Report of Investigation 19

Total Page:16

File Type:pdf, Size:1020Kb

Report of Investigation 19 Report of Investigation 19 Michigan Department of Environmental Quality Geological and Land Management Division Stratigraphic Cross-Sections of the Michigan Basin - RI 19 - page 1 of 36 Stratigraphic Cross-Sections of the Michigan Basin - RI 19 - page 2 of 36 Preface PREFACE .............................................................................3 STRATIGRAPHIC CROSS-SECTIONS OF THE MICHIGAN BASIN..4 In July 1975 a new unit, the Geology and Minerals Research Unit, was created in the Michigan Geological Survey Abstract................................................................................ 4 Division. The purpose of the unit is to investigate the INTRODUCTION.....................................................................4 geology and the resource potential of the State and provide a GEOLOGIC SETTING .............................................................5 data base for more detailed geological endeavors. STRATIGRAPHIC CROSS-SECTIONS .......................................5 Pertinent to these objectives, unit personnel determined that geophysical log cross-sections or correlation sections would STRATIGRAPHY AND CORRELATION .......................................6 be useful in delineating the formations in the subsurface of JURASSIC SYSTEM ...............................................................6 the Southern Peninsula in greater detail. The 15 cross- PENNSYLVANIAN SYSTEM .....................................................6 sections presented in this report cover the entire stratigraphic sequence present in the subsurface, from the MISSISSIPPI SYSTEM ............................................................7 Jurassic through the Precambrian. They depict correlations, Bayport Limestone............................................................... 7 based principally on gamma ray logs, of the recognizable Michigan Formation ............................................................. 8 groups, formations, and members in the basin, as well as Marshall Sandstone ............................................................. 9 other correlatable units or beds. The information thus Coldwater Shale .................................................................. 9 provided by the sections will be very helpful to Sunbury Shale ................................................................... 10 governmental agencies, industry, university people and Berea Sandstone ............................................................... 10 Bedford Shale .................................................................... 11 private citizens for an understanding of the geology of the subsurface of Michigan. It will also provide a data base for DEVONIAN SYSTEM ............................................................11 more detailed geologic study and essential information for Ellsworth Shale .................................................................. 12 more effective decisions in land use planning. Antrim Shale ...................................................................... 12 Traverse Group.................................................................. 13 The writer expresses gratitude to Garland D. Ells, Michigan Dundee Limestone............................................................. 14 Geological Survey, James H. Fisher, Michigan State Detroit River Group............................................................ 15 University, and Glenn C. Sleight, McClure Oil Company, for Lucas Formation ................................................................ 15 their critical review and useful suggestions in correlating the Amherstburg Formation ..................................................... 16 many geologic formations found in the Michigan Basin. I Sylvania Sandstone ........................................................... 17 am also grateful to Beverly L. Champion for editing the text Bois Blanc Formation......................................................... 18 and Gregory A. Wilson and Darrel Hodge for preparation of SILURIAN SYSTEM ..............................................................18 the plates. A special thanks goes to Robert C. Reed, who Bass Islands Group ........................................................... 18 reviewed the text and provided many helpful suggestions in Salina Group...................................................................... 19 the preparation of this report. The writer also thanks Lois Niagara Group ................................................................... 22 A. Padgett for rough-draft typing and Lois J. DeClaire for Cabot Head Shale ............................................................. 23 final-typing of the manuscript. Manitoulin Dolomite ........................................................... 23 ORDOVICIAN SYSTEM .........................................................23 Richard T. Lilienthal, Geology and Minerals Research Unit, Cincinnatian Series............................................................ 24 Geological Survey Division Utica Shale ........................................................................ 24 Trenton Group ................................................................... 25 Black River Group.............................................................. 25 This document is based on a scanned copy of the text of St. Peter Sandstone........................................................... 26 Report of Investigation 19, Stratigraphic Cross-Sections of Prairie du Chien Group ...................................................... 