TCS Metal Oxide Solutions Database (TCOX10) Technical Information Available Starting with Thermo-Calc Version 2020B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IMA Master List
The New IMA List of Minerals – A Work in Progress – Updated: September 2014 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. -
Pressure-Induced Phase Transitions in Sesquioxides
crystals Review Pressure-Induced Phase Transitions in Sesquioxides Francisco Javier Manjón 1,*, Juan Angel Sans 1 , Jordi Ibáñez 2 and André Luis de Jesús Pereira 3 1 Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA-Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Institute of Earth Sciences Jaume Almera, MALTA-Consolider Team, Consell Superior d’Investigacions Científiques (CSIC), 08028 Barcelona, Catalonia, Spain; [email protected] 3 Grupo de Pesquisa de Materiais Fotonicos e Energia Renovável—MaFER, Universidade Federal da Grande Dourados, Dourados 79825-970, MS, Brazil; [email protected] * Correspondence: fjmanjon@fis.upv.es; Tel.: +34-699-133-078 Received: 12 November 2019; Accepted: 26 November 2019; Published: 28 November 2019 Abstract: Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A2O3 compounds. Sesquioxides constitute a big subfamily of ABO3 compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet’s crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted. Keywords: sesquioxides; high pressure; phase transitions 1. -
IMA Master List
The New IMA List of Minerals – A Work in Progress – Updated: March 2014 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula : it is the CNMNC-approved formula. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. -
Tistarite, Ti2o3, a New Refractory Mineral from the Allende Meteorite
American Mineralogist, Volume 94, pages 841–844, 2009 LETTER Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite CHI MA* AND GEOR G E R. ROSS M AN Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ABSTRA C T Tistarite, ideally Ti2O3, is a new member of the corundum-hematite group. It is found as one subhe- dral crystal in a cluster of micrometer-sized refractory grains along with khamrabaevite (TiC), rutile, and corundum crystals within a chondrule from the Allende meteorite. The mean chemical composi- tion determined by electron microprobe analysis is (wt%) Ti2O3 94.94, MgO 2.06, Al2O3 1.50, ZrO2 0.44, FeO 0.24, CaO 0.10, Cr2O3 0.06, sum 99.34. The empirical formula calculated on the basis of 3 3+ – O atoms is (Ti 1.90Mg0.07Al0.04Zr0.01)Σ2.02O3. Tistarite is rhombohedral, R3c; a = 5.158 Å, c = 13.611 Å, V = 313.61 Å3, and Z = 6. Its electron back-scatter diffraction pattern matches that of synthetic Ti O – 2 3 with the R3c structure. The strongest calculated X-ray powder diffraction lines from the synthetic Ti2O3 data are [d spacing in Å (I) hkl]: 3.734 (84) (012), 2.707 (88) (104), 2.579 (90) (110), 2.242 (38) (113), 1.867 (33) (024), 1.703 (100) (116), 1.512 (28) (214), 1.489 (46) (300), 1.121 (20) (226), 0.896 (25) (416). The mineral is named after the composition “Ti” and the word “star,” implying that this new refractory mineral is among the first solids formed in the solar system. -
IMA Master List
The New IMA List of Minerals – A Work in Progress – Updated: October 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. -
Chance and Necessity in the Mineral Diversity of Terrestrial Planets
295 The Canadian Mineralogist Vol. 53, pp. 295-324 (2015) DOI: 10.3749/canmin.1400086 MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS § ROBERT M. HAZEN Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, U.S.A. EDWARD S. GREW School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ROBERT T. DOWNS AND JOSHUA GOLDEN Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, U.S.A. GRETHE HYSTAD Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721-0089, U.S.A. ABSTRACT Four factors contribute to the roles played by chance and necessity in determining mineral distribution and diversity at or near the surfaces of terrestrial planets: (1) crystal chemical characteristics; (2) mineral stability ranges; (3) the probability of occurrence for rare minerals; and (4) stellar and planetary stoichiometries in extrasolar systems. The most abundant elements generally have the largest numbers of mineral species, as modeled by relationships for Earth’s upper continental crust (E) and the Moon (M), respectively: 2 LogðNEÞ¼0:22 LogðCEÞþ1:70 ðR ¼ 0:34Þð4861 minerals; 72 elementsÞ 2 LogðNMÞ¼0:19 LogðCMÞþ0:23 ðR ¼ 0:68Þð63 minerals; 24 elementsÞ; where C is an element’s abundance in ppm and N is the number of mineral species in which that element is essential. Several elements that plot significantly below the trend for Earth’s upper continental crust (e.g., Ga, Hf, and Rb) mimic other more abundant elements and thus are less likely to form their own species. -
Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds
Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds Mikhail M. Labushev Department of Ore Deposits Geology and Prospecting, Institute of Mining, Geology and Geotechnology, Siberian Federal University, Russian Federation ABSTRACT The concepts of α-and β-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals α-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical el- ements, the same way as chemical elements are located in increasing atomic weights in the Peri- odic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Β-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, β-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further devel- opment of the Periodic Table of Chemical Elements and Chemical Compounds and their proper- ties investigation. INTRODUCTION It is assumed that the number of chemical elements and minerals, as well as inorganic and organic chemical compounds in Nature corresponds to 1, 2, 3 and 4-combinations of a set of 95 and is respectively equal to 95, 4,465, 138,415 and 3,183,545. The explanation of these relations is suggested being based on the concept of information coefficient of proportionality Ip as math- ematical generalization of proportionality coefficient for any set of positive numbers. -
Handheld Raman Library
Compact Rugged Spectrometers - A Universe of Spectroscopy Systems Handheld Raman Library StellarRAM – Mineral Raman Library StellarNet Inc., Tampa FL, USA StellarNet proudly announces a mineral database for StellarRAM handheld Raman systems. The database includes over 200 minerals. This database and library can only be used with our StellarRAM handheld Raman system. It is included with the purchase of the instrument. If the mineral you are trying to measure is not listed you can always add additional library items to the database. -
TCS Metal Oxide Solutions Database (TCOX11) Technical Information Available Starting with Thermo-Calc Version 2021B
TCS Metal Oxide Solutions Database (TCOX11) Technical Information Available Starting with Thermo-Calc Version 2021b Document created 6/16/2021 ǀ 2 of 71 Contents TCS Metal Oxide Solutions Database (TCOX11) 1 About the TCS Metal Oxide Solutions Database (TCOX) 3 TCS Metal Oxide Solutions Database (TCOX) Resources 5 TCOX11 Elements, Systems, Phases, and Properties 6 TCOX11 Systems 9 TCOX11 Assessed Metallic Systems 10 TCOX11 Assessed Oxide Systems 10 TCOX11 Assessed Sulfide Systems 13 TCOX11 Assessed Fluoride Systems 14 TCOX11 Phases 15 Common Phases for the TCOX Database 16 TCOX11 Liquid Solution Phases 17 TCOX11 Alloy Phases 17 TCOX11 Gas Phase 18 TCOX11 Solid Solutions Phases 18 TCOX11 Stoichiometric Compounds 34 TCOX11 Properties Data and Assessed Systems 47 TCOX11 Viscosity for Ionic Liquids Assessed Systems 48 TCOX11 Molar Volume Assessed Systems and Phases 50 TCOX11 Surface Tension Assessed Systems 63 TCS Metal Oxide Solutions Database (TCOX) Revision History 65 www.thermocalc.com About the TCS Metal Oxide Solutions Database (TCOX) ǀ 3 of 71 About the TCS Metal Oxide Solutions Database (TCOX) TCS Metal Oxide Solutions Database (TCOX) Revision History TCS Metal Oxide Solutions Database (TCOX) is a thermodynamic database for slags and oxides. The database integrates thermodynamic data plus properties data for molar volume, viscosity for ionic liquids, and surface tension. The current version of the database is TCOX11. The properties data for molar volume and viscosity for ionic liquids are included with TCS Metal Oxide Solutions Database (TCOX) starting with version 10 (TCOX10). Surface tension is included as of version 11 (TCOX11). Intermetallic compounds, except carbides and nitrides, are not included in the database. -
Chance and Necessity in the Mineral Diversity of Terrestrial Planets
canmin.00.00.1400086 21-07-15 9:32 1 The Canadian Mineralogist Vol. 00, pp. 1-29 (2015) DOI: 10.3749/canmin.1400086 MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS § ROBERT M. HAZEN Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, U.S.A. EDWARD S. GREW School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ROBERT T. DOWNS AND JOSHUA GOLDEN Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, U.S.A. GRETHE HYSTAD Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721-0089, U.S.A. ABSTRACT Four factors contribute to the roles played by chance and necessity in determining mineral distribution and diversity at or near the surfaces of terrestrial planets: (1) crystal chemical characteristics; (2) mineral stability ranges; (3) the probability of occurrence for rare minerals; and (4) stellar and planetary stoichiometries in extrasolar systems. The most abundant elements generally have the largest numbers of mineral species, as modeled by relationships for Earth’s upper continental crust (E) and the Moon (M), respectively: 2 LogðNEÞ¼0:22 LogðCEÞþ1:70 ðR ¼ 0:34Þð4861 minerals; 72 elementsÞ 2 LogðNMÞ¼0:19 LogðCMÞþ0:23 ðR ¼ 0:68Þð63 minerals; 24 elementsÞ; where C is an element’s abundance in ppm and N is the number of mineral species in which that element is essential. Several elements that plot significantly below the trend for Earth’s upper continental crust (e.g., Ga, Hf, and Rb) mimic other more abundant elements and thus are less likely to form their own species.