Minor Elements in Pyrites from the Smithers Map Area

Total Page:16

File Type:pdf, Size:1020Kb

Minor Elements in Pyrites from the Smithers Map Area MINOR ELEMENTS IN PYRITES FROM THE SMITHERS MAP AREA, AND-EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES by BARRY JAMES PRICE B.Sc. (1965) U.B.C. A thesis submitted in partial fulfillment of the requirements, for the degree of Master of Science in the DEPARTMENT OF GEOLOGY We accept this thesis as conforming to the required standard TEE UNIVERSITY OF BRITISH. COLUMBIA April 1972 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada i MINOR ELEMENTS IN PYRITES FROM THE SMITHERS MAP AREA, B.C. AND EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES • ABSTRACT This study was undertaken to determine minor element geo• chemistry of pyrite and the applicability of pyrite minor-element research to exploration for mineral deposits. Previous studies show that Co, Ni, and Cu are the most prevalent cations substituting for Fe in the pyrite lattice; significant amounts of As and Se can substitute for S. Other elements substitute less commonly and in smaller amounts within the lattice, in interstitial sites, or within discrete mechanically-admixed phases. Mode of substitution is determined most effectively with the electron microprobe. 2+ Cation substitution for Fe is favored by transition elements with non-bonding "d" electrons .in low-spin configurations, an octa• hedral covalent radius similar to that of Fe (1.23 and high electronegativity. Anion substitution for S is favored by chalcogeri and pnigogen elements with a tetrahedral coordination radius close to 1.04 and high electronegativity. Statistical tests performed on several hundred pyrite analyses compiled from the literature and stored on computer cards support: (l) log-normal frequency distributions of minor elements in hydrothermal pyrite; (2) redistribution of minor elements in pyrite by metamorphism; (3) statistical differentiation of hydro- thermal, volcanic-exhalative, and syngenetic pyrites on the basis of Co and Ni concentrations and ratios; (4) relationship of minor element "spectra" and concentrations in disseminated pyrite to those in adjacent rocks; and (5) relationship of minor-element concentra• tions in hydrothermal pyrites to major ore-forming elements present. Forty pyrite samples from several distinct types of mineral deposits in the Smithers area, B.C. were analyzed for Co, Ni, Mn, Cu, Pb, and Zn using atomic-absorption spectrophotometry. Co concentrations are highest in pyrites from volcanic rocks, massive sulphide deposits and a breccia pipe. Ni and Mn concentrations are uniformly lo*r. High contents of Cu, Fb, and Zn are caused by inclusions of common sulphides. Calculation of correlation coeffi• cients for minor elements revealed that contamination does not significantly affect Co or Ni concentrations. Minor element data from the Smithers pyrites provides evidence for genetic relationships between several different mineral deposits, the presence of "metallogenetic" sub-provinces, and minor-element zonation in mineral deposits. Research into minor-element geochemistry of pyrite can be useful in exploration for mineral deposits; most effective use is during secondary stages of exploration. Most useful elements for exploration applications are Co, Ni, Cu, Au, Ag, Hg, Tl, Sn, As, and Se. ACKNOWLEDGMENTS I would like to thank Dr. A.J. Sinclair, who suggested the field of study, provided financial assistance for the •computer-based.statistical studies, and who offered much constructive criticism and many helpful suggestions during preparation of the thesis. Field work was carried out while the writer was employed by Manex -Mining Ltd., who provided transportation and financial assistance for the project. Dr. W.K. Fletcher provided facilities for analytical work, developed techniques for sample solution and elimination of analytical interferences. Much technical assistance was provided during sample preparation and analysis by Mr. A. Bentzen and Mr. A. Dhillon. Facilities for rock-crushing were provided by the Mineral Engineering Department and Bondar- Clegg Ltd. (Assayers). Finally I would like to thank Alexis Clague for typing the thesis. iv TABLE OP CONTENTS Page. , ABSTRACT i ACKNOWLEDGMENTS iii .TABLE OF CONTENTS iv LIST OF TABLES viii LIST OF FIGURES xii INTRODUCTION 1 CHAPTER I PYRITE