RF and Microwave Power Amplifier and Transmitter Technologies — Part 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RF CMOS Power Amplifiers: Theory, Design and Implementation the KLUWER INTERNATIONAL SERIES in ENGINEERING and COMPUTER SCIENCE
RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: POWER TRADE-OFFS AND LOW POWER IN ANALOG CMOS ICS M. Sanduleanu, van Tuijl ISBN: 0-7923-7643-9 RF CMOS POWER AMPLIFIERS: THEORY, DESIGN AND IMPLEMENTATION M.Hella, M.Ismail ISBN: 0-7923-7628-5 WIRELESS BUILDING BLOCKS J.Janssens, M. Steyaert ISBN: 0-7923-7637-4 CODING APPROACHES TO FAULT TOLERANCE IN COMBINATION AND DYNAMIC SYSTEMS C. Hadjicostis ISBN: 0-7923-7624-2 DATA CONVERTERS FOR WIRELESS STANDARDS C. Shi, M. Ismail ISBN: 0-7923-7623-4 STREAM PROCESSOR ARCHITECTURE S. Rixner ISBN: 0-7923-7545-9 LOGIC SYNTHESIS AND VERIFICATION S. Hassoun, T. Sasao ISBN: 0-7923-7606-4 VERILOG-2001-A GUIDE TO THE NEW FEATURES OF THE VERILOG HARDWARE DESCRIPTION LANGUAGE S. Sutherland ISBN: 0-7923-7568-8 IMAGE COMPRESSION FUNDAMENTALS, STANDARDS AND PRACTICE D. Taubman, M. Marcellin ISBN: 0-7923-7519-X ERROR CODING FOR ENGINEERS A.Houghton ISBN: 0-7923-7522-X MODELING AND SIMULATION ENVIRONMENT FOR SATELLITE AND TERRESTRIAL COMMUNICATION NETWORKS A.Ince ISBN: 0-7923-7547-5 MULT-FRAME MOTION-COMPENSATED PREDICTION FOR VIDEO TRANSMISSION T. Wiegand, B. Girod ISBN: 0-7923-7497- 5 SUPER - RESOLUTION IMAGING S. Chaudhuri ISBN: 0-7923-7471-1 AUTOMATIC CALIBRATION OF MODULATED FREQUENCY SYNTHESIZERS D. McMahill ISBN: 0-7923-7589-0 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN S. Huss ISBN: 0-7923-7598-X CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN RADIO RECEIVERS L. -
Signal Issue 35
Signal Issue 35 Tricks of the Trade Dave Porter G4OYX and Alan Beech G1BXG We continue to celebrate the 50th anniversary of the start of offshore commercial radio in the UK and are now in June 1965. By this time, the number of stations on the air was increasing steadily, taking advantage of the (lack of) laws at the time with regard to operations in International Waters. The first two stations, Caroline and Atlanta, had used 10 kW AM transmitters by Continental Electronics employing their patented version of screen grid modulation but, just prior to Christmas 1964, the US-inspired and -built station of Radio London on the former US minesweeper USS Density renamed M/V Galaxy was on the air with test transmissions on 266 m, 1124 kHz, running, at first, 17 kW. This 50 kW transmitter was an RCA BTA-50H and was the first of many in the offshore fleet to employ the ‘Ampliphase’ approach. From ‘outphasing’ to ‘Ampliphase’ Amplitude from phase The theory of what became known as ‘Ampliphase’ was The principle of ‘Ampliphase’ is to take a single frequency proposed and developed in France by Henry Chireix in drive source, split it into two feeds, phase modulate each 1935 who called the technique ‘outphasing’. feed, amplify as required and add the two signals in a combining network. Amplitude modulation is achieved by ‘Outphasing’ was not taken up initially by RCA but by the degree of addition or subtraction due to the phase McClatchy Broadcasting in the late 1940s, first at KFBK, difference between the two signals. -
Radar Transmitter/Receiver
Introduction to Radar Systems Radar Transmitter/Receiver Radar_TxRxCourse MIT Lincoln Laboratory PPhu 061902 -1 Disclaimer of Endorsement and Liability • The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory. • The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors Radar_TxRxCourse MIT Lincoln Laboratory PPhu 061802 -2 Outline • Introduction • Radar Transmitter • Radar Waveform Generator and Receiver • Radar Transmitter/Receiver Architecture -
History of Radio Broadcasting in Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013). -
HF Linear Amplifiers
