crystals Review Pressure-Induced Phase Transitions in Sesquioxides Francisco Javier Manjón 1,*, Juan Angel Sans 1 , Jordi Ibáñez 2 and André Luis de Jesús Pereira 3 1 Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA-Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain;
[email protected] 2 Institute of Earth Sciences Jaume Almera, MALTA-Consolider Team, Consell Superior d’Investigacions Científiques (CSIC), 08028 Barcelona, Catalonia, Spain;
[email protected] 3 Grupo de Pesquisa de Materiais Fotonicos e Energia Renovável—MaFER, Universidade Federal da Grande Dourados, Dourados 79825-970, MS, Brazil;
[email protected] * Correspondence: fjmanjon@fis.upv.es; Tel.: +34-699-133-078 Received: 12 November 2019; Accepted: 26 November 2019; Published: 28 November 2019 Abstract: Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A2O3 compounds. Sesquioxides constitute a big subfamily of ABO3 compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet’s crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted. Keywords: sesquioxides; high pressure; phase transitions 1.