CRYSTAL CHEMISTRY 3. A. The Pyrite Group and Related Groups 3 1. The Pyrite Group 3 2. Marcasite and Other Structural Groups 5 B. The Relationship of Crystal-Field Theory 9 to Pyrite Group Minerals C. The Co-Ni-Fe-S2 System 22 1. Natural and Synthetic Phases 22 2. Variation of Properties with Composition 25 a. Unit-cell Dimensions 26 b. Color, Reflectivity and Hardness 26 c. Anisotropism 33 d. Thermoelectric Effect 35 CHAPTER II MINOR ELEMENTS' CONTAINED IN PYRITE 37 A. General Discussion 37 TABLE OF CONTENTS (Continued) Page B. Anion Substitution in Pyrite - 40 C. Cation Substitution in Pyrite 42 D. The Incorporation of Minor Elements in Pyrite 45 E. Distribution of Minor Elements within a Single Crystal 49 F. Specific Minor Elements Contained in Pyrite 53 1. The Copper Content of Pyrite 53 2. The Gold Content of Pyrite 57 3. The Silver Content of Pyrite 62 4. Platinum Group Elements in Pyrite 63 5c The Uranium Content of Pyrite 64 6. Thallium Content of Pyrite 67 7. The Mercury Content of Pyrite 69 8. Manganese Content of Pyrite 71 9. Tin Content of Pyrite 71 10. The Selenium Content of Pyrite 72 CHAPTER III THE GEOCHEMISTRY OF COBALT AND NICKEL IN ROCKS 77 A. Igneous Rocks 77 B. Sedimentary Rocks 83 C. Metamorphic Rocks 90 vi TABLE OF CONTENTS (Continued) Page CHAPTER IV STATISTICAL STUDIES OF MINOR ELEMENTS IN PYRITE . 95 A. Introduction 95 B. Frequency Distributions of Minor Elements 97 C. Sedimentary Pyrite 101 D. Massive-Sulphide - Volcanic-Exhalative Pyrite 110 E. Effects of Metamorphism on Pyrite 112 F. Hydrothermal Pyrite 124 1. Porphyry-Cu-Mo Deposits 124 2. Normal Vein and Replacement Deposits 129 G. Minor Elements in Pyrite and Silica Content of Associated Igneous Rocks 137 CHAPTER V MINOR ELEMENTS IN PYRITE FROM THE SMITHERS AREA, B.C. • 141 A. Introduction 141 B. General Geology of the Thesis Area 143 1. Stratigraphy ' 143 2. Structure 143 3. Igneous Rocks 144 4. Mineral Deposits 144 C. Analytical Method and Results 146 D. Discussion of Results 149 1. Dome Mountain Area 151 TABLE OF CONTENTS (Continued) Page 2. Grouse Mountain Area 152 a. Molymine Deposits 152 b. Other Deposits .162 3. Exploration Applications in the Snithers Area 164 CHAPTER VI SUMMARY AND CONCLUSIONS - 166 APPENDICES I. PROPERTY DESCRIPTIONS 191 II. • SAMPLE PREPARATION,. ANALYSIS, AND PRECISION CALCULATIONS . 211 III. EXPLANATION OF DATA FILING SYSTEM . " 221: IV. APPLICATION OF MINOR ELEMENT STUDIES -.• • TO EXPLORATION FOR MINERAL DEPOSITS 223 LIST OF TABLES Table Page 1. Pyrite Group - Minerals and properties 6 2. Electronic configurations of the elements of the first transition series 11 3. Electronic configurations and crystal-field stabilization energies of transition metal ions in octahedral coordination 12 4. The number of non-bonding d-electrons in -\": dianionic compounds - 16 5. Minerals with 6, 7, or 8 non-bonding "d"-electrons 16 6. Chalcogenides and pnictides of transition „ elements 17 7. Reflectivity and hardness values for the zoned bravoite crystal in relation to composition 30 8. Reflectivities, effective number of free electrons and electronic configuration of cations in the pyrite type disulphides 32 9. Results of the quantitative determination of trace elements by the electron microprobe on the two types of pyrite 34 10. Physicochemical parameters of anions 40 11. Physical parameters of cations 43-44 12. Ionization potentials, electronegativities, and ionic radii for divalent and trivalent cations 47 "13. Comparison of minor element content of pyrite crystal cores and margins, Belukhinskoye and Bukhinskoye deposits, U.S.S.R. 52 14. Uranium content of pyrite samples from uranium deposits 66 LIST OF TABLES (Continued) Table Page 15. Selenium content of pyrites from some 76 Canadian ore deposits • 16. Variation of cobalt and nickel with rock types 78 17. Average Co and Ki contents and Co/Ni. ratios of sediments 83 18. Average Co, Ni contents and Co/Ni ratios of syngenetic copper deposit sediments 84 19. Zero order correlations for Mn-Fe-Co-Ni in sediments from various environments 89 20. Comparison of minor element content of medium and high-grade metamorphic rocks, Adirondack Mountains, New York 91 21. Comparison of minor element content of low, medium and high-grade metamorphic rocks, New Hampshire 91 22. Comparison of means, standard deviations and t-test values for "syngenetic',' "hydrothermal" and "massive