- • - • --• --•• • •••- • --••• - • ••• •- • HFHF LinearLinear AmplifiersAmplifiers Basic amplifier concepts, types & operation Adam Farson VA7OJ Tube Amplifiers Solid-State Amplifiers 1 October 2005 NSARC HF Operators – HF Amplifiers 1 BasicBasic LinearLinear AmplifierAmplifier RequirementsRequirements - • - • --• --•• • •••- • --••• - • ••• •- • ! Amplify the exciter’s RF output (by 10 dB or more). ! Provide a means of correct matching to load. ! Amplify complex signals such as SSB with minimum distortion (maximum linearity). ! Transmit a spectrally-pure signal. ! Assure a safe operating environment. 1 October 2005 NSARC HF Operators – HF Amplifiers 2 BasicBasic AmplifierAmplifier TypesTypes - • - • --• --•• • •••- • --••• - • ••• •- • ! Tube, grounded-grid triode (cathode-driven) – most popular. Some designs use tetrodes. ! Tube, grounded-cathode tetrode (grid-driven) – less common, but growing in popularity. ! Solid-state, BJT (junction transistors) – 500W or 1 kW. ! Solid-state, MOSFET – typically 1 kW. 1 October 2005 NSARC HF Operators – HF Amplifiers 3 Grounded-Grid Triode Amplifier showing pi-section input & output networks - • - • --• --•• • •••- • --••• - • ••• •- • Input network: C1-L1-C2 Plate feed circuit: RFC2-C5 Output network: C6-L2-C7 Plate tuning: C6 Loading: C7 Input impedance of grounded-grid triode amplifier Is low, complex, and also non-linear (decreases at onset of grid current). Tuned input network tunes out reactive (C) component, and also linearizes tube input impedance via flywheel effect. Cathode choke RFC1 provides DC return path for plate feed, and allows cathode to “float” at RF potential. Heater (or filament of directly-heated tube) powered via bifilar RF choke. Pi-output network matches tube load resistance to antenna, RF drive power added to output. Amplifier can operate in Class AB1 (no grid current) or AB2 (some grid current). 1 October 2005 NSARC HF Operators – HF Amplifiers 4 TubesTubes forfor GroundedGrounded--GridGrid AmplifiersAmplifiers - • - • --• --•• • •••- • --••• - • ••• •- • • Directly-heated glass triode (e.g. -
High Efficiency Power Amplifier for High Frequency Radio Transmitters
High Efficiency Power Amplifier for High Frequency Radio Transmitters M.Vasic, 0. Garcia, J.A. Oliver, P. Alou, D. Diaz, J.A. A.Gimeno, J.M.Pardo, C.Benavente, F.J.Ortega Cobos Radio Engineering Group (GIRA) Centra de Electronica Industrial (CEI) Universidad Politecnica de Madrid Universidad Politecnica de Madrid Madrid, Spain Madrid, Spain [email protected] Abstract— Modern transmitters usually have to amplify and One of the techniques that offer high efficiency and high transmit complex communication signals with simultaneous linearity is the Kahn's technique or Envelope Elimination and envelope and phase modulation. Due to this property of the Restoration (EER) technique [3]. This method proposes transmitted signal, linear power amplifiers (class A, B or AB) linearization of highly efficient, but nonlinear power amplifier are usually employed as a solution for the power amplifier stage. (class E or D) by modulation of its supply voltage. The These amplifiers have high linearity, but suffer from low modulation of the supply voltage is done through an envelope efficiency when the transmitted signal has high peak-to-average amplifier according to the reference signal that is proportional power ratio. The Kahn envelope elimination and restoration (EER) technique is used to enhance efficiency of RF to the envelope of the transmitted signal, while the phase transmitters, by combining highly efficient, nonlinear RF modulation of the transmitted signal is conducted through the amplifier (class D or E) with a highly efficient envelope amplifier nonlinear amplifier. The basis for EER is the equivalence of in order to obtain linear and highly efficient RF amplifier. -
Bias Circuits for RF Devices
Bias Circuits for RF Devices Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul A lot of RF schematics mention: “bias circuit not shown”; when actually one of the most critical yet often overlooked aspects in any RF circuit design is the bias network. The bias network determines the amplifier performance over temperature as well as RF drive. The DC bias condition of the RF transistors is usually established independently of the RF design. Power efficiency, stability, noise, thermal runway, and ease to use are the main concerns when selecting a bias configuration. A transistor amplifier must possess a DC biasing circuit for a couple of reasons. • We would require two separate voltage supplies to furnish the desired class of bias for both the emitter-collector and the emitter-base voltages. • This is in fact still done in certain applications, but