26 the Michigan Basin. Errors and omissions are unintended. CAMBRIAN SYSTEM ............................................................26 Please report any oversights to Steven E. Wilson via email [email protected]. PRECAMBRIAN ...................................................................28 LITERATURE CITED.............................................................28 ILLUSTRATIONS ..................................................................31 APPENDIX 1 – WELL RECORDS USED TO CREATE CROSS- SECTIONS..........................................................................34 Stratigraphic Cross-Sections of the Michigan Basin - RI 19 - page 3 of 36 Introduction Stratigraphic Cross-Sections of the The present decade has been witness to the development of Michigan Basin an intensified national concern for the wise and conservative use of our nonrenewable resources. It is also imperative that wise land-use decisions be made in any area where mineral Abstract or energy resource potential is present. To help achieve The strata of the Michigan Basin, encompassing a span of these goals, many kinds of data are needed. One type of geologic time from the Cenozoic Era into the Precambrian, data base deals with geologic information pertaining to the have been correlated in a series of cross-sections, using rock formations of Michigan's Southern Peninsula. Many gamma ray logs from approximately 100 wells drilled in new wells have been drilled in this region during the past Michigan. Fifteen cross-sections have been constructed. All decade. Because these new wells add to the geologic of the sections emanate in radiating fashion from the knowledge of Michigan, they are important in the search for deepest well drilled in the State, the McClure Oil Company - oil and gas resources, for salt and brines, and other uses. To Sparks, Eckelbarger, Whightsil No. 1-8 in Gratiot County, better delineate the stratigraphy of the rock formations in which attained a total depth of 17,466 feet. Each of the the subsurface of the Southern Peninsula and thus enhance fifteen cross-sections is composed of six or seven separate the geologic data base, a new series of cross-sections based sections, showing the entire stratigraphic sequence present on geophysical logs is presented. Fisher et al. (1969) in the wells in that particular cross-section. In conjunction constructed two cross-sections of the Michigan Basin using with the gamma ray logs depicted in the sections, other geophysical logs, and they were helpful in the preparation of geophysical logs are shown in order to demonstrate porosity, this report. density, conductivity and lithology of the strata in various A stratigraphic cross-section or correlation section is one of parts of the basin. The terminology applied to the rock units the geologist's tools for defining and depicting the is essentially that which is used in Michigan's subsurface subsurface geology of a specific area. A series of such investigations. sections, properly constructed, will show the entire Some of the special characteristics of each formation are stratigraphic sequence as well as particular salient aspects of discussed in the text. Among these are the lithology, some the formations in various portions of the area. The cross- depositional history and the resource potential of the sections can also be used as a base from which further formation. studies can proceed. The discussion and sections of the subsurface of the Southern Peninsula are intended to show During the process of researching the rock strata of various features which may be useful in future studies. Michigan from the geophysical logs, several distinctive horizons were noted in some of the formations, which were In order to show the geology in sufficient detail, 15 separate present over a wide enough geographic area to aid in cross-sections crisscrossing the Southern Peninsula were correlating the log curves. Such horizons were especially constructed (see
Recommended publications
  • Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan
    Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan By D.B. WESTJOHN and T.L. WEAVER U.S. Geological Survey Water-Resources Investigations Report 94-4246 Lansing, Michigan 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Earth Science Information Center 6520 Mercantile Way, Suite 5 Open-File Reports Section Lansing, Ml 48911 Box 25286, MS 517 Denver Federal Center Denver, CO 80225 CONTENTS Abstract .......................................................... 1 Introduction ....................................................... 1 Geology .......................................................... 3 Coldwater Shale ................................................ 3 Marshall Sandstone .............................................. 6 Michigan Formation .............................................. 7 Hydrogeologic framework of Mississippian rocks ................................ 8 Relations of stratigraphic units to aquifer and confining units .................... 8 Delineation of aquifer- and confining-unit boundaries ......................... 9 Description of confining units and the Marshall aquifer ........................ 9 Michigan confining
    [Show full text]
  • PROFESSIONAL PAPER 1418 USGS Cience for a Changing World AVAILABILITY of BOOKS and MAPS of the U.S
    PROFESSIONAL PAPER 1418 USGS cience for a changing world AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis­ agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are ANCHORAGE, Alaska Rm. 101,4230 University Dr. obtainable by mail from LAKEWOOD, Colorado Federal Center, Bldg. 810 U.S. Geological Survey, Information Services MENLO PARK, California Bldg. 3, Rm.