sulphide" pyrites 107 23. Comparison of means, standard deviations, and t-test values for minor elements in medium- grade and high-grade metamorphic pyrites 116 24. Comparison of means, standard deviations, and t-test values for minor elements in pyrites from the Berg and Endako "porphyry" deposits 126-127 25. Minor element data - "porphyry" pyrites 130 26. Minor element data - hydrothermal vein and replacement pyrite 131 27. Comparison of means, standard deviations, and t-test values for minor elements in pyrites from mineral deposits of different major metals 133-134 28. Relationship of maximum Ni content and Ni/Co ratio of sulphides to composition of adjacent igneous rocks 138 LIST OF TABLES (Continued) Table Page 29. Mineral deposits of the Done Mountain-Grouse Mountain area, Smithers, B.C. 145 30. Pyrite analyses from Smithers. map area, B.C. 147 31. Comparison of Dome Mountain and Dome Babine pyrites 154 32. Comparison of means, standard deviations and., t-test values for pyrites from Dome Mountain and Grouse Mountain mineral deposits 155 33.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Modeling the Shape of Ions in Pyrite-Type Crystals
    Crystals 2014, 4, 390-403; doi:10.3390/cryst4030390 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Modeling the Shape of Ions in Pyrite-Type Crystals Mario Birkholz IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany; E-Mail: [email protected]; Tel.: +49-335-56250 Received: 13 April 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014 Abstract: The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant. Keywords: ionic radius; ionic shape; bonding distance; ionic volume; pyrite-type compounds; di-chalcogenides; di-oxides; di-sulfides; di-selenides; di-tellurides 1.
    [Show full text]
  • Pyrite Roasting, an Alternative to Sulphur Burning
    The Southern African Institute of Mining and Metallurgy Sulphur and Sulphuric Acid Conference 2009 M Runkel and P Sturm PYRITE ROASTING, AN ALTERNATIVE TO SULPHUR BURNING M Runkel and P Sturm Outotec GmbH, Oberursel GERMANY Abstract The roasting of sulphide ores and concentrates is often the first step in the production of metals or chemicals. In many processes, the production of sulphuric acid is viewed as a by-product, while in some plants production is an important economic factor. Regardless of the purpose, a pyrite roasting plant consists of mainly three plant sections: roasting, gas cleaning and sulphuric acid. With the addition of air, the pyrite concentrates are transformed into solid oxides and gaseous sulphur dioxide at temperatures of 600 - 1000° C. After cleaning and cooling, the sulphur dioxide in the roasting gas is further processed to sulphuric acid. Two types of reactors are used depending on the application: stationary or circulating fluid bed . For over 60 years, Outotec has progressively been developing the principle of fluidised bed technology in several different reactor types for a multitude of process applications. The versatility of the fluidised bed reactor system has manifested itself in the treatment of minerals, including solid fuels, and for metallurgical processes both in the ferrous and non-ferrous fields. Process applications have included roasting, calcining, combustion and charring of coals, as well as off-gas treatment. This paper provides a summary of the pyrite roasting technology currently used along with a simple cost comparison of pyrite roasting and sulphur burning processes. Introduction Pyrite roasting and sulphur burning plants are built for the production of sulphuric acid.
    [Show full text]
  • Ultrafast Band-Gap Oscillations in Iron Pyrite
    Ultrafast band-gap oscillations in iron pyrite The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kolb, Brian, and Alexie Kolpak. “Ultrafast Band-Gap Oscillations in Iron Pyrite.” Phys. Rev. B 88, no. 23 (December 2013). © 2013 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.88.235208 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/88761 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 88, 235208 (2013) Ultrafast band-gap oscillations in iron pyrite Brian Kolb and Alexie M. Kolpak Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 7 August 2013; revised manuscript received 17 October 2013; published 20 December 2013) With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (≈100 fs) oscillation in the band gap.