biasing was invented so that these separate voltages could be obtained from but a single supply. • Transistors are remarkably temperature sensitive, inviting a condition called thermal runaway. Thermal runaway will rapidly destroy a bipolar transistor, as collector current quickly and uncontrollably increases to damaging levels as the temperature rises, unless the amplifier is temperature stabilized to nullify this effect. Amplifier Bias Classes of Operation Special classes of amplifier bias levels are utilized to achieve different objectives, each with its own distinct advantages and disadvantages. The most prevalent classes of bias operation are Class A, AB, B, and C. All of these classes use circuit components to bias the transistor at a different DC operating current, or “ICQ”. When a BJT does not have an A.C. -
UNIVERSITY of CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications a Dissertation Submitt
UNIVERSITY OF CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) by Sataporn Pornpromlikit Committee in charge: Professor Peter M. Asbeck, Chair Professor Prabhakar R. Bandaru Professor Andrew C. Kummel Professor Lawrence E. Larson Professor Paul K.L. Yu 2010 Copyright Sataporn Pornpromlikit, 2010 All rights reserved. The dissertation of Sataporn Pornpromlikit is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my family. iv EPIGRAPH ”Education is what remains after one has forgotten what one has learned in school.” — Albert Einstein v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph.......................................v Table of Contents.................................. vi List of Figures.................................... viii List of Tables.................................... xi Acknowledgements................................. xii Vita......................................... xiv Abstract of the Dissertation............................. xv Chapter 1 Introduction.............................1 1.1 CMOS Technology and Scaling...............2 1.2 Toward Fully-Integrated CMOS Transceivers........4 1.3 Power Amplifier Design...................5 -
5 Steps to Selecting the Right RF Power Amplifier
modular rf 5 Steps to Selecting the Right RF Power Amplifier Jason Kovatch Sr. Development Engineer AR Modular RF, Bothell WA You need an RF power amplifier. You have measured the power of your signal and it is not enough. You may even have decided on a power level in Watts that you think will meet your needs. Are you ready to shop for an amplifier of that wattage? With so many variations in price, size, and efficiency for amplifiers that are all rated at the same number of Watts many RF amplifier purchasers are unhappy with their selection. Some of the unfortunate results of amplifier selection by Watts include: unacceptable distortion or interference, insufficient gain, premature amplifier failure, and wasted money. Following these 5 steps will help you avoid these mistakes. Step 1 - Know Your Signal Step 2 – Do the Math Step 3 - Window Shopping Step 4 - Compare Apples to Apples Step 5 – Shopping for Bells and Whistles Step 1 – Know Your Signal You need to know 2 things about your signal: what type of modulation is on the signal and the actual Peak power of your signal to be amplified. Knowing the modulation is the most important as it defines broad variations in amplifiers that will provide acceptable performance. Knowing the Peak power of your signal will allow you calculate your gain and/or power requirements, as shown in later steps. Signal Modulation and Power- CW, SSB, FM, and PM are Easy To avoid distortion, amplifiers need to be able to faithfully process your signal’s peak power. -
Hans Knot International Radio Report April 2016 Welcome to Another
Hans Knot International Radio Report April 2016 Welcome to another edition of the International Radio Report. Thanks all for your e mails, memories, photos, questions and more. Part of the report is what was left after the March edition was totally filled and so let’s go with this edition in which first there’s space for a story I wrote last months after again doing some research: ‘Ronan O’Rahilly, Georgie Fame and the Blue Fames. Where it really went wrong!’ On this subject I’ve written before but let’s go back in time and also add some new facts to it: ‘Was Ronan O’Rahilly the manager of Georgie Fame?’ I can tell you there was a problem with an important instrument. When in April 1964 Granada Television came with an edition of the ‘World in action’ series, which was a production from Michael Hodges, they informed the television public about a new form of Piracy, the watery pirates. Two radio ships bringing music and entertainment under the names of Radio Caroline and Radio Atlanta. Radio Caroline was the first 20th century Pirate off the British coast with programs, at that stage, for 12 hours a day. Interviews with the Caroline people were made in the offices of Queen Magazine in the city of London and included – among others – Jocelyn Stevens and the then 23-year old Irish Ronan O’Rahilly. During this documentary it became known, which we would also read in several newspapers in the then following weeks, that Ronan O’Rahilly had started his radiostation Caroline as he couldn’t get his artists played on stations like Radio Luxembourg. -
Class D Audio Amplifier Basics
Application Note AN-1071 Class D Audio Amplifier Basics By Jun Honda & Jonathan Adams Table of Contents Page What is a Class D Audio Amplifier? – Theory of Operation..................2 Topology Comparison – Linear vs. Class D .........................................4 Analogy to a Synchronous Buck Converter..........................................5 Power Losses in the MOSFETs ...........................................................6 Half Bridge vs. Full Bridge....................................................................7 Major Cause of Imperfection ................................................................8 THD and Dead Time ............................................................................9 Audio Performance Measurement........................................................10 Shoot Through and Dead Time ............................................................11 Power Supply Pumping........................................................................12 EMI Consideration: Qrr in Body Diode .................................................13 Conclusion ...........................................................................................14 A Class D audio amplifier is basically a switching amplifier or PWM amplifier. There are a number of different classes of amplifiers. This application note takes a look at the definitions for the main classifications. www.irf.com AN-1071 1 AN-1071 What is a Class D Audio Amplifier - non-linearity of Class B designs is overcome, Theory of Operation without the inefficiencies -
Eimac Care and Feeding of Tubes Part 3
SECTION 3 ELECTRICAL DESIGN CONSIDERATIONS 3.1 CLASS OF OPERATION Most power grid tubes used in AF or RF amplifiers can be operated over a wide range of grid bias voltage (or in the case of grounded grid configuration, cathode bias voltage) as determined by specific performance requirements such as gain, linearity and efficiency. Changes in the bias voltage will vary the conduction angle (that being the portion of the 360° cycle of varying anode voltage during which anode current flows.) A useful system has been developed that identifies several common conditions of bias voltage (and resulting anode current conduction angle). The classifications thus assigned allow one to easily differentiate between the various operating conditions. Class A is generally considered to define a conduction angle of 360°, class B is a conduction angle of 180°, with class C less than 180° conduction angle. Class AB defines operation in the range between 180° and 360° of conduction. This class is further defined by using subscripts 1 and 2. Class AB1 has no grid current flow and class AB2 has some grid current flow during the anode conduction angle. Example Class AB2 operation - denotes an anode current conduction angle of 180° to 360° degrees and that grid current is flowing. The class of operation has nothing to do with whether a tube is grid- driven or cathode-driven. The magnitude of the grid bias voltage establishes the class of operation; the amount of drive voltage applied to the tube determines the actual conduction angle. The anode current conduction angle will determine to a great extent the overall anode efficiency.