    [Show full text]
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York
    Revised Stratigraphy and Correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York By Carlton E. Brett, Dorothy H. Tepper, William M. Goodman, Steven T. LoDuca, and Bea-Yeh Eckert U.S. GEOLOGICAL SURVEY BULLETIN 2086 Prepared in cooperation with the U.S. Environmental Protection Agency and the Department of Earth and Environmental Sciences of the University of Rochester UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1995 10 REVISED STRATIGRAPHY AND CORRELATIONS OF THE NIAGARAN PROVINCIAL SERIES been made in accordance with the NASC. Because the The history of nomenclature of what is now termed the NASC does not allow use of the "submember" category, Medina Group, beginning with Conrad ( 1837) and ending units that would be of this rank are treated as informal units with Bolton (1953), is presented in Fisher (1954); Bolton and have been given alphanumeric designations. Informal (1957, table 2) presents a detailed summary of this nomen- units are discussed under the appropriate "member" clature for 1910-53. A historical summary of nomenclature categories. of the Medina Group in the Niagara region is shown in fig- The use of quotes for stratigraphic nomenclature in this ure 7. Early investigators of the Medina include Conrad report is restricted to units that have been misidentified or (1837); Vanuxem (1840, first usage of Medina; 1842); Hall abandoned. If stratigraphic nomenclature for a unit has (1840, 1843); Gilbert (1899); Luther (1899); Fairchild changed over time, the term for the unit is shown, with cap- (1901); Grabau (1901, 1905, 1908, 1909, 1913); Kindle and italization, as given in whatever reference is cited rather Taylor (1913); Kindle (1914); Schuchert (1914); Chadwick than according to the most recent nomenclature.
    [Show full text]
  • Attachment B-13
    Attachment B-13 Hydrogeology for Underground Injection Control · n Michigan: Part 1 Department of Geology Western Michigan University Kalamazoo, Michigan U.S. Environmental Protection Agency Underground Injection Control Program 1981 Acknowledgements ADMINISTRATIVE STAFF DENNIS L. CURRAN LINDA J. MILLER DONALD N. LESKE Project Coordinator Cartographer Regional Coordinator PROJECT DIRECTORS RICHARD N. PASSERO W. Thomas Straw Lloyd J. Schmaltz Ph .D., Professor of Geology Ph.D., Professor of Geology Chatrman, Department of Geology Department of Geology, Western Michigan University RESEARCH STAFF CYNTHIA BATHRICK WILLIAM GIERKE CRYSTAL KEMTER JEFFREY PFOST PAUL CIARAMITARO PAUL GOODREAULT STEVEN KIMM NICK POGONCHEFF PATRICIA DALIAN DAVID HALL KEVIN KINCARE KIFF SAMUELSON DOUGLAS DANIELS EVELYN HALL MICHAEL KLEIN JEFFREY SPRUIT DARCEY DAVENPORT THOMAS HANNA BARBARA LEONARD GARY STEFANIAK JEFFREY DEYOUNG ROBERT HORNTVEDT THOMAS LUBY JOSEPH VANDERMEULEN GEORGE DUBA JON HERMANN HALLY MAHAN LISA VARGA SHARON EAST WILLIAM JOHNSTON JAMES McLAUGHLIN KATHERINE WILSON JAMES FARNSWORTH PHILLIP KEAVEY DEANNA PALLADINO MICHAEL WIREMAN LINDA FENNER DONALD PENNEMAN CARTOGRAPHIC STAFF LINDA J. MILLER Chief Cartographer SARAH CUNNINGHAM CAROL BUCHANAN ARLENE D. SHUB DAVID MOORE KENNETH BATTS CHRISTOPHER H. JANSEN NORMAN AMES ANDREW DAVIS ANN CASTEL PATRICK HUDSON MARK LUTZ JOAN HENDRICKSEN MAPPING CONSULTANT THOMAS W. HODLER Ph.D., Assistant Professor of Geography Department of Geography Western Michigan University CLERICAL PERSONNEL KARN KIK JANET NIEWOONDER