    [Show full text]
  • The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite
    American Mineralogist, Volume61, pages248-259, 1976 The electricalresistivity of galena,pyrite, and chalcopyrite Doneln F. PnlorrronreNn RnlpH T. Suurv Departmentof Geologyand Geophysics,Uniuersity of Utah Salt Lake Cily, Utah 84112 Abstract. The sulfidesgalena, chalcopyrite, and pyrite are semiconductorswhose electrical resistivity and type are controlled by deviationsfrom stoichiometryand impurity content,and henceby their geochemicalenvironment. We measuredelectrical resistivity,type, and the impurity content (emissionspectrograph and microprobe) on small volumesof sample.Our results, together with those obtained from a comprehensiveliterature analysis, are usedto construct histogramsof the natural variability in carrier density and resistivity. Sulfur deficiency is the dominant defect in chalcopyrite and hence almost all natural samplesare n-type. lt appearsthat the copper/iron ratio is also important electrically,the copper-richsamples being the more resistive. lmportant donor deiectsin galena(z-type samples)are antimony and bismuth impurities, and sulfur vacancies;acceptor defects(p-type samples) include silver impurities and lead 'Mississippi vacancies.P-type samplesappear to be restrictedto Valley' and argentiferous deposits. In pyrite, electricallyactive impurities include cobalt, nickel, and copper as donors, and arsenicas an acceptor.Deviations from stoichiometry,in the same senseas galena,may be important. Pyritesfrom sedimentaryand epithermaldeposits are usuallyp-type if cupriferous sulfidesare not present.Samples from hypothermaldeposits
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Covered Cinnabar Deposit of El the Polymetallic Pyritic Lenses at the Base of The
    LEIDSE GEOLOGISCHE MEDEDELINGEN, Deel 52, 1-7-1981 Aflevering 1, pp. 23-56, Framework and evolution of Hercynian mineralization in the Iberian Meseta BY L.J. G. Schermerhorn Abstract The Hercynian cycle, starting in Late Precambrian times and terminated at the end ofthe Palaeozoic, is associated in the Iberian Peninsula with the the deposition of a wide variety of metallic and nonmetallic mineral resources. The most famous of these are the base-metal sulphides of Iberian Pyrite Belt (Rio Tinto and other deposits), tin and tungsten (Panasqueira), and mercury (Almadén). The of the the accumulation of depositional stage Hercynian cycle saw syngenetic mineral deposits, resulting from the interplay of palaeogeographical, sedimentary and volcanic controls. During and after the following orogenic stage, epigenetic minerals originated through magmaticactivity, mostly as direct deposits from magmatic-derived fluids and also indirectly through thermal activation of existing rock. In both stages felsic magmatismwas the dominant agent of mineralization, both for the moreimportant volcanogenic and for the plutonic mineral deposits. Framework and evolution of Hercynian mineralization are defined by the geotectonic intraplate — not plate-margin - setting ofthe Meseta and by its palaeogeographicaland structural developmentduring the cycle, modified by regional and local factors, foremost among which are volcanic and plutonic heat and mass transfer. the Metallogeneticprovinces and epochs are distinguished, metallotects outlined, and possible sources for
    [Show full text]
  • GEOLOGY 9 Investigations Into Mineral Occurences in the Nickel
    GEOLOGY 9 Investigations into Mineral Occurences in the Nickel Plate Ore April 1942 R. Haywood-Farmer ACKTTP'. Jinxes T,I:TS The author wishes to acknowledge the able assistance and timely hints and suggestions given by Dr. H.V.Warren in connection with this work. Wy thanks are also due to Dr. Warren for his work on duplicate sections and for his help in the photography. The author would also like to acknowledge the assistance of the Messrs. H. -Thompson and C, Hey for their help in the laboratory. T? ^T T? University of British Columbia «• April, 1942. Table of Contents Introduction Conclusions (summary) Preliminary Observations Cobalt Identification Tests to Identify Cobalt Minerals Results of Etch Tests and Micr<£fehemical Tests Size of the