501315 0.185886 500 Dzhalindite 95 BiO(OH) 0.506587 0.191449 500 Daubréeite According to the data, oxide and hydroxide minerals can be arranged in the table similar to the Periodic Table (Fig.