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • Middle Devonian Formations in the Subsurface of Northwestern Ohio
    STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 SCIENTIFIC AND TECHNICAL STAFF OF THE OHIO DIVISION OF GEOLOGICAL SURVEY ADMINISTRATIVE SECTION Horace R. Collins, State Geologist and Di v ision Chief David K. Webb, Jr., Geologist and Assistant Chief Eleanor J. Hyle, Secretary Jean S. Brown, Geologist and Editor Pauline Smyth, Geologist Betty B. Baber, Geologist REGIONAL GEOLOGY SECTION SUBSURFACE GEOLOGY SECTION Richard A. Struble, Geologist and Section Head William J. Buschman, Jr., Geologist and Section Head Richard M. Delong, Geologist Michael J. Clifford, Geologist G. William Kalb, Geochemist Adriaan J anssens, Geologist Douglas L. Kohout, Geologis t Frederick B. Safford, Geologist David A. Stith, Geologist Jam es Wooten, Geologist Aide Joel D. Vormelker, Geologist Aide Barbara J. Adams, Clerk· Typist B. Margalene Crammer, Clerk PUBLICATIONS SECTION LAKE ERIE SECTION Harold J. Fl inc, Cartographer and Section Head Charles E. Herdendorf, Geologist and Sectwn Head James A. Brown, Cartographer Lawrence L. Braidech, Geologist Donald R. Camburn, Cartovapher Walter R. Lemke, Boat Captain Philip J. Celnar, Cartographer David B. Gruet, Geologist Aide Jean J. Miller, Photocopy Composer Jean R. Ludwig, Clerk- Typist STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 GEOLOGY SERVES OHIO CONTENTS Page Introduction . 1 Previous investigations .. .. .. .. .. .. .. .. .. 1 Study methods . 4 Detroit River Group . .. .. .. ... .. ... .. .. .. .. .. .. .. ... .. 6 Sylvania Sandstone ..........................
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]
  • Bedrock Aquifer Systems of Noble County, Indiana EXPLANATION
    Mitchell E. Daniels, Jr., Governor Department of Natural Resources Division of Water Robert E. Carter Jr., Director Aquifer Systems Map 50-B BEDROCK AQUIFER SYSTEMS OF NOBLE COUNTY, INDIANA R. 11 E. R. 12 E. The occurrence of bedrock aquifers depends on the original composition of the rocks and R. 10 E. R. 11 E. T. 36 N. subsequent changes which influence the hydraulic properties. Post-depositional R. 9 E. R. 10 E. T. 35 N. processes which promote jointing, fracturing, and solution activity of exposed bedrock R. 8 E. R. 9 E. generally increase the hydraulic conductivity (permeability) of the upper portion of R. 7 E. R. 8 E. 6 bedrock aquifer systems. Because permeability in many places is greatest near the W 4 3 Wolcottville 1 bedrock surface, bedrock units within the upper 100 feet are commonly the most 0 1 2 0 T. 36 N. W 5 4 Tamarack productive aquifers. T. 35 N. 0 d 0 6 5 2 a 9 3 E Lake o 4 3 d 5 2 4 5 R a 6 7 1 1 5 2 The bedrock aquifer systems in Noble County are overlain by unconsolidated deposits of o 3 y 3 4 t R 5 d n 6 R a varying thickness, ranging from around 200 feet to more than 450 feet. The y u t S o E o n R C 0 u unconsolidated thickness is typically greater than 300 feet in the county. The bedrock 0 o y t No 1 C County Road 1100 N rt hp n Cree aquifers, therefore, are under confined conditions.
    [Show full text]