Cobalt Inclusions Relationship Between the Minerals Comparison of Assays with Estimated Values (10) Conclusions Investigations into Mineral Oocurances in the Nickel Plate Ore Introduction Object of Investigation The work was done in an effort to identify the cobalt bearing minerals > and to find the relationship between the cobalt minerals and the other metallic minerals present* The association of the gold in the ore was considered in wiaw of future mineral dressing work for the recovery of cobalt and gold* It was hoped, that by microscopic work an answer could be obtained as to the possibility of making a high grade cobalt concentrate* At present, no recovery of cobalt is made from the ore* The concentrator heads run about 0*4 ounces in gold and about 0*05$ cobalt* The ore, after mining is ground
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINER.{LOGIST, VOL. 55, SEPTEMBER-OCTOBER, 1970 NEW MINERAL NAN4ES Polarite A. D GnNrrrv, T. L EvsrrcNrEVA, N. V. Tnoxnve, eno L. N. Vver.,sov (1969) polarite, Pd(Pb, Bi) a new mineral from copper-nickel sulfide ores.Zap. Vses.Mined. Obslrch. 98, 708-715 [in Russian]. The mineral was previouslv described but not named by cabri and rraill labstr- Amer. Mineral.52, 1579-1580(1967)lElectronprobeanalyseson3samples(av.of 16, 10,and15 points) gave Pd,32.1,34.2,32 8; Pb 35.2, 38.3,34 0; Bi 31.6, 99.1,334; sum 98 9, 102.8, 100.2 percent corresponding to Pcl (Pb, Bi), ranging from pd1.6 (pb04? Bi0.60)to pdro (PboogBio rs). X-ray powder daLa are close to those of synthetic PbBi. The strongest lines (26 given) are 2 65 (10)(004),2.25 (5)(331),2.16 (9)(124),1.638(5)(144). These are indexed on an orthorhombic cell with a7 l9l, D 8 693, c 10.681A. single crystal study could not be made. In polished section, white with 1'ellowish tint, birefringence not observed. Under crossed polars anisotropic with slight color effects from gray to pale brown Maximum reflectance is given at 16 wave lengths (t140 740 nm) 56.8 percent at 460 nm; 59.2 at 540; 59.6 at 580; 6I.2 at 660. Microhardness (kg/mmr) was measured on 3 grains: 205,232, av 217;168- 199, av 180; 205-232, av 219. The mineral occurs in vein ores of the'r'alnakh deposit amidst chalcopyrite, talnekhite, and cubanite, in grains up to 0.3 mm, intergro.wn with pdspb, Cupd6 (Sn, pb): (stannopal- ladinite), nickeloan platinum, sphalerite, and native Ag The name is for the occurence in the Polar urals.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • European Journal of Mineralogy
    Title Grundmannite, CuBiSe<SUB>2</SUB>, the Se-analogue of emplectite, a new mineral from the El Dragón mine, Potosí, Bolivia Authors Förster, Hans-Jürgen; Bindi, L; Stanley, Christopher Date Submitted 2016-05-04 European Journal of Mineralogy Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia --Manuscript Draft-- Manuscript Number: Article Type: Research paper Full Title: Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia Short Title: Composition and crystal structure of grundmannite, CuBiSe2, Corresponding Author: Hans-Jürgen Förster Deutsches GeoForschungsZentrum GFZ Potsdam, GERMANY Corresponding Author E-Mail: [email protected] Order of Authors: Hans-Jürgen Förster Luca Bindi Chris J. Stanley Abstract: Grundmannite, ideally CuBiSe2, is a new mineral species from the El Dragόn mine, Department of Potosí, Bolivia. It is either filling small shrinkage cracks or interstices in brecciated kruta'ite−penroseite solid solutions or forms independent grains in the matrix. Grain size of the anhedral to subhedral crystals is usually in the range 50−150 µm, but may approach 250 µm. Grundmannite is usually intergrown with watkinsonite and clausthalite; other minerals occasionally being in intimate grain-boundary contact comprise quartz, dolomite, native gold, eskebornite, umangite, klockmannite, Co-rich penroseite, and three unnamed phases of the Cu−Bi−Hg−Pb−Se system, among which is an as-yet uncharacterizedspecies with the ideal composition Cu4Pb2HgBi4Se11. Eldragόnite and petrovicite rarely precipitated in the neighborhood of CuBiSe2. Grundmannite is non-fluorescent, black and opaque with a metallic luster and black